4 CONCLUSIONS 
The summary of the study are: 
  The detection of an object requires period of 
around 300 ms with more than 90% accuracy. 
  The measurement of an object using 3D 
camera has an error with the number of 
maximum of 3%. 
  Braking action is taken by giving value as the 
intensity shows that the electric signal is 
higher when object distance is closer than 5 
m. 
ACKNOWLEDGEMENTS 
The writers would like to thanks the Penelitian 
Unggulan Program Studi (PUPS) Program for 
financing the research work. 
REFERENCES 
Bellomo, N., Marcuzzi, E., Baglivo, L., Pertile, M., 
Bertolazzi, E., & De Cecco, M. (2009). Pallet Pose 
Estimation with LIDAR and Vision for Autonomous 
Forklifts. IFAC Proceedings Volumes, 42(4), 612-617. 
doi: https://doi.org/10.3182/20090603-3-RU-
2001.0540 
Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H., & 
Gauthier, S. (2018). Development of stereo camera 
methodologies to improve pelagic fish biomass 
estimates and inform ecosystem management in 
marine waters. Fisheries Research, 198, 66-77. doi: 
https://doi.org/10.1016/j.fishres.2017.10.013 
California. (2018). Forklift Accident Statistics. safety 
numbers in ca. 
Chi, Y., Yu, L., & Pan, B. (2018). Low-cost, portable, 
robust and high-resolution single-camera stereo-DIC 
system and its application in high-temperature 
deformation measurements. Optics and Lasers in 
Engineering, 104, 141-148. doi: 
https://doi.org/10.1016/j.optlaseng.2017.09.020 
Fleming, J. M., Allison, C. K., Yan, X., Lot, R., & 
Stanton, N. A. (2019). Adaptive driver modelling in 
ADAS to improve user acceptance: A study using 
naturalistic data. Safety Science, 119, 76-83. doi: 
https://doi.org/10.1016/j.ssci.2018.08.023 
García, F., Prioletti, A., Cerri, P., & Broggi, A. (2018). 
PHD filter for vehicle tracking based on a monocular 
camera.  Expert Systems with Applications, 91, 472-
479. doi: https://doi.org/10.1016/j.eswa.2017.09.018 
Hu, Z., Lamosa, F., & Uchimura, K. (2005). A Compete 
U-V-Disparity Study for Stereovision Based 3D 
Driving Environment Analysis. Paper presented at the 
The fifth International Conference on 3-D Digital 
Imaging and Modeling. 
Huang, N., He, J., Zhu, N., Xuan, X., Liu, G., & Chang, C. 
(2018). Identification of the source camera of images 
based on convolutional neural network. Digital 
Investigation, 26, 72-80. doi: 
https://doi.org/10.1016/j.diin.2018.08.001 
Industries, C. (2019). 6 Common Forklift Accidents and 
How to Prevent Them  Retrieved Aug 19, 2019 
Irawan, A., Yaacob, M. A., Azman, F. A., Daud, M. R., 
Razali, A. R., & Ali, S. N. S. (2018, 27-28 Aug. 
2018).  Vision-based Alignment Control for Mini 
Forklift System in Confine Area Operation. Paper 
presented at the 2018 International Symposium on 
Agent, Multi-Agent Systems and Robotics (ISAMSR). 
Jalali, A., Mallipeddi, R., & Lee, M. (2017). Sensitive 
deep convolutional neural network for face recognition 
at large standoffs with small dataset. Expert Systems 
with Applications, 87, 304-315. doi: 
https://doi.org/10.1016/j.eswa.2017.06.025 
Murmu, N., Chakraborty, B., & Nandi, D. (2019). Relative 
velocity measurement using low cost single camera-
based stereo vision system. Measurement, 141, 1-11. 
doi: 
https://doi.org/10.1016/j.measurement.2019.04.006 
Nguyen, B., & Brilakis, I. (2018). Real-time validation of 
vision-based over-height vehicle detection system. 
Advanced Engineering Informatics, 38, 67-80. doi: 
https://doi.org/10.1016/j.aei.2018.06.002 
Oh, J., Kuenze, C., Jacopetti, M., Signorile, J. F., & 
Eltoukhy, M. (2018). Validity of the Microsoft 
Kinect™ in assessing spatiotemporal and lower 
extremity kinematics during stair ascent and descent in 
healthy young individuals. Medical Engineering & 
Physics, 60, 70-76. doi: 
https://doi.org/10.1016/j.medengphy.2018.07.011 
Seelinger, M., & Yoder, J.-D. (2006). Automatic visual 
guidance of a forklift engaging a pallet. Robotics and 
Autonomous Systems, 54(12), 1026-1038. doi: 
https://doi.org/10.1016/j.robot.2005.10.009 
Williams, K., Rooper, C. N., De Robertis, A., Levine, M., 
& Towler, R. (2018). A method for computing 
volumetric fish density using stereo cameras. Journal 
of Experimental Marine Biology and Ecology, 508, 
21-26. doi: 
https://doi.org/10.1016/j.jembe.2018.08.001 
Xu, M., Zhai, Y., Guo, Y., Lv, P., Li, Y., Wang, M., & 
Zhou, B. (2019). Personalized training through Kinect-
based games for physical education. Journal of Visual 
Communication and Image Representation, 62, 394-
401. doi: https://doi.org/10.1016/j.jvcir.2019.05.007