Future  work  is  still  required  to  optimize  the 
performance  of  this  algorithm  when  processing 
complex scenes. This algorithm offers an alternative 
solution  suitable  for  use  in  bit  constrained 
environments. 
REFERENCES 
Mattavelli, Marco, Jorn W. Janneck, and Mickaël Raulet, 
2019.  "MPEG  reconfigurable  video  coding." 
In Handbook of signal processing systems,  pp.  213-
249. Springer, Cham, 2019. 
Hsu, S., & Anandan, P., 1996. Hierarchical representations 
for mosaic-based video compression. In Proc. Picture 
Coding Symp (Vol. 395). 
Irani, M., & Anandan, P., 1998. Video indexing based on 
mosaic  representations.  Proceedings of the IEEE, 
86(5), 905-921. 
ITU-T Rec. H.263 (01 /2005) Video Coding For Low Bit 
Rate Communications 
Sullivan,  Gary  J.,  and  Thomas  Wiegand,  2005.  "Video 
compression-from  concepts  to  the  H.  264/AVC 
standard." Proceedings of the IEEE 93,  no.  1  (2005): 
18-31. 
Paul, Manoranjan, Manzur Murshed, and Laurence Dooley, 
2003. "An arbitrary shaped pattern selection algorithm 
for very low bit-rate video coding focusing on moving 
regions." Proc. of 4th IEEE Pacific-Rim Int. Con. on 
Multimedia (PCM-03), Singapore (2003). 
Murshed, M., Manoranjan, P., 2004. Pattern Identification 
VLC  for  Pattern-based  Video  Coding  using  Co-
occurrence  Matrix.  In:  International  Conference  on 
Computer Science, Software Engineering, Information 
Technology, e-Business & Applications, Egypt (2004) 
Galpin, Franck, Raphaele Balter, Luce Morin, and Stéphane 
Pateux,  2004.  "Efficient  and  scalable  video 
compression  by  automatic  3d  model  building  using 
computer  vision."  In Picture Coding Symposium, 
PCS’2004, San Francisco, USA. 2004. 
Balter,  Raphale,  Patrick  Gioia,  and  Luce  Morin,  2006. 
"Scalable  and  efficient  video  coding  using  3-d 
modeling." IEEE Transactions on Multimedia 8, no. 6 
(2006): 1147-1155. 
Liu, Dong,  Yue  Li,  Jianping  Lin,  Houqiang Li,  and Feng 
Wu,  2020.  "Deep  learning-based  video  coding:  A 
review  and  a  case  study." ACM Computing Surveys 
(CSUR) 53, no. 1 (2020): 1-35. 
Claude Elwood Shannon, 1948. A mathematical theory of 
communication.  Bell System Technical Journal 27,  3 
(1948), 379–423. 
Zhibo  Chen,  Tianyu  He,  Xin  Jin,  and  Feng  Wu.,  2019. 
Learning for video compression. IEEE Transactions on 
Circuits and Systems for Video Technology. 
DOI:10.1109/TCSVT.2019.2892608 
Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl., 
2018. Video compression through image interpolation. 
In ECCV. 416–431. 
Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and 
Zhan Ma., 2017. DeepCoder: A deep neural network-
based video compression. In VCIP. IEEE, 1–4. 
Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei 
Cai,  and  Zhiyong  Gao.,  2019.  DVC:  An  end-to-end 
deep video compression framework. In CVPR. 11006–
11015. 
Jiahao  Li,  Bin  Li,  Jizheng  Xu,  Ruiqin  Xiong,  and  Wen 
Gao.,  2018.  Fully  connected  network-based  intra 
prediction  for  image  coding.  IEEE Transactions on 
Image Processing 
27, 7 (2018), 3236–3247. 
Yueyu  Hu,  Wenhan  Yang,  Mading  Li,  and  Jiaying  Liu., 
2019. Progressive spatial recurrent neural network for 
intra prediction. IEEE Transactions on Multimedia 21, 
12  (2019),  3024 – 3037. 
DOI:10.1109/TMM.2019.2920603 
Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu., 2018. 
Generative  adversarial  network-based  frame 
extrapolation for video coding. In VCIP. 1–4. 
Lei  Zhao,  Shiqi  Wang,  Xinfeng  Zhang,  Shanshe  Wang, 
Siwei  Ma,  and  Wen  Gao.,  2019.  Enhanced  motion-
compensated video coding with deep virtual reference 
frame  generation.  IEEE Transactions on Image 
Processing 28, 10 (2019), 4832–4844. 
Cucchiara, R., Grana, C., Piccardi, M., & Prati, A., 2003. 
Detecting moving objects, ghosts, and shadows in video 
streams.  IEEE transactions on pattern analysis and 
machine intelligence, 25(10), 1337-1342. 
Calderara, S., Melli, R., Prati, A., & Cucchiara, R., 2006. 
Reliable background  suppression  for  complex  scenes. 
In Proceedings of the 4th ACM international workshop 
on Video surveillance and sensor networks  (pp.  211-
214). ACM. 
Prati,  A.,  Mikic,  I.,  Grana,  C.,  &  Trivedi,  M.  M.,  2001. 
Shadow detection algorithms for traffic flow analysis: a 
comparative  study.  In  ITSC 2001. 2001 IEEE 
Intelligent Transportation Systems. Proceedings (Cat. 
No. 01TH8585) (pp. 340-345). IEEE. 
Khan, S., & Shah, M., 2001. Object based segmentation of 
video  using  color,  motion  and  spatial  information.  In 
Proceedings of the 2001 IEEE Computer Society 
Conference on Computer Vision and Pattern 
Recognition. CVPR 2001 (Vol. 2, pp. II-II). IEEE. 
Chang,  M.  M.,  Tekalp,  A.  M.,  &  Sezan,  M.  I.,  1997. 
Simultaneous  motion  estimation  and  segmentation. 
IEEE transactions on image processing,  6(9),  1326-
1333. 
Kuhn,  H.  W.,  1955.  The  Hungarian  method  for  the 
assignment  problem.  Naval research logistics 
quarterly, 2(1‐2), 83-97. 
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P., 
2004. Image quality assessment: from error visibility to 
structural  similarity.  IEEE transactions on image 
processing, 13(4), 600-612. 
Hore, A., & Ziou, D., 2010. Image quality metrics: PSNR 
vs.  SSIM.  In  2010 20th International Conference on 
Pattern Recognition (pp. 2366-2369). IEEE.