This study contributes in creating classification 
sentiment model regarding to East Java governor 
election that can automatically and accurately 
classify tweets by using Naïve Bayes and TF word 
weighting method. The result of this study was based 
only on social media, especially Twitter. It will be 
even better if the result can be obtained from other 
social media like Facebook, Instagram, or other 
online media. 
5  CONCLUSION 
Based on the results of the classification system and 
system application, it can be concluded t
hat 
Naïve 
Bayes classifier is a method that can be applied to 
classify sentiments on Twitter. This was indicated by 
the high performance of the system that was  made. In 
the first system, the system performance  obtained 
accuracy of 98.99%, precision of 93.44%, recall of 
97.78%, and f-measure of 95.56%. Whereas in the 
second system, system performance obtained 
accuracy of 98.95%, precision of 97.78%, recall of 
98.55%, and f-measure of 98,17%. 
Based on data obtained from Twitter, Twitter 
users tend to choose the first governor candidate, 
Khofifah Indar Parawansa. This conclusion can be 
taken based on the fact that the first governor 
candidate gets more attention from Twitter users. In 
addition, the percentage  of 
positive sentiments for 
the first governor candidate was greater than that for 
the second governor candidate and the percentage 
of negative sentiments for the first governor 
candidate was smaller than that for the second 
governor candidate.
 
REFERENCES 
Aggarwal, C. & Zhai, C., 2013. A Survey of Text 
Classification Algorithm. pp. 169-170. 
Balagatabi, Z. N., 2012. Comparison of Decision Tree and 
Naive Bayes Methods in Classification of Researcher's 
Cognitive Style in Academic Environment. Journal of 
Advance in Computer Research, 3(2), pp. 23-24. 
Buntoro, G. A., 2016. Analisis Sentimen Calon Gubernur 
DKI Jakarta 2017 di Twitter. Integer Journal, pp. 32-
41. 
Espinall, E. et al., 2017. Vote Buying in Indonesia: 
Candidate Strategies, Market Logic and Effectiveness. 
Journal of East Asian Studies, Volume 17, pp. 1-27. 
Faradhillah, N. Y. A., Kusumawardani, R. P. & Hafidz, I., 
2016. Eksperimen Sistem Klasifikasi Analisa Sentimen 
Twitter pada Akun Resmi Pemerintah Kota Surabaya 
Berbasis Pembelajaran Mesin. Surabaya, SESINDO. 
Hotta, H. S., Shrivas, A. K. & Singhai, S. K., 2013. 
Artificial Neural Network, Decision Tree and Statistical 
Techniques Applied for Designing and Developing E-
mail Classifier. International Journal of Recent 
Technology and Engineering, 1(6), pp. 164-169. 
Juniawan, I., 2009. Klasifikasi Dokumen Teks Berbahasa 
Indonesia Menggunakan Minor Component Analysis, 
Bogor: Institut Pertanian Bogor. 
Kusen, E. & Strembeck, M., 2018. Politics, sentiments, and 
misinformation: An analysis of the Twitter discussion 
on the 2016 Austrian Presidential Election. Online 
Social Network and Media, Volume 5, pp. 37-50. 
Lestari, A. R. T., Perdana, R. S. & Fauzi, M. A., 2017. 
Analisis Sentimen Tentang Opini Pilkada DKI 2017 
Pada Dokumen Twitter Berbahasa Indonesia 
Menggunakan Naive Bayes dan Pembobotan Emoji. 
Jurnal Pengembangan Teknologi Informasi dan Ilmu 
Komputer, Desember, 1(12), pp. 1718-1724. 
Liu, B., 2012. Sentiment Analysis and Opinion Mining. 1st 
ed. s.l.:Morgan & Claypool Publishers. 
Manning, C. D., Raghavan, P. & Schutze, H., 2009. An 
Introduction to Information Retrieval. Cambridge: 
Cambridge University Press. 
Mujilahwati, S., 2016. Pre-processing Text Mining pada 
Data Twitter. Yogyakarta, SENTIKA. 
Nurhuda, F., Sihwi, S. W. & Doewes, A., 2013. Analisis 
Sentimen Masyarakat terhadap Calon Presiden 
Indonesia 2014 berdasarkan Opini dari Twitter 
Menggunakan Metode Naive Bayes Classifier. 
JURNAL ITSMART, 2(2), pp. 35-42. 
Prasetyo, E., 2014. DATA MINING Mengolah Data 
Menjadi Informasi Menggunakan Matlab. Yogyakarta: 
ANDI. 
Rini, D. C., Farida, Y. & Puspitasari, D., 2016. Klasifikasi 
Menggunakan Metode Hybrid Bayessian-Neural 
Network (Studi Kasus: Identifikasi Virus Komputer). 
JURNAL MATEMATIKA "MANTIK", 01(02), pp. 38-
43. 
Wongso, R. et al., 2017. News Article Text Classification 
in Indonesian Language. Procedia Computer Science, 
Issue 116, pp. 137-143. 
Yaqub, U., Chun, S. A., Atluri, V. & Vaidya, J., 2017. 
Analysis of political discourse on twitter in the context 
of the 2016 US presidential elections. Governor 
Information Quarterly, pp. 1-14. 
Yulian, E., 2018. Text Mining dengan K-Means Clustering 
pada Tema LGBT dalam Arsip Tweet Masyarakat Kota 
Bandung. 
JURNAL MATEMATIKA "MANTIK", pp. 53-
58. 
Zulfa, I. & Winarko, E., 2017. Sentimen Analisis Tweet 
Berbahasa Indonesia dengan Deep Belief Network. 
IJCCS, 11(2), pp. 187-198.