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Abstract: Using large datasets is essential for machine learning. In practice, training a machine learning algorithm re-
quires hundreds of samples. Multiple off-the-shelf datasets from the scientific domain exist to benchmark new
approaches. However, when machine learning algorithms transit to industry, e.g., for a particular image classi-
fication problem, hundreds of specific purpose images are collected and annotated in laborious manual work.
In this paper, we present a novel system to decrease the effort of annotating those large image sets. Therefore,
we generate 2D bounding boxes from minimal 3D annotations using the known location and orientation of the
camera. We annotate a particular object of interest in 3D once and project these annotations on to every frame
of a video stream. The proposed approach is designed to work with off-the-shelf hardware. We demonstrate
its applicability with an example from the real world. We generated a more extensive dataset than available in
other works for a particular industrial use case: fine-grained recognition of items within grocery stores. Furt-
her, we make our dataset available to the interested vision community consisting of over 60,000 images. Some
images were taken under ideal conditions for training while others were taken with the proposed approach in
the wild.

1 INTRODUCTION

Deep learning is an emerging topic in science. Espe-
cially object recognition made essential use of data-
driven approaches (Krizhevsky et al., 2012; Simo-
nyan and Zisserman, 2015; Redmon et al., 2015).
Through more extensive databases more powerful
models can be trained (Deng et al., 2009). Recently,
data-driven approaches began to move to industry.
Frameworks like TensorFlow1, Caffe2, and CNTK3

ease the hurdle of diving into the machine learning
world. Besides a robust framework, lots of labeled
data is required to apply a deep learning approach in
a particular domain. Thereby, more labeled data typi-
cally implies better results. Especially for image re-
cognition tasks, there already exist numerous general
purpose datasets, e.g., ImageNet (Deng et al., 2009),
SVHN (Netzer and Wang, 2011), Caltech-101 (Fei-
Fei et al., 2006), or COCO (Lin et al., 2014). Howe-
ver, all of these datasets are typically applied to com-
pare different academic recognition approaches and
benchmark their performance.

1https://tensorflow.org
2https://caffe.berkeleyvision.org
3https://cntk.ai

(a) General Recognition:
The dog covers the largest
portion of the image.

(b) Fine-grained Recogni-
tion: Every item covers a
small portion of the image.

Figure 1: The difference between recognition tasks in gene-
ral and fine-grained recognition.

Migrating from academia to industry is more difficult
since industrial applications typically are not covered
by off-the-shelf datasets. A specialized data scientist
must laboriously collect numerous images and manu-
ally annotate every image to learn a particular image
classifier, which is time-consuming. In general recog-
nition tasks, an image typically contains only a few
elements that represent by a significant portion of the
image. In fine-grained recognition tasks, dozens of
elements cover small portions of the image. Figure 1
illustrates this problem. Data acquisition is especially
a problem for fine-grained recognition tasks. It typi-
cally requires experts to distinguish the subtle diffe-
rences between similar object classes. As a result, we
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can only rely on a few experts to acquire annotated
learning data. The increased preparation time makes
it problematic for industrial use cases.

It takes about one and a half minutes to label a sin-
gle image for fine-grained tobacco recognition (Varol
and Kuzu, 2014). This time scales with the number of
elements in an image and objects in the database. That
means that it would take more than three working
days to annotate 1000 images with fine-grained boun-
ding boxes in a similar product recognition. Building
a groceries dataset with 60.000 annotated images with
only a single expert is not reasonable. This observa-
tion summarizes the need for a system reducing the
time required to annotate images.

In this work, we propose a system to annotate ima-
ges semi-automatically. The core idea is to use a
3D simultaneous localization and mapping (SLAM)
approach while sampling video streams. We mini-
mize the effort with 3D labeling during acquisition
and thereby decrease the effort to sample 2D boun-
ding boxes. The proposed tool supports offline anno-
tation refinements, e.g., for fine-grained recognition
tasks. DGen is designed to work with off-the-shelf
hardware: we use Microsoft’s HoloLens. We demon-
strate the applicability with a large, fine-grained gro-
cery dataset. The second contribution is the Magde-
burg Groceries dataset4 itself. We describe the col-
lected data and make our dataset publicly available.

The remainder of the paper is structured as fol-
lows: We describe our system and the proposed ap-
proach in section 2. Afterward, we describe the Mag-
deburg Groceries dataset in detail and evaluate the
quality of the resulting dataset and the approach (cf.
sect. 3). Further, we compare the proposed annota-
tion procedure with the state-of-the-art. In section 4,
we demonstrate the applicability of the proposed sy-
stem by comparing our dataset to others from related
works. Finally, we conclude our work.

2 THE DATASET GENERATOR

DGen is a tool to generate large datasets for visual
recognition tasks. It aims at reducing the amount of
time required to collect and annotate images for trai-
ning and validating visual deep learning algorithms
in an industrial setting. Methods like transfer lear-
ning (Pan and Yang, 2010) might ease the hunger for
labeled data. Recently, a lot of weakly supervised ap-
proaches have been proposed, that aim at using labe-
led and unlabeled data (Zhou, 2017). However, these
approaches typically require manually annotated sam-

4https://bitbucket.org/cse admin/md groceries

2) Annotate 3D 
Primitives

3) Record Video 
Sequences

5) Extract Bounding 
Box Annotations

1) Calibrate System

4) Refine 3D 
Annotations

+

Figure 2: The DGen workflow at a glance. We use a SLAM
approach to acquire 3D annotations and project their 2D po-
sition onto the recorded video sequence. We use Micro-
soft’s HoloLens as an integrated solution for the SLAM and
user inputs. Optionally, we support a dedicated camera to
sample videos in a higher resolution. Solid lines depict re-
quired steps whereas dashed lines depict optional steps.

ples as well. Thus, we found it necessary to propose a
system to reduce the time needed to annotate images.

With DGen, we focus on a subset of environ-
ments: man-made environments. We identified a va-
riety of examples for which DGen could be beneficial
during data acquisition, e.g., instance detection within
grocery stores, classification of elements within a wa-
rehouse, classification of static objects under illumi-
nation variations or even deformed objects over time
with viewpoint variations. The overall idea is to use
additional 3D data to annotate frames automatically.
With only a few 3D annotations during acquisition,
we automatically generate bounding boxes for every
frame of a recorded video sequence. For simpli-
city, DGen supports the use of an additional camera
mounted to the HoloLens to acquire images in a hig-
her resolution, e.g., to detect smaller objects Finally,
DGen also supports offline annotation refinements,
e.g., for fine-grained product recognition in a retail
setting. We base our approach on off-the-shelf har-
dware in order to reduce the hurdle to set up a similar
system.

Figure 2 depicts the proposed workflow at a
glance. We distinguish five different Steps: Step 1) re-
presents an offline calibration step to attach an additi-
onal camera to the system. In Step 2), we annotate ob-
jects with minimal 3D annotations, e.g., a shelf within
a retail setting. Afterward, in Step 3), we sample a vi-
deo of the objects while moving the camera or chan-
ging the scene. In Step 4), we refine the 3D annotati-
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ons offline, e.g., to identify items within a shelf. Fi-
nally, we project the 3D annotations onto every frame
of the video sequence in Step 5) and sample represen-
tative images and annotations. In the following, we
describe every step in detail.

2.1 Calibrate System

Calibrating the proposed system is optional. It is only
required if an additional camera is attached to the Ho-
loLens. It is only necessary to determine the fixed
relative translation and rotation between both.

To estimate the relationship between these two ca-
meras, we determine the intrinsic parameters of every
camera. We follow the procedure for single-view ca-
libration as described in (Zhang, 2000). Afterward,
we estimate the extrinsic parameters using the funda-
mental matrix (Faugeras et al., 1992; Hartley et al.,
1992), i.e., the relative transformation from one ca-
mera to the other. We minimize the total re-projection
error using pair-wise correspondences. As a result of
proper calibration, we can project points from the Ho-
loLens’ space into the second camera’s image space.
In this paper, we use a Logitech Brio5 to record 4K
video sequences.

2.2 Annotate 3D Primitives

This step is a prerequisite for generating 2D bounding
box annotations. The idea is to label objects of inte-
rest manually in 3D space. We label objects on sight
using the built-in abilities of Microsoft’s HoloLens.
We use the user’s gaze to annotate images and pro-
ject a ray through the virtual center of the user’s field
of view and calculate the intersection with the conti-
nuously mapped 3D environment. On user input, we
generate a new 3D annotation point. In later steps,
we project these annotations into 2D image space to
compute their bounding box.

We label objects of interest using 3D shape primi-
tives, e.g., planes, cubes, or pyramids. They provide
the usability which is necessary to speed up the over-
all annotation process and are rather efficient due to
their simplicity. The 3D shape primitives are used to
acquire bounding boxes in later steps. Next, we sam-
ple different video sequences of objects of interest.

2.3 Record Video Sequences

Data-driven approaches require multiple samples of
a particular visual concept to understand it reliably.
In this step, we sample one or more video sequences

5https://logitech.com/product/brio

of physical objects. We sample multiple sequences
since data-driven approaches shall be invariant to va-
rying image conditions, e.g., viewpoint or illumina-
tion changes. Typically, it is required to include these
varying conditions in the training data to achieve in-
variance.

We manually cause different internal and external
variations while recording. Depending on the particu-
lar industrial use case, we create different conditions,
such as changing viewpoint or illumination, occlu-
ding or deforming the object, or varying the environ-
ment to induce background clutter.

Manually inducing these variations allows us to
sample adequate images of a particular object. We re-
cord the video sequence, 3D annotations and the po-
sition and orientation of the HoloLens to project the
previously annotated 3D shape primitives into image
space in every frame during the following steps.

2.4 Refine 3D Annotations

Refining the 3D annotations is optional. We use this
step for fine-grained recognition tasks, e.g., when 3D
annotated objects are composed of smaller objects.

In this step, we label refining objects within previ-
ous annotated 3D primitives. We annotate these re-
finements offline. We project rays from 2D image
space onto the 3D shape primitives and calculate their
3D intersection. This allows us to sample new boun-
ding boxes and brings two benefits:
• One-shot Annotations: we manually annotate a

single image and transfer the annotations to the
subsequent frames, and

• Semi-automatic Annotations: we use simple
classifiers to detect objects and transfer the found
annotations to subsequent frames.
Using the one-shot annotation function of DGen,

only a single definition of a bounding box is requi-
red on one particular image to generate subsequent
annotations. Through the ray cast of the 2D user an-
notations in an image onto the 3D shape primitive,
we calculate the intersection of the ray and the shape
primitive. Using the recorded camera positions and
orientations for subsequent frames, we reproject these
new annotations back onto the image plane in later
steps. One-shot annotations decrease the annotation
time for sequences dramatically.

In an industrial context, we can also semi-
automatically annotate objects within previously on-
sight annotated 3D shape primitives. The overall
idea is to use reference images, e.g., sampled from
the web, and a weak classifier, such as SIFT (Lowe,
2004), to detect correspondences. Using an appro-
ach similar as proposed in (Filax et al., 2017), we
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detect different proposals. Further, we can incorpo-
rate a voting mechanism to determine valid detections
and transform the found 2D detections onto the previ-
ously on-sight annotated 3D shape primitives. Using
the found 3D locations and the recorded camera tra-
jectory, we sample new detections, e.g., from chal-
lenging viewpoints, in which SIFT-based approaches
typically fail (Yu and Morel, 2009).

2.5 Extract Bounding Box Annotations

In this step, we extract bounding box annotations for
every frame in a video. We thereby project the 3D pri-
mitives and their refinements using the camera’s tra-
jectory. We forward project every vertex into image
space (Hartley et al., 1992). Finally, we compute the
bounding box of the projected points to acquire an an-
notation.

Afterward, we automatically sample multiple an-
notated images of a particular object instance. We
have to determine whether to export a given frame
or not to prevent a bias within the data. We envision
different metrics, e.g., viewpoint change, illumination
change, blur, deformation, or time. The metric, howe-
ver, is up to the desired application. Thus, we sample
every annotated frame of a given video in this paper.

3 THE MAGDEBURG
GROCERIES DATASET

We recorded a dataset in a commonly known man-
made environment: grocery stores. The Mag-
deburg Groceries dataset is online available at
https://bitbucket.org/cse admin/md groceries. Our moti-
vation for this dataset is two folded: demonstrate the
usability of DGen and provide a benchmark to com-
pare object recognition techniques in an industrial set-
ting. The dataset consists of two parts: i) categorized
training images of groceries in a studio setting and ii)
annotated frames of real-world shelves from different
stores.

As training images, we automatically collect the
set of items from the web. Figure 3 displays exem-
plary training images from the dataset. All items have
a resolution of 220x220 pixels. In total, we provide
23,360 images as annotated web links. We organized
them in categories with a populated semantic hierar-
chy to reflect real-world product categories in typi-
cal grocery stores. Categories are linked with ”is-a”
relations. We provide 942 categories in total with
24.8 items on average.
As validation images, we recorded 48 video sequen-
ces in three different grocery stores with 953 frames

Figure 3: Sample training images from the Magdeburg Gro-
ceries dataset. These samples were collected in ideal studio
conditions from real.de.

Figure 4: Example validation images from the Magdeburg
Groceries dataset. These images are extracted from diffe-
rent videos. We did not enforce any viewpoint constraints,
so these images suffer from blur, occlusion, and illumina-
tion changes.

on average. We spent approximately four hours per
store. We used DGen to apply the procedure as des-
cribed in section 2. We attached a Logitech Brio
4K to the HoloLens and calibrated the system (cf.
sect. 2.1). Every video sequence was sampled in a re-
solution of 3840x2160 pixels. Examples are shown in
figure 4. For every sequence, we annotated 1.7 shel-
ves on average (cf. step 2.2) as a 3D bounded plane.
In total, we annotated 83 shelves. Afterward, we re-
corded video sequences (cf. step 2.3). During the
complete sequence, we sampled the position of the
shelves, the trajectory of the HoloLens, and the se-
quence itself. We aimed at mimicking natural be-
havior and did not restrict viewpoint or illumination.
Our dataset comprises 41,955 images annotated with
challenging viewpoints and illumination changes.

Through DGen, we gained the possibility to an-
notate sequences offline with even more fine-grained
annotations what results in more complex annotations
as possible with state-of-the-art tools. To justify this
claim, we briefly evaluate the effort required to anno-
tate a shelf. We annotate a single, randomly selected
shelf using the tool LabelImg. We created 57 boun-
ding boxes with numeric identifiers in roughly 16 mi-
nutes. We were not able to identify more products due
to the challenging viewpoint. The result is shown in
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(a) 57 bounding boxes an-
notated with LabelImg.

(b) 76 bounding boxes an-
notated using DGen.

Figure 5: Comparing the proposed tool and LabelImg. We
were able to annotate more items DGen.

Figure 6: Example fine-grained annotations from the
Magdeburg Groceries dataset. On average we annotated
59 items on every frame.

figure 5. For comparison, we labeled the same shelf
using DGen. The annotation of the same 57 bounding
boxes requires 20 minutes. This is due to the more
elaborate user interface of LabelImg. The shelf, ho-
wever, comprises more items. Using DGen, we labe-
led 76 items in total. This was only possible due to the
proposed approach from section 2.4. We were able
to transfer our annotations from one frame to another
and could identify more items. This results in more
complex annotations, which are shown in figure 5.

Our dataset comprises 1,523 fine-grained item an-
notations in ten sequences in 17 shelves. Extracting
these annotations generates 755,309 bounding boxes
for 12,768 images in total. Figure 6 depicts examples.
Annotations were done in roughly nine hours in total.
Using the average time required to annotate a single
item using a state-of-the-art tool, we estimate that it
requires approximately 4,400 hours to label the same
amount of data. We conclude that DGen gives a sig-
nificant benefit during the fine-grained annotation of
video sequences.

4 RELATED WORK

In this section, we summarize different related works.
We give an overview of other state-of-the-art labeling
tools and compare our dataset with others.

4.1 Fine-Grained Labeling Tools

We summarize the workflow of annotation tools in
this section. We do not have space to review them
all here but give a brief summary of some popular
tools. LabelImg6 is a popular open-source annotation
tool. The workflow of LabelImg is to annotate multi-
ple bounding boxes on a single image. LabelImg has
some drawbacks when it comes to labeling sequen-
ces. Previously done annotations are not automati-
cally transferred to the next image. This dramatically
increases the annotation time for sequences. Other
popular bounding box annotation tools have similar
drawbacks, e.g., BBox Label Tool7 or LabelBox8.

In order to reduce the absolute time to acquire a
large annotated database, it is typical to rely on pa-
rallelization (Russell et al., 2008; Deng et al., 2009).
ImageNet (Deng et al., 2009) for example was built
using thousands of workers. The task of annotating
multiple bounding boxes on a single image remained
unchanged but was dramatically parallelized. Alt-
hough the approach reduces the absolute time, it does
not influence the total time. The quality of annotati-
ons might vary as well, especially in details. Exam-
ples of this problem are subsequent frames. Because
different persons annotate images, bounding boxes
might wiggle in subsequent frames. Some annotati-
ons could be wrong because of deeply nested classes.
These workflows typically incorporate some annota-
tion verification step to increase the overall quality of
annotations. This, however, requires additional effort.
These observations motivated us to propose DGen.

4.2 Fine-Grained Product Datasets

In this section, we comprise different datasets for fine-
grained product recognition. We list their properties
in table 1. These datasets were collected manually,
which requires a vast amount of work.

One of the largest collections for grocery data is
the openfoodfacts (off) project. It aims at gathering in-
formation about products, i.e., product characteristics,
ingredients, or nutrition facts. This dataset comprises
over 560,000 product entries labeled with categories
similar to ours. However, the data is submitted by
different contributors and not automatically verified.
Instead, the contributors shall detect errors. The user-
provided images vary in size and quality. We evalu-
ated random samples from the dataset and found that
most products are present with up to three images per

6github.com/tzutalin/labelImg
7github.com/puzzledqs/BBox-Label-Tool
8labelbox.com
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Table 1: Different properties of various datasets for grocery item recognition from the literature. All images in these datasets
were annotated manually. The last row describes our dataset, generated using DGen. Note that the amount of annotated scene
images is superior to any other dataset.

Items Scenes
Items Images per Item Categories Images Stores Annotations

off 560,000 0-3 19,923 - - -
Freiburg Groceries - - 25 74 1 Presence
Grocery Products 3235 1 96 680 5 Groups

Grozi-120 120 2-14 - 11,194 1 Items
Grocery 10 370 1 354 40 Items

WebMarket 100 2-3 - 3153 1 Presence

Magdeburg Groceries Dataset 23,360 1 942 41,955 3 Shelves
12,768 1 Items

product. An item typically has one image which dis-
plays the product, while others display the ingredient
list or nutrition table. The dataset does not provide
any scene images of the products on shelves.

The Freiburg Groceries dataset (Jund et al., 2016)
comprises 4947 images of grocery products organi-
zed in 25 general categories. Images typically con-
tain multiple product instances of a particular class.
Jund et. al. collected almost 200 images per class
on average. Most images show multiple products that
do belong to the same general category. This data-
set comprises 74 scene images of a single shelf. 36
distinct arrangements were taken in a controlled lab
environment. An image contains different products
which are partially occluded by others. The authors
do not provide bounding boxes. Instead, they labeled
the presence of particular classes.

The Grocery Products dataset (George and Floer-
kemeier, 2014) comprises 3235 images, spanning 98
hierarchically nested categories, downloaded from the
web in studio conditions. Additionally, this dataset
comprises 680 real-world scene images. These were
taken in five different stores. Scene images are anno-
tated as groups, and not as single product instances.

The Grozi-120 dataset (Merler et al., 2007) com-
prises 2-14 images for 120 different products. The
products were not categorized in contrast to the ot-
her datasets. The dataset comprises 676 training ima-
ges collected from the web. The authors collected
around six different images from different viewpoints
for every item. Further, they extracted 11,194 scene
images from 29 video sequence, which were taken
with an off-the-shelf camera.

The Grocery dataset comprises ten different
brands of tobacco packages (Varol and Kuzu, 2014)
They collected 3701 training images with varying
illumination and viewpoint changes. The authors
raised 354 shelf images as validation images from
roughly 40 different stores. Every instance of a to-
bacco package, which is present in the training data,

was manually annotated. The authors reported that
it took about one and a half minutes to annotate one
scene image. This means annotating all scene images
required almost nine hours.

The WebMarket dataset comprises over 3000 ima-
ges (Zhang et al., 2007) split into two groups. Trai-
ning images depict a single item, and validation ima-
ges depict shelves. All images were collected directly
within a single store. The authors collect 2-3 training
images for 100 items which were placed on the floor.
These images were taken with small viewpoint vari-
ations but no illumination changes. The authors col-
lected 3153 scene images of different shelves from a
single store using different cameras as validation data.
Scene images were taken from various viewpoints and
were annotated with product IDs. The authors do not
provide bounding box annotations.

All of the described datasets required substantial
manual annotations, either provided by a large com-
munity or by laborious data scientists. In contrast to
those datasets, our dataset was almost completely ge-
nerated with minimal user input. Item images were
found on the web and scene images generated using
DGen.

We visualized different properties of the datasets
in table 1. The off dataset holds more item images
than any other database because the off dataset is fed
with by contributors from all around the world. Ho-
wever, it does not provide any scene images. We
tried to combine this dataset with data generated by
DGen but found that there is not enough overlap. The
off dataset contains 65 products that are labeled to be
sold in stores where we recorded shelves. Thus, we
semi-automatically crawled images from the web.

With the proposed system we generated more an-
notated images as in any other dataset because we re-
project annotations to subsequent frames (cf. sect. 2).
We minimize the required manual work dramatically:
We needed roughly two and a half minutes per video
to annotate shelves. Including data acquisition, this
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adds up to a total of 18 hours. During this period, we
acquired 41,955 annotated images of shelves.

With an additional nine hours manual annotation
refinement, we were able to acquire 755,309 boun-
ding boxes in 12,768 images. In total, we annotated
871 unique products in ten video sequences.

5 EXPERIMENTS

In this section, we conduct two different experiments
with the Magdeburg Groceries dataset to discuss its
usability for recognition tasks. First, we conduct a
general recognition experiment, in which we classify
a given image according to the flattened product ca-
tegory. Secondly, we conduct a fine-grained recog-
nition experiment, in which we classify item crops
provided by our dataset. Both experiments were con-
ducted with the real-world scene images on a single
NVIDIA GTX 1070 GPU. We used the TensorFlow
implementation of the VGG-16 (Simonyan and Zis-
serman, 2015) network with ImageNet (Deng et al.,
2009) weights.

5.1 Recognition of Grocery Shelves

To classify grocery shelves in a general recognition
setting, we classify crops of the real-world scene ima-
ges with 41,955 images in total. We use 69,929 crops,
whereas 70% are used as training data and 30% are
used for validation. We use a variant of the VGG-
16 (Simonyan and Zisserman, 2015) network for fine
tuning the fully connected layers. According to (Si-
monyan and Zisserman, 2015), we resize the cropped
shelves to a fixed size of 224x224px which serve as
input data. During training, the first 13 convolutio-
nal layers are initialized using ImageNet (Deng et al.,
2009) weights and remain unchanged during the com-
plete training procedure. We change the size of fc6
from 4096 to 64 and remove the fully connected layer
fc7. Thus, we feed fc6 into the final classification
layer (called fc8 in (Simonyan and Zisserman, 2015))
to classify the 37 different flattened classes. Further,
we add dropout layers in between fc6 and fc8 with
30% dropout.

5.2 Fine-Grained Recognition of
Grocery Items

For the second experiment, we classify cropped items
of the Magdeburg Groceries dataset according to their
unique 871 classes. Again, we use the complete set of
real-world scene images with 41,955 images in total.
During this experiment, we use a subset of 490,843

(a) Accuracy over time for a
general recognition task. We
were able to classify shelves
with an accuracy of 99.28%.

(b) Accuracy over time for
a fine-grained recognition
task. We were able to clas-
sify grocery items with an
accuracy of 91.83%.

Figure 7: Training history for both experiments. Both mo-
dels converged within 300 epochs.

cropped grocery images with a size of 64x64 pixels or
more. Similar to the general recognition experiment,
we choose to use 70% of the cropped items as trai-
ning data and 30% as validation data. Cropped items
are resized to a fixed size of 64x64 pixels. Again,
we use a variant of the VGG-16 (Simonyan and Zis-
serman, 2015) network for fine tuning the fully con-
nected layers. The convolutional layers are initialized
using ImageNet (Deng et al., 2009) weights and fixed
during the training procedure. We change the size of
fc6 from 4096 to 1024 and remove the fully connected
layer fc7. Again, we use a dropout of 30% between
the fully connected layers. Finally, we change the size
of fc8 from 1000 to 871.

5.3 Quantitative Results

In both experiments, we minimized the categorical
cross-entropy error using stochastic gradient descent
with a batch size of 256 with an initial learning rate
of 10−4 and a weight decay of 10−17. Both models
were trained for 300 epochs on the Magdeburg Gro-
ceries dataset. Similar to the test protocol for clas-
sification problems, we measured the performance of
the learned model regarding accuracy. Figure 7 sum-
marizes the results over time. The models converge
smoothly during 300 epochs in both experiments. For
the general recognition experiment on grocery shel-
ves, we achieve an accuracy of 99.28% on the vali-
dation set. For the second experiment on fine-grained
grocery items, we report an accuracy of 91.83%.

Both experiments demonstrate the usability of
real-world scene images in the Magdeburg Groce-
ries dataset. This is mainly because both we were able
to use state-of-the-art classification models to distin-
guish general and fine-grained groceries. We were
able to achieve comparable results with ease as we did
not use extensive hyperparameter optimization me-
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chanisms. This summarizes the quality of the propo-
sed DGen tool. With the proposed tool we were able
to acquire valuable training data fast and efficient. We
minimized the effort to acquire the data dramatically
as shown in section 4 while preserving the quality of
the final dataset as shown in this section.

6 CONCLUSION

In this paper, we tackled the problem of migrating
learning approaches to the industrial domain. Data-
driven approaches like convolutional neuronal net-
works typically rely on images to learn visual proper-
ties of objects. A lot of annotated data is required to
distinguish a large number of objects reliably. There-
fore, data scientists have to annotate a large number
of images laboriously.

Providing a dataset of 60,000 or more annotated
images requires an enormous amount of laborious
work. To overcome this, we proposed a system cal-
led DGen to generate bounding boxes in man-made
environments with minimal user input. The core idea
is to rely on the 3D trajectory of the camera while re-
cording videos of objects of interest. We acquire the
3D trajectory and the user’s input with Microsoft Ho-
loLens’s built-in sensors. Our tool additionally provi-
des the opportunity to refine 3D shape primitive on-
sight annotations for fine-grained recognition tasks.
Finally, we project the on-sight 3D annotations and
offline refinements onto frames of the recorded vi-
deos.

We have shown that DGen is well suited to gene-
rate fine-grained annotations via an application from
the retail domain, in section 3. We described in
section 4 that we were able to generate more anno-
tated images than available in any other dataset to the
best of our knowledge. We illustrated that it took only
a fraction of the manual input reported in the litera-
ture and reduced the overall time to acquire annotated
data for image recognition tasks. We conclude that
DGen is especially well suited for industrial domains.
In section 5, we demonstrated the applicability of the
acquired dataset. We were able to recognize a suf-
ficient number of objects in general and fine-grained
grocery product recognition settings. In the future,
we plan to extend our tool and provide additional da-
tasets.
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