Dredze, M. (2012). How Social Media Will Change Public 
Health. IEEE Intelligent Systems (pp. 81- 84). IEEE. 
Ghani,  N.  A.,  Hamid,  S.,  Hashem,  I.  A.  T.,  Ahmed,  E. 
(2019).  Social  media  big  data  analytics:  A  survey. 
Computers in Human Behavior, 101, 417-428. 
Gong, V. X., Daamen, W., Bozzon, A., Hoogendoorn, S. P. 
(2020). Crowd characterization for crowd management 
using social media data in city events. Travel Behaviour 
and Society, 20, 192-212. 
Gosal, A. S., Geijzendorffer, I. R., Václavík, T., Poulin, B., 
Ziv, G. (2019). Using social  media, machine  learning 
and  natural  language  processing  to  map  multiple 
recreational beneficiaries. Ecosystem Services, 38. 
He, W., Tian, X., Hung, A., Akula, V., Zhang, W. (2018). 
Measuring  and  comparing  service  quality  metrics 
through  social  media  analytics:  a  case  study. 
Information Systems and e-Business Management, 16, 
579–600. 
Heikinheimo,  V.,  Tenkanen,  H.,  Bergroth,  C.,  Järv,  O., 
Hiippala, T., Toivonenad, T. (2020). Understanding the 
use  of  urban  green  spaces  from  user-generated 
geographic  information.  Landscape and Urban 
Planning, 201. 
Hidayatullah,  A.  F.,  Pembrani,  E.  C.,  Kurniawan,  W., 
Akbar, G., Pranata, R. (2018). Twitter Topic Modeling 
on Football News. 2018 3rd International Conference 
on Computer and Communication Systems (ICCCS) 
(pp. 467-471). Nagoya: IEEE. 
Hong,  L.,  Fu,  C.  H.,  Wu.  J,  Frias-Martinez,  V.  (2018). 
Information Needs and Communication Gaps between 
Citizens and Local Governments Online during Natural 
Disasters.  Information Systems Frontiers,  20,  1027–
1039. 
Huang, H. M, Chiu, Ch. J . (2020). Understanding public 
interest  and  needs  in  health  policies  through  the 
application  of  social  network  analysis  on  a 
governmental Facebook fan page. BMC Public Health, 
20. 
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., 
Zhao, L. (2019). Latent Dirichlet allocation (LDA) and 
topic  modeling:  models,  applications,  a  survey. 
Multimedia Tools and Applications volume, 78, pages 
15169–15211. 
Jeong, B., Yoona, J., Lee J. M. (2019). Social media mining 
for  product  planning:  A  product  opportunity  mining 
approach  based  on  topic  modeling  and  sentiment 
analysis.  International Journal of Information 
Management, 48, 280-290. 
Kankanamge,  N.,  Yigitcanlar,  T.,  Goonetilleke,  A., 
Kamruzzaman,  Md.  (2020).  Determining  disaster 
severity  through  social  media  analysis:  Testing  the 
methodology  with  South  East  Queensland  Flood 
tweets.  International Journal of Disaster Risk 
Reduction, 42. 
Karami,  A.,  Elkouri,  A.  (2019).  Political  Popularity 
Analysis  in  Social  Media.  Information in 
Contemporary Society (pp. 456-465).  
Kim,  J.,  Hastak,  M.  (2018).  Social  network  analysis: 
Characteristics  of  online  social  networks  after  a 
disaster.  International Journal of Information 
Management, 38(1), 86-96. 
Kim, J., Park, H. (2020). A framework  for understanding 
online  group  behaviors  during  a  catastrophic  event. 
International Journal of Information Management, 51. 
Ko,  N.,  Jeong,  B.,  Choi,  S.,  Yoon,  J.  (2017).  Identifying 
Product  Opportunities  Using  Social  Media  Mining: 
Application of Topic Modeling and Chance Discovery 
Theory. IEEE Access.  
Lee,  I.  (2018).  Social  media  analytics  for  enterprises: 
Typology, methods, and processes. Business Horizons, 
Volume 61(Issue 2), 199-210. 
Lemay, D. J., Basnet, R. B., Doleck, T., Bazelais, P. (2019). 
Social network analysis of twitter use during the AERA 
2017  annual  conference.  Education and Information 
Technologies, 24, 459–470. 
Li, X., Wang, Z., Gao, C., Shi, L. (2017). Reasoning human 
emotional responses from large-scale social and public 
media.  Applied Mathematics and Computation,  310, 
182-193. 
Li, Z., Fan, Y., Jiang, B. , Lei, T., Liu, W. (2019). A survey 
on  sentiment  analysis  and  opinion  mining  for  social 
multimedia. Multimed Tools Appl, 78, 6939–6967. 
Lia,  S.,  Yu,  C.,  Wang,  Y.,  Babud,  Y.  (2019).  Exploring 
adverse  drug  reactions  of  diabetes  medicine  using 
social  media  analytics  and  interactive  visualizations. 
International Journal of Information Management, 48, 
228-237. 
Lin, Y., Geertman, S. (2019). Can Social Media Play a Role 
in  Urban  Planning?  A  Literature  Review.  In 
Computational Urban Planning and Management for 
Smart Cities (pp. 69-84). Springer. 
Liu, S., Young, S. D. (2018). A survey of social media data 
analysis  for  physical  activity  surveillance.  Journal of 
Forensic and Legal Medicine, 57, 33-36. 
Miyazawa, S., Song, X., Xia, T., Shibasaki, R., Kaneda, H. 
(2018).  Integrating  GPS  trajectory  and  topics  from 
Twitter  stream  for  human  mobility  estimation. 
Frontiers of Computer Science, 13, 460–470. 
Mrsic, L., Zajec, S., Kopal, R. (2019). Appliance of Social 
Network Analysis and Data Visualization Techniques 
in Analysis of Information Propagation. ACIIDS 2019: 
Intelligent Information and Database Systems. Phuket, 
Thailand. 
Nagayoshi,  H.  Takikawa  and  K.  (2017).  Political 
polarization in  social media: Analysis of the  “Twitter 
political  field”  in  Japan.  017 IEEE International 
Conference on Big Data (Big Data). Boston, MA, USA. 
Nguyen,  T.,  Larsen,  M.  E.,  O’Dea,  B.,  Phung,  D., 
Venkatesh,  S.,  Christensen,  H.  (2017).  Estimation  of 
the  prevalence  of  adverse  drug  reactions  from  social 
media.  International Journal of Medical Informatics, 
102, 130-137. 
Oyebode, O., Orji, R. (2019). Social Media and Sentiment 
Analysis: The Nigeria Presidential Election 2019. 2019 
IEEE 10th Annual Information Technology, Electronics 
and Mobile Communication Conference (IEMCON), 
(pp. 0140-0146). Vancouver. 
Pudjajana, A. M., Manongga, D., Iriani, A., Purnomo, H. D. 
(2018).  Identification  of  Influencers  in  Social  Media