Ajenaghughrure,  I.  B.,  Sousa,  S.,  and  Lamas,  D.  (2020) 
Psychphysiological  modelling  of  trust  in  technology: 
Comparative analysis of algorithm ensemble methods, 
IEEE SAMI 2021 (accepted) 
Ajenaghughrure,  I.  B.,  Sousa,  S.,  and  Lamas.  D.  (2020) 
Psychophysiological  modeling  of  trust  in  technology: 
The influence of feature selection methods. 13TH EICS 
PACM journal (accepted) 
Akash,  K.,  Hu,  W.  L.,  Jain,  N.,  &  Reid,  T.  (2018).  A 
classification  model  for  sensing  human  trust  in 
machines using EEG and GSR. ACM Transactions on 
Interactive Intelligent Systems (TiiS), 8(4), 1-20. 
Beer, J. M., Fisk, A. D., & Rogers, W. A. (2014). Toward a 
framework  for  levels  of  robot  autonomy  in  human-
robot  interaction.  Journal  of  human-robot  interaction, 
3(2), 74. 
Benedek,  M.,  &  Kaernbach,  C.  (2010).  A  continuous 
measure  of  phasic  electrodermal  activity.  Journal  of 
neuroscience methods, 190(1), 80-91. 
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, 
behavioral  activation,  and  affective  responses  to 
impending  reward  and  punishment:  the  BIS/BAS 
scales.  Journal  of  personality  and  social  psychology, 
67(2), 319. 
Elkins, A. C., & Derrick, D. C. (2013). The sound of trust: 
voice as a measurement of trust during interactions with 
embodied  conversational  agents.  Group  decision  and 
negotiation, 22(5), 897-913. 
Fallon, C. K., Murphy, A. K., Zimmerman, L., & Mueller, 
S.  T.  (2010,  May).  The  calibration  of  trust  in  an 
automated  system:  A  sensemaking  process.  In  2010 
International  Symposium  on  Collaborative 
Technologies and Systems (pp. 390-395). IEEE. 
Gefen,  D.,  Karahanna, E., &  Straub,  D.  W.  (2003). Trust 
and  TAM  in  online  shopping:  An  integrated  model. 
MIS quarterly, 27(1), 51-90. 
Glass,  A.,  McGuinness,  D.  L.,  &  Wolverton,  M.  (2008, 
January). Toward establishing trust in adaptive agents. 
In Proceedings of the 13th international conference on 
Intelligent user interfaces (pp. 227-236). 
Gramfort,  A.,  Luessi,  M.,  Larson,  E.,  Engemann,  D.  A., 
Strohmeier,  D.,  Brodbeck,  C.,  ...  &  Hämäläinen,  M. 
(2013).  MEG  and  EEG  data  analysis  with  MNE-
Python. Frontiers in neuroscience, 7, 267. 
Gulati,  S.,  Sousa,  S.,  and  Lamas,  D.,  (2019)  Design, 
development and evaluation of a human-computer trust 
scale. Behaviour & Information Technology, pp. 1–12. 
Hennessey,  C.,  &  Duchowski,  A.  T.  (2010,  March).  An 
open  source  eye-gaze  interface:  Expanding  the 
adoption  of  eye-gaze  in  everyday  applications.  In 
Proceedings of the 2010 Symposium on Eye-Tracking 
Research & Applications (pp. 81-84). 
Hergeth, S., Lorenz, L., Vilimek, R., & Krems, J. F. (2016). 
Keep your scanners peeled: Gaze behavior as a measure 
of  automation  trust  during  highly  automated  driving. 
Human factors, 58(3), 509-519. 
Hirshfield, L. M., Hirshfield, S. H., Hincks, S., Russell, M., 
Ward, R., & Williams, T. (2011, July). Trust in human-
computer  interactions  as  measured  by  frustration, 
surprise, and workload. In International Conference on 
Foundations  of  Augmented  Cognition  (pp.  507-516). 
Springer, Berlin, Heidelberg. 
Hoffman,  R.  R.,  Johnson,  M.,  Bradshaw,  J.  M.,  & 
Underbrink,  A.  (2013).  Trust  in  automation.  IEEE 
Intelligent Systems, 28(1), 84-88. 
Huckle,  T.,  &  Neckel,  T.  (2019).  Bits  and  Bugs:  A 
Scientific and Historical Review on Software Failures 
in  Computational  Science.  Society  for  Industrial  and 
Applied Mathematics. 
Hurlburt,  G.  (2017).  How  much  to  trust  artificial 
intelligence?. IT Professional, 19(4), 7-11. 
Lee, J. D., & See, K. A. (2004).  Trust  in  automation: 
Designing  for  appropriate  reliance.  Human  factors, 
46(1), 50-80. 
Leichtenstern, K., Bee, N., André, E., Berkmüller, U., & 
Wagner, J. (2011, June). Physiological measurement of 
trust-related behavior in trust-neutral and trust-critical 
situations.  In  IFIP  International  Conference  on  Trust 
Management  (pp.  165-172).  Springer,  Berlin, 
Heidelberg. 
Lemmers-Jansen, I. L., Krabbendam, L., Veltman, D. J., & 
Fett, A. K. J. (2017). Boys vs. girls: gender differences 
in  the  neural  development  of  trust  and  reciprocity 
depend  on  social  context.  Developmental  Cognitive 
Neuroscience, 25, 235-245. 
Litman,  T.  (2014).  Autonomous  vehicle  implementation 
predictions.  Victoria  Transport  Policy  Institute, 
28(2014). 
Lochner, M., Duenser, A., & Sarker, S. (2019, December). 
Trust  and  Cognitive  Load  in  semi-automated  UAV 
operation.  In  Proceedings  of  the  31st  Australian 
Conference on Human-Computer-Interaction (pp. 437-
441). 
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & 
Arnaldi,  B.  (2007).  A  review  of  classification 
algorithms  for  EEG-based  brain–computer  interfaces. 
Journal of neural engineering, 4(2), R1. 
Makowski,  D.  (2016).  Neurokit:  A  python  toolbox  for 
statistics and neurophysiological signal processing (eeg 
eda ecg emg...). Memory and Cognition Lab'Day, 1. 
Mirnig, A. G., Wintersberger, P., Sutter, C., & Ziegler, J. 
(2016,  October).  A  framework  for  analyzing  and 
calibrating  trust  in  automated  vehicles.  In  Adjunct 
Proceedings  of  the  8th  International  Conference  on 
Automotive User Interfaces and Interactive Vehicular 
Applications (pp. 33-38). 
Oh, S., Seong, Y., & Yi, S.  (2017).  Preliminary study on 
neurological  measure  of  human  trust  in  autonomous 
systems.  In  IIE Annual  Conference.  Proceedings (pp. 
1066-1072).  Institute  of  Industrial  and  Systems 
Engineers (IISE). 
Owsley, C., Stalvey, B., Wells, J., & Sloane, M. E. (1999). 
Older drivers and cataract: driving habits and crash risk. 
Journals of Gerontology Series A: Biomedical Sciences 
and Medical Sciences, 54(4), M203-M211. 
Parasuraman,  R.,  &  Riley,  V.  (1997).  Humans  and 
automation: Use, misuse, disuse, abuse. Human factors, 
39(2), 230-253. 
Pedregosa,  F.,  Varoquaux,  G.,  Gramfort,  A.,  Michel,  V., 
Thirion,  B.,  Grisel,  O.,  ...  &  Vanderplas,  J.  (2011).