Multimedia Tools and Applications, 78(11),  15169-
15211. doi:10.1007/s11042-018-6894-4 
Jiang,  M.,  Sanger,  T.,  &  Liu,  X.  (2019).  Combining 
Contextualized Embeddings and Prior Knowledge for 
Clinical Named Entity Recognition: Evaluation Study. 
JMIR Med Inform, 7(4), e14850. doi:10.2196/14850 
Kim, K., Polite, B., Hedeker, D., Liebovitz, D., Randal, F., 
Jayaprakash, M., . . . Lam, H. (2020). Implementing a 
multilevel intervention to accelerate colorectal cancer 
screening  and  follow-up  in  federally  qualified  health 
centers using a stepped wedge design: a study protocol. 
Implementation Science, 15(1),  96. 
doi:10.1186/s13012-020-01045-4 
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & 
Kang,  J.  (2019).  BioBERT:  a  pre-trained  biomedical 
language  representation  model  for  biomedical  text 
mining.  Bioinformatics (Oxford, England). 
doi:10.1093/bioinformatics/btz682 
Malte,  A.,  &  Ratadiya,  P.  (2019).  Evolution  of  transfer 
learning  in  natural  language  processing.  CoRR, 
abs/1910.07370.  
Nayor, J., Borges, L. F., Goryachev, S., Gainer, V. S., & 
Saltzman,  J.  R. (2018).  Natural Language  Processing 
Accurately  Calculates  Adenoma  and  Sessile  Serrated 
Polyp Detection Rates. Dig Dis Sci, 63(7), 1794-1800. 
doi:10.1007/s10620-018-5078-4 
Neves, M., & Ševa, J. (2021). An extensive review of tools 
for manual annotation of documents. Brief Bioinform, 
22(1), 146-163. doi:10.1093/bib/bbz130 
Patterson, O. V., Forbush, T. B., Saini, S. D., Moser, S. E., 
& DuVall, S. L. (2015). Classifying the Indication for 
Colonoscopy  Procedures:  A  Comparison  of  NLP 
Approaches in a Diverse National Healthcare System. 
Stud Health Technol Inform, 216, 614-618.  
Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & 
Re, C. (2017). Snorkel: Rapid Training Data Creation 
with  Weak  Supervision.  Proceedings VLDB 
Endowment, 11(3),  269-282. 
doi:10.14778/3157794.3157797 
Rex, D. K., Schoenfeld, P. S., Cohen, J., Pike, I. M., Adler, 
D. G.,  Fennerty,  M. B., . .  .  Weinberg,  D. S. (2015). 
Quality  indicators  for  colonoscopy.  Gastrointest 
Endosc, 81(1), 31-53. doi:10.1016/j.gie.2014.07.058 
Roberts,  A.,  Gaizauskas,  R.,  Hepple,  M.,  Davis,  N., 
Demetriou, G., Guo, Y., . . . Wheeldin, B. (2007). The 
CLEF  corpus:  semantic  annotation  of  clinical  text. 
AMIA ... Annual Symposium proceedings. AMIA 
Symposium, 2007, 625-629.  
Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M. 
A.  L.  (2019).  Recent  advances  and  applications  of 
machine learning  in  solid-state materials  science.  npj 
Computational Materials, 5(1),  83. 
doi:10.1038/s41524-019-0221-0 
Spasic,  I.,  &  Nenadic,  G.  (2020).  Clinical  Text  Data  in 
Machine  Learning:  Systematic  Review.  JMIR Med 
Inform, 8(3), e17984-e17984. doi:10.2196/17984 
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, 
S., & Tsujii, J. i. (2012, apr). brat: a Web-based Tool 
for NLP-Assisted Text Annotation, Avignon, France. 
Sun, W., Rumshisky, A., & Uzuner, O. (2013). Evaluating 
temporal relations in clinical text: 2012 i2b2 Challenge. 
J Am Med Inform Assoc, 20(5),  806-813. 
doi:10.1136/amiajnl-2013-001628 
Syed, S., Tharian, B., Syeda, H. B., Zozus, M., Greer, M. 
L., Bhattacharyya, S., . . . Prior, F. (2021). Consolidated 
EHR Workflow for Endoscopy Quality Reporting. Stud 
Health Technol Inform, 281,  427-431. 
doi:10.3233/shti210194 
Wei, Q., Franklin, A., Cohen, T., & Xu, H. (2018). Clinical 
text annotation -  what  factors  are associated  with the 
cost of time? AMIA Annu Symp Proc, 2018, 1552-1560.  
Wu, Y., Yang, X., Bian, J., Guo, Y., Xu, H., & Hogan, W. 
(2018).  Combine  Factual  Medical  Knowledge  and 
Distributed Word  Representation  to  Improve Clinical 
Named  Entity  Recognition.  AMIA Annu Symp Proc, 
2018, 1110-1117.