computation  methods,  including  Linear  and  non-
Linear ML regressors. However, there is still a lack 
of  many  important  research  questions,  e.g.,  what 
other feature selection approaches should be used to 
select  a  better  set  of  features  for  the  outcome 
prediction,  how  the  proposed  algorithm  could  be 
enhanced to reduce the time  and  space  complexity, 
and what other available datasets should be collected 
for the performance evaluations. 
ACKNOWLEDGEMENTS 
This research study is supported by the U.S. National 
Science  Foundation  (ref  no:  1852498)  awarded  to 
Chun-Kit Ngan and partially supported by the Hong 
Kong Research Grant Council Early Career Scheme 
(ref no: 24614818) awarded to Yin-Ting Cheung. We 
would also like to acknowledge Professor Chi-Kong 
Li (Department of Paediatrics, Faculty of Medicine, 
The Chinese University of Hong Kong) for medical 
domain knowledge support and advice. 
REFERENCES 
Alhamzawi, R. & Ali, H.T.M. (2018). The Bayesian Elastic 
Net  Regression.  Communications in Statistics - 
Simulation and Computation, 47(4), 1168-1178. DOI: 
10.1080/03610918.2017.1307399. 
Alias,  H.,  Morthy,  S.K., &  Zakaria, S.Z.S.  et al.  (2020). 
Behavioral  Outcome  among  Survivors  of  Childhood 
Brain Tumor: A Case Control Study. BMC Pediatrics. 
https://doi.org/10.1186/s12887-020-1951-3. 
Brinkman,  T.,  Zhu,  L.,  Zeltzer,  L.  et  al.  (2013). 
Longitudinal  Patterns  of  Psychological  Distress  in 
Adult Survivors of Childhood Cancer. British Journal 
of Cancer,  109,  1373–1381.  https://doi.org/10.1038/ 
bjc.2013.428. 
Chen, C.W., Tsai, Y.H., Chang, F.R., & Lin, W.C. (2020). 
Ensemble  Feature  Selection  in  Medical  Datasets: 
Combining  Filter,  Wrapper,  and  Embedded  Feature 
Selection  Results.  Expert Systems,  37(5). 
https://doi.org/10.1111/exsy.12553. 
Chen,  L.,  Guan,  Q.,  Chen,  N.,  &  YiHang,  Z.  (2021).  A 
StackNet Based Model for Fraud Detection. The 2021 
International Conference on Education, Knowledge 
and Information Management.  doi:  10.1109/ICEKIM 
52309.2021.00079. 
Cherrington,  M.,  Thabtah,  F.,  Lu,  J.,  &  Xu,  Q.  (2019). 
Feature  Selection:  Filter  Methods  Performance 
Challenges.  The 2019 International Conference on 
Computer and Information Sciences.  doi: 
10.1109/ICCISci.2019.8716478. 
Friend,  A.J.,  Feltbower,  R.G.,  Hughes,  E.J.,  Dye,  K.P., 
Glaser,  A.W.  (2018).  Mental  Health  of  Long-term 
Survivors  of  Childhood  and  Young  Adult  Cancer:  A 
Systematic Review.  International Journal of Cancer, 
143(6), 1279-1286. doi: 10.1002/ijc.31337. 
Hoerl,  R.W.  (2020)  Ridge  Regression:  A  Historical 
Context.  Technometrics,  62(4),  420-425.  DOI: 
10.1080/00401706.2020.1742207. 
Joseph Manoj, R., Anto Praveena, M.D. & Vijayakumar, K. 
(2019).  An  ACO–ANN  Based  Feature  Selection 
Algorithm for Big Data. Cluster Computing, 22, 3953–
3960. https://doi.org/10.1007/s10586-018-2550-z. 
Kao, P.Y., Zhang, A., Goebel, M., Chen, J.W., & 
Manjunath, B.S. (2019).  Predicting Fluid  Intelligence 
of  Children  Using  T1-Weighted  MR  Images  and  a 
StackNet.  Adolescent Brain Cognitive Development 
Neurocognitive Prediction. ABCD-NP 2019. Lecture 
Notes in Computer Science.  https://doi.org/10.1007/ 
978-3-030-31901-4_2. 
Kliegr, T., Bahník, Š., Fürnkranz, J. (2020). Advances in 
Machine  Learning  for  the  Behavioural  Sciences. 
American Behavioural Scientist,  64(2),  145-175. 
doi:10.1177/0002764219859639. 
Patel, S. K., Lo, T. T., Dennis, J. M., Bhatia, S., & PADRES 
Contra  El  Cáncer  (2013).  Neurocognitive  and 
behavioral  outcomes  in  Latino  childhood  cancer 
survivors. Pediatr Blood Cancer, 60(10), 1696–1702. 
https://doi.org/10.1002/pbc.24608. 
Patro,  S.G.,  &  Sahu,  K.K.  (2015).  Normalization:  A 
Preprocessing Stage. ArXiv, abs/1503.06462. 
Peng, L., Yang, L.S., Yam, P., Lam, C.S., Chan, A.S., Li, 
C.K.,  &  Cheung,  Y.T.  (2021).  Neurocognitive  and 
Behavioral  Outcomes  of  Chinese  Survivors  of 
Childhood  Lymphoblastic  Leukemia.  Frontiers in 
Oncology. doi: 10.3389/fonc.2021.655669. 
Ranstam,  J.  &  Cook,  J.A.  (2018).  LASSO  Regression. 
British Journal of Surgery,  105(10).  https://doi.org/ 
10.1002/bjs.10895. 
Saikia,  P.  &  Baruah,  R.D.  (2019).  Investigating  Stacked 
Ensemble  Model  for  Oil  Reservoir  Characterisation. 
The IEEE International Conference on Systems, Man 
and Cybernetics. doi: 10.1109/SMC.2019.8914488. 
Scikit-Learn. (2021). sklearn.ensemble.StackingClassifier. 
https://scikit-learn.org/stable/modules/generated/ 
sklearn.ensemble.StackingClassifier.html. 
Siegel, R.L, Miller, K.D., Fuchs, H.E., & Jemal, A. (2021). 
Cancer  Statistics.  A Cancer Journal for Clinicians, 
71(1), 7-33. https://doi.org/10.3322/caac.21654. 
Turgeon,  S.,  Lanovaz,  M.J.  (2020).  Tutorial:  Applying 
Machine  Learning  in  Behavioural  Research. 
Perspectives on Behaviour Science,  43,  697–723. 
https://doi.org/10.1007/s40614-020-00270-y. 
Usman,  A.U.,  Hassan  S.  Abdulkadir,  H.S.,  &  Tukur,  K. 
(2015). Application  of Dummy Variables  in Multiple 
Regression  Analysis.  International Journal of Recent 
Scientific Research, 6(11), 7440-7442.