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Abstract: Large-scale global optimization (LSGO) is known as one of the most challenging problem for evolutionary 
algorithms (EA). In this study, we have proposed a novel method of grouping variables for the cooperative 
coevolution (CC) framework (random adaptive grouping (RAG))). We have implemented the proposed 
approach in a new evolutionary algorithm (DECC-RAG), which uses the Self-adaptive Differential Evolution 
(DE) with Neighborhood Search (SaNSDE) as the core search technique. The RAG method is based on the 
following idea: after some predefined number of fitness evaluations in cooperative coevolution, a half of 
subcomponents with the worst fitness values randomly mixes indices of variables, and the corresponding 
evolutionary algorithms reset adaptation of parameters. We have evaluated the performance of the DECC-
RAG algorithm with the large-scale global optimization (LSGO) benchmark problems proposed within the 
IEEE CEC 2010. The results of numerical experiments are presented and discussed. The results have shown 
that the proposed algorithm outperforms some popular LSGO approaches.  

1 INTRODUCTION 

Many real-world problems deal with high 
dimensionality and are driven by big data. 
Optimization problems with many hundreds or 
thousands of objective variables are called large-scale 
global optimization problems. LSGO is still a 
challenging problem for mathematical and 
evolutionary optimization techniques. There exist 
many examples of real-world LSGO problems from 
different areas (Mei et al, 2014), (Jiang and Wang, 
2014), (Lin et al, 2014) (data mining, engineering, 
bioinformatics, optics, etc.).  

The majority of hard real-world LSGO problems 
is classified as the Black-Box (BB) optimization 
problems. The key feature of the BB problems is that 
there is no useful information about objective features 
for improving the search process. We can only 
request a fitness value ( )f x  for any point x  from 

the search space. Nevertheless, evolutionary 
algorithms have proved their efficiency at solving 
many BB optimization problems (Bäck, 1996), 
(Gagn, 2012).  

The general BB optimization problem can be 
stated in the following way: ݂(̅ݔ) = ,ଵݔ)݂ ,ଶݔ … , (௡ݔ → min/max௫̅∈௑ ௜௅ݔ(1) 	 ≤ ௜ݔ ≤ ,௜௎ݔ ݅ = 1, ݊തതതതത (2)݃௝(ݔଵ, ,ଶݔ … , (௡ݔ ≤ 0, ݆ = 1,݉തതതതതത (3)ℎ௞(ݔଵ, ,ଶݔ … , (௡ݔ = 0, ݇ = 1, ݈തതതത (4)

where ̅ݔ ∈ ܺ, ܺ ⊆ ܴ௡ denotes the continuous 
decision space, ̅ݔ = ,ଵݔ) ,ଶݔ … , (௡ݔ ∈ ܴ௡ is a vector 
of decision variables, ݂: ܺ → ܴଵ stands for a real-
valued continuous nonlinear objective function. 
Equation (2) defines side constrains, were ݔ௜௅ and ݔ௜௎ 
the lower and the upper bounds of a search interval, 
respectively. Equations (3) and (4) define general 
linear and nonlinear inequality and equality 
constraints. 

In this paper, we consider the unconstrained 
minimization LSGO problem. 

In this study, we have proposed a novel method 
of grouping variables for the cooperative coevolution 
framework, which is called random adaptive 
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grouping (RAG). We have implemented the proposed 
approach in a new evolutionary algorithm (DECC-
RAG). We have evaluated the performance of the 
DECC-RAG algorithm with the LSGO benchmark 
problems proposed within the IEEE CEC 2010. The 
performance of the DECC-RAG has been compared 
with the classical differential evolution (DE), the 
original Self-adaptive Differential Evolution with 
Neighborhood Search (SaNSDE).  

The rest of the paper is organized as follows.  
Section 2 describes related work. Section 3 describes 
the proposed approach. In Section 4 the results of 
numerical experiments are discussed. In the 
Conclusion the results and further research are 
discussed. 

2 RELATED WORK 

2.1 Classical Differential and  
Self-Adaptive Differential 
Evolution with Neighborhood 
Search (SaNSDE) 

Differential evolution (DE) is one the most popular 
and efficient evolutionary algorithm. DE is a 
stochastic, population-based search strategy 
developed by (Storn and Price, 1995). 

One of the further development of DE is the 
SaNSDE algorithm proposed by (Yang et al, 2008b). 
We have chosen this algorithm for our investigation 
because of self-adaptive tuning of its parameters 
during optimization process.  

As known, the performance of any evolutionary 
algorithm strongly depends on its control parameters. 
The general list of DE parameters contains the type of 
mutation, the differential weight value  and F  the 
crossover probability value CR. The main feature of 
the SaNSDE algorithm is that the algorithm 
stochastically select a type of mutation and values of 
CR and F, and then adapts F and CR values based on 
the success of implementing a mutation operation. 
After a predefined number of generations, the 
SaNSDE recalculates probabilities for selection of a 
type of mutation and values of CR and F. 

There exist many approaches for solving LSGO 
problems using DE and other evolutionary 
algorithms. We can divide all approaches into two 
main categories: cooperative coevolution (CC) 
algorithms with problem decomposition strategy and 
non-decomposition based methods. As it has been 
shown in many studies, CC approaches usually 
demonstrates higher performance. The most popular 

CC approaches use different strategies for grouping 
of objective variables. Some well-known techniques 
are the static grouping (Potter and Jong, 2000), the 
random dynamic grouping (Yang et al, 2008c) and the 
learning dynamic grouping (Omidvar et al, 2014)). 

2.2 Cooperative Coevolution 

Decomposition methods based on cooperative co-
evolution are the most popular and widely used 
approaches for solving LSGO problems. Cooperative 
coevolution (CC) is an evolutionary framework that 
divides a solution vector of an optimization problem 
into several subcomponents and optimizes them 
independently in order to solve the optimization 
problem. 

The first attempt to divide solution vectors into 
several subcomponents was proposed by (Potter and 
Jong, 1994). The approach proposed by Potter and 
Jong (CCGA) decomposes a n-dimensional 
optimization problem into n one-dimensional 
problems (one for each variable). The CCGA 
employs CC framework and the standard GA. Potter 
and Jong had investigated two different modification 
of the CCGA: CCGA-1 and CCGA-2. The CCGA-1 
evolves each variable of objective in a round-robin 
fashion using the current best values from the other 
variables of function. The CCGA-2 algorithm 
employs the method of random collaboration for 
calculating the fitness of an individual by integrating 
it with the randomly chosen members of other 
subcomponents. Potter and Jong had shown that 
CCGA-1 and CCGA-2 outperforms the standard GA. 

The following pseudocode presents general CC 
stages: 

Pseudocode of Cooperative Coevolution 
1: Decompose objective vector into m 
smaller subcomponents; 
2: i = 1; 
3: while i < m do 
    Optimize i-th subcomponents with 
EA, i = i + 1; 
4: If termination condition is not 
achieved then go to Step 2, else go 
to Step 5; 
5: Return best_solution. 

The CC method is used for a wide range of real-
world applications ((Barrière and Lutton, 2009), 
(García-Pedrajas et al, 2003) and (Liu et al, 2001)). 

 

 

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

262



 

3 PROPOSED APPROACH 

We have analyzed pros and cons of grouping-based 
methods and DE-based approached, and have 
proposed a new EA for solving large-scale global 
optimization problems. The main idea of the 
proposed search algorithm is to combine of an 
original method of grouping variables for the CC with 
problem decomposition strategy with the self-
adaptive DE (SaNSDE). The choice of the self-
adaptive approach is necessary as we have no any 
information on a dependence between variables. 
Thus, parameters of the search algorithms should be 
adapted during the optimization process as 
information about the grouping quality becomes 
available. 

As it is known, the CC approach can be efficient 
only if the grouping of variables is correct. As shown 
in (Omidvar et al, 2014), the learning dynamic 
grouping is not able to divide variables into correct 
subcomponents for many LSGO problems.  

In the proposed approach, the grouping of 
variables is random and adaptive. In the approach, the 
number of grouped variables is equal for each 
subcomponent. Such limitation excludes the 
following problems: 

- uneven distribution of computational 
resources between search algorithms 
(population sizes of EAs for each 
subcomponent). 

- tuning minimum and maximum numbers of 
variables into group. 

The proposed method of grouping (RAG (random 
adaptive grouping)) works as follows. The n-
dimensional solution vector is divided into m s-
dimensional sub-components (m x s = n). We 
randomly group variables into groups of equal sizes 
using the uniform distribution. As we need to estimate 
the quality of the distribution of variables, we will 
perform the EA run within the predefined budget T of 
the fitness function evaluation (each EA optimizes its 
corresponding subcomponent). After that, we will 
choose m/2 subcomponents with the worse 
performance and randomly mix indices of its 
variables. Finally, we will reset all EA parameters for 
the worst m/2 sub-components after regrouping 
variables. The reset is necessary because of the fact 
that new grouping of variables defines a completely 
different optimization problem. 

The complete algorithm is called DECC-RAG. 
The procedure of DECC-RAG can be descripted by 
the following pseudo-code. 

 

Pseudocode of DECC-RAG algorithm 
1: Set FEV_global, T, FEV_local  
= 0; 
2: An n-dimensional object vector is 
randomly divided into m  
s-dimensional subcomponents; 
3: Randomly mix indices of variables; 
4: i = 1; 
5: Evolve the i-th subcomponent with  
SaNSDE algorithm; 
6: If i < m, then i++, and go to Step 
5 else go to Step 7; 
7: Choose the best_solutioni for each 
subcomponents; 
8: If (FEV_local < T) then go to Step 
4 else go to Step 9; 
9: Choose m/2 subcomponents with the 
worse performance and randomly mix 
indices of its subcomponents, restart 
parameters of SaNSDE in these m/2 
subcomponents, FEV_local = 0; 
10: If (FEV>0) go to Step 4, else go 
to Step 11; 
11: Return the best solution. 

4 EXPERIMENTAL SETTINGS 
AND RESULTS 

We have evaluate the performance of DE, SaNSDE 
and the proposed DECC-RAG algorithm on the 20 
LSGO benchmark problems provided within the  
CEC’10 special session on Large Scale Global 
Optimization (Ke et al, 2010). These benchmark 
problems have been specially endowed with the 
properties that real-world problems have. 

The performance of DECC-RAG algorithm was 
also compared with other well-known state-of-the-art 
LSGO algorithms such as DMS-L-PSO (dynamic 
multi-swarm and local search based on PSO 
algorithm) (Liang and Suganthan, 2005), DECC-G 
(cooperative coevolution with random dynamic 
grouping based on differential evolution) (Yang et al, 
2008c), MLCC (Multilevel cooperative coevolution 
based on differential evolution) (Yang et al, 2008a) 
and DECC-DG (cooperative coevolution with 
differential grouping based on differential evolution) 
(Omidvar et al, 2014). More detailed experimental 
results for DMS-L-PSO, DECC-G, MLCC and 
DECC-DG can be found in (Yang et al, 2017). 

The DECC-RAG algorithm settings are: NP = 50 
(population size for each subcomponent), m = 10 and 
T = 3x105. T is a parameter that represents a number 
of FEVs (function evaluations) before the stage of 
randomly mixing of the worse m/2 subcomponents.  
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All experimental settings are as proposed in the 
rules of the CEC’10 LSGO competition were used for 
experiments: 

- dimensions for all problem are D = 1000; 
- 25 independent runs for each benchmark 

problem; 
- 3x106 fitness evaluations in each independent 

run of algorithm; 
- the performance of algorithms is estimated 

using the median value of the best found 
solutions. 

We have implemented the proposed approach and 
DE and SaNSDE algorithms with С++ language. As 
it is known, LSGO problems are computationally 
expensive. The Table 1 shows the runtime of 10000 
fitness evaluations for each benchmark problem using 
1 thread of the AMD Ryzen 7 1700x processor.  

We have implemented all our numerical 
experiments using the OpenMP framework for 
parallel computing with 16 threads, where each 
thread was allocated for one benchmark problem. 
Figure 1 demonstrate the calculation time (in hours) 
of all benchmark problems with 16 threads and with 
1 thread. As we can see from Figure 1, the calculation 
time for the fitness function was reduced 5.9 times. 

The results of 25 independent runs are presented 
in Table 2. The first column contains the benchmark 
problem number, the next columns contain mean 
performance for all investigated algorithms. There are 
two values in each cell: median value and standard 
deviation of the best-found solutions obtained with 25 
independent runs. The last row of the Table 2 contains 
ranks for all algorithm averaged over all benchmark 
problems. The rank of an algorithm is defined by the 
median value, smaller median value defines smaller 
rank. 

Table 3 and Table 4 show results of Mann–
Whitney U test of statistical significance in the results 
of 25 independent runs for DECC-RAG vs DE and 
DECC-RAG vs SaNSDE, respectively. The 
calculation of p-values has been performed using the 
R language in the R-studio software. We use the 
following notations in Tables 3 and 4: the sign “<” 
means that for the current pair of algorithms, the first 
algorithm outperforms the second one, otherwise the 
sign “>” is used, and the sign “≈” is used when there 
is no statistical significant difference in the results. 
The p-value for all tests was equal to 0.05. 

Figures 2, 3, 4, 5 and 6 demonstrate the dynamic 
of the average performance (25 independent runs) of 
DE, SaNSDE and the DECC-RAG algorithms for 
some benchmark problems. The bottom axis contains 
the number of the fitness function evaluations, and the 

vertical axis contains the average value of the fitness 
function. 

As we can see from the results from Table 2, the 
proposed DECC-RAG algorithm outperforms on 
average some state-of-art algorithms such as DMS-L-
PSO, DECC-G, MLCC and DECC-DG. 

Figures 2-6 show that the DECC-RAG provides 
better average fitness value that the classical DE and 
the standard SaNSDE algorithms do.  

The statistical significance of differences in the 
results for DECC-RAG vs SaNSDE was not observed 
only on the 6-th benchmark problem. 

We have estimated the performance of the DECC-
RAG for different sizes of subcomponents, and can 
conclude that the best performance is obtained with 
the number of groups equal to 10 (m = 10). 

5 CONCLUSIONS 

In this study, we have proposed a new EA for large-
scale global optimization problems. The approach 
uses an original random adaptive grouping method 
for cooperative coevolution framework. 

We have tested the proposed DECC-RAG 
algorithm on the representative set of 20 benchmark 
problems from the CEC’10 LSGO special session and 
competition, and have compared the results of the 
numerical experiments with other state-of-art 
techniques. The experimental results have shown that 
the DECC-RAG outperforms on average DMS-L-
PSO, DECC-G, MLCC and DECC-DG algorithms. 

The issues needed to be further studied are: 

- design more effective self-adaptive method of 
grouping variables based on randomness; 

- improve performance of SaNSDE algorithm 
for more effective use in cooperative 
coevolution framework to solve LSGO 
problems. 

In further work, we will provide more detailed 
analysis of the DECC-RAG parameters and will 
estimate the performance of the DECC-RAG with 
other benchmark problems for higher dimensions. We 
will also try alternative random grouping strategies. 
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APPENDIX 

Table 1: Runtime of 10000 FEs (in seconds) on the CEC’10 LSGO benchmark problems. 

Func. № F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
Time 0.396 0.209 0.21 0.52 0.334 0.34 0.309 0.307 1.312 1.134 

Func. № F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 
Time 1.139 0.112 0.126 2.219 2.016 2.04 0.077 0.133 0.072 0.1 
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Table 2: Experimental results on the CEC’10 LSGO benchmark problems. 

№ func. DECC-RAG DE SaNSDE DMS-L-PSO DECC-G MLCC DECC-DG 
F1 2.69E-18 4.19E+08 2.00E+04 1.61E+07 3.53E-07 1.66E-14 1.42E+02 

 5.10E-18 2.75E+08 2.04E+06 1.41E+06 1.44E-07 2.97E-12 4.66E+04 
F2 7.33E+02 7.38E+03 2.80E+03 5.53E+03 1.32E+03 2.43E+00 4.46E+03 

 7.52E+01 3.02E+02 1.67E+02 5.38E+02 2.55E+01 1.52E+00 1.87E+02 
F3 1.64E+00 1.95E+01 1.47E+01 1.56E+01 1.14E+00 6.24E-10 1.66E+01 

 1.77E-01 8.60E-02 4.31E-01 1.08E-01 3.35E-01 1.12E-06 3.02E-01 
F4 9.50E+11 8.78E+12 2.82E+12 4.32E+11 2.46E+13 1.78E+13 5.08E+12 

 3.50E+11 3.43E+12 1.01E+12 8.05E+10 8.14E+12 5.47E+12 1.89E+12 
F5 1.54E+08 7.96E+07 9.00E+07 9.35E+07 2.50E+08 5.11E+08 1.52E+08 

 4.41E+07 2.12E+07 8.22E+06 9.04E+06 6.84E+07 1.07E+08 2.15E+07 
F6 2.04E+01 2.09E+01 1.27E+06 3.66E+01 4.71E+06 1.97E+07 1.64E+01 

 5.75E+06 6.84E+06 8.12E+05 1.21E+01 1.03E+06 4.37E+06 3.45E-01 
F7 2.90E+02 3.08E+08 1.90E+05 3.47E+06 6.57E+08 1.15E+08 9.20E+03 

 8.22E+02 1.76E+08 6.18E+04 1.16E+05 5.40E+08 1.45E+08 1.26E+04 
F8 1.78E+07 2.53E+08 8.16E+06 2.02E+07 9.06E+07 8.82E+07 1.62E+07 

 7.43E+08 3.88E+08 2.22E+07 1.88E+06 2.64E+07 3.40E+07 2.63E+07 
F9 6.17E+07 5.56E+08 2.31E+08 2.08E+07 4.35E+08 2.48E+08 5.52E+07 

 8.72E+06 8.20E+07 9.95E+07 1.58E+06 4.87E+07 2.16E+07 6.45E+06 
F10 3.25E+03 7.72E+03 9.40E+03 5.09E+03 1.02E+04 3.97E+03 4.47E+03 

 1.88E+02 2.47E+02 2.82E+02 4.26E+02 3.13E+02 1.45E+03 1.29E+02 
F11 2.16E+02 1.88E+02 1.74E+02 1.68E+02 2.59E+01 1.98E+02 1.02E+01 

 1.31E+01 6.40E+00 1.51E+01 1.90E+00 1.73E+00 1.12E+00 8.71E-01 
F12 8.88E+03 5.59E+05 4.03E+05 2.83E+01 9.69E+04 1.01E+05 2.58E+03 

 1.15E+03 6.91E+04 4.83E+04 9.88E+00 9.55E+03 1.57E+04 1.08E+03 
F13 1.56E+03 1.01E+09 2.52E+04 1.03E+05 4.59E+03 2.12E+03 5.06E+03 

 3.81E+03 6.79E+08 1.61E+05 6.18E+04 4.16E+03 4.70E+03 3.65E+03 
F14 2.01E+08 1.60E+09 7.78E+08 1.25E+07 9.72E+08 5.71E+08 3.46E+08 

 2.07E+07 1.52E+08 1.28E+08 1.62E+06 7.52E+07 5.50E+07 2.42E+07 
F15 5.16E+03 7.75E+03 1.06E+04 5.48E+03 1.24E+04 8.67E+03 5.86E+03 

 3.60E+02 2.55E+02 4.34E+02 3.46E+02 8.24E+02 2.07E+03 1.05E+02 
F16 4.13E+02 3.77E+02 3.73E+02 3.18E+02 6.92E+01 3.96E+02 7.50E-13 

 3.05E+01 4.32E+00 1.12E+01 2.04E+00 6.43E+00 5.76E+01 6.25E-14 
F17 1.68E+05 1.04E+06 8.68E+05 4.75E+01 3.11E+05 3.47E+05 4.02E+04 

 1.17E+04 7.94E+04 6.84E+04 1.15E+01 2.24E+04 3.11E+04 2.29E+03 
F18 4.96E+03 4.15E+10 5.83E+05 2.50E+04 3.54E+04 1.59E+04 1.47E+10 

 6.35E+03 1.70E+10 1.81E+08 1.10E+04 1.53E+04 9.48E+03 2.03E+09 
F19 2.23E+06 2.96E+06 1.93E+06 2.03E+06 1.14E+06 2.04E+06 1.75E+06 

 1.93E+05 4.01E+05 1.89E+05 1.41E+05 6.23E+04 1.42E+05 1.10E+05 
F20 1.84E+03 5.25E+10 2.80E+05 9.82E+02 4.34E+03 2.27E+03 6.53E+10 

 5.04E+02 1.58E+10 1.37E+07 1.40E+01 8.25E+02 2.26E+02 6.97E+09 
Average 

Rank 
2.8 5.85 4.3 3.15 4.5 4.2 3.2 

Table 3: Results of Mann–Whitney U test for DECC-RAG vs DE. 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
< < < < > < < < < < 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 
> < < < < > < < < < 

Table 4: Results of Mann–Whitney U test for DECC-RAG vs SaNSDE. 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
< < < < > ≈ < > < < 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 
> < < < < > < < > < 
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Figure 1: Runtime (in hours) for CEC’10 LSGO benchmark problems using 1 thread and 16 threads. 

 

Figure 2: The average performance for F1 and F2 problems. 

 

Figure 3: The average performance for F3 and F4 problems. 
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Figure 4: The average performance for F7 and F9 problems. 

 

Figure 5: The average performance for F10 and F13 problems. 

 

Figure 6: The average performance for F18 and F20 problems. 
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