Manuel N. Gamito, Steve C. Maddock



Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting.


  1. Bergman, L., Fuchs, H., Grant, E., and Spach, S. (1986). Image rendering by adaptive refinement. In Evans, D. C. and Athay, R. J., editors, Computer Graphics (SIGGRAPH 7886 Proceedings), pages 29-37.
  2. Bloomenthal, J. (1988). Polygonisation of implicit surfaces. Computer Aided Geometric Design, 5:341-355.
  3. Cohen, M. F., Chen, S. E., Wallace, J. R., and Greenberg, D. P. (1988). A progressive refinement approach to fast radiosity image generation. In Dill, J., editor, Computer Graphics (SIGGRAPH 7888 Proceedings), pages 75-84.
  4. Comba, J. L. D. and Stolfi, J. (1993). Affine arithmetic and its applications to computer graphics. In Proc. VI Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 7893), pages 9-18.
  5. Cook, R. L. (1989). Stochastic sampling and distributed ray tracing. In Glassner, A. S., editor, An Introduction to Ray Tracing, chapter 5, pages 161-199. Academic Press.
  6. de Figueiredo, L. H. (1996). Surface intersection using affine arithmetic. In Davis, W. A. and Bartels, R., editors, Graphics Interface (GI 7896), pages 168-175.
  7. de Figueiredo, L. H. and Stolfi, J. (1996). Adaptive enumeration of implicit surfaces with affine arithmetic. Computer Graphics Forum, 15(5):287-296.
  8. de Figueiredo, L. H., Stolfi, J., and Velho, L. (2003). Approximating parametric curves with strip trees using affine arithmetic. Computer Graphics Forum, 22(2):171-171.
  9. Desbrun, M. and Gascuel, M. (1995). Animating soft substances with implicit surfaces. In Cook, R., editor, Computer Graphics (SIGGRAPH 7895 Proceedings), pages 287-290.
  10. Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. (2003). Texturing & Modeling: A Procedural Approach. Morgan Kaufmann Publishers Inc., third edition.
  11. Farrugia, J. P. and Peroche, B. (2004). A progressive rendering algorithm using an adaptive perceptually based image metric. Computer Graphics Forum, 23(3):605- 614.
  12. Foster, N. and Fedkiw, R. (2001). Practical animation of liquids. In Pocock, L., editor, Computer Graphics (SIGGRAPH 7801 Proceedings), pages 23-30.
  13. Gamito, M. N. and Maddock, S. C. (2005). Ray casting implicit procedural noises with reduced affine arithmetic. Memorandum CS - 05 - 04, Dept. of Comp. Science, The University of Sheffield. http://www.dcs.shef.ac.uk/~mag/CS0504.pdf.
  14. Guo, B. (1998). Progressive radiance evaluation using directional coherence maps. In Cohen, M., editor, Computer Graphics (ACM SIGGRAPH 7898 Proceedings), pages 255-266.
  15. Heidrich, W. and Seidel, H.-P. (1998). Ray-tracing procedural displacement shaders. In Davis, W., Booth, K., and Fournier, A., editors, Graphics Interface (GI 7898), pages 8-16.
  16. Heidrich, W., Slusallik, P., and Seidel, H. (1998). Sampling procedural shaders using affine arithmetic. ACM Transactions on Graphics, 17(3):158-176.
  17. Hin, A. J. S., Boender, E., and Post, F. H. (1989). Visualization of 3D scalar fields using ray casting. In Eurographics Workshop on Visualization in Scientific Computing.
  18. Junior, A., de Figueiredo, L., and Gattas, M. (1999). Interval methods for raycasting implicit surfaces with affine arithmetic. In Proc. XII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 7899), pages 1-7.
  19. Kolb, C. E. (1992). Rayshade user's guide and reference manual. Draft 0.4.
  20. Laur, D. and Hanrahan, P. (1991). Hierarchical splatting: A progressive refinement algorithm for volume rendering. In Sederberg, T. W., editor, Computer Graphics (SIGGRAPH 7891 Proceedings), pages 285-288.
  21. Lippert, L. and Gross, M. H. (1995). Fast wavelet based volume rendering by accumulation of transparent texture maps. Computer Graphics Forum, 14(3):431-444.
  22. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In Stone, M. C., editor, Computer Graphics (SIGGRAPH 7887 Proceedings), pages 163-169.
  23. Mitchell, D. P. (1990). Robust ray intersection with interval arithmetic. In MacKay, S. and Kidd, E. M., editors, Graphics Interface (GI 7890), pages 68-74.
  24. Moore, R. (1966). Interval Arithmetic. Prentice-Hall, Englewood Cliffs (NJ), USA.
  25. Perlin, K. (2002). Improving noise. ACM Transactions on Graphics, 21(3):681-682.
  26. Roth, S. D. (1982). Ray casting for modeling solids. Computer Graphics and Image Processing, 18(2):109- 144.
  27. Velho, L. (1996). Simple and efficient polygonization of implicit surfaces. Journal of Graphics Tools, 1(2):5- 24.
  28. Whitaker, R. T. (1998). A level-set approach to 3D reconstruction from range data. Int. J. Computer Vision, 29:203-231.

Paper Citation

in Harvard Style

N. Gamito M. and C. Maddock S. (2006). A PROGRESSIVE REFINEMENT APPROACH FOR THE VISUALISATION OF IMPLICIT SURFACES . In Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 972-8865-39-2, pages 26-33. DOI: 10.5220/0001350400260033

in Bibtex Style

author={Manuel N. Gamito and Steve C. Maddock},
booktitle={Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},

in EndNote Style

JO - Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
SN - 972-8865-39-2
AU - N. Gamito M.
AU - C. Maddock S.
PY - 2006
SP - 26
EP - 33
DO - 10.5220/0001350400260033