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Does malware lurking in GitHub pose a threat? GitHub is the most popular open source software website,
having 188 million repositories. GitHub hosts malware-related projects for research and educational purposes
and has also been used by malware to attack users. In this paper, we explore the prevalence of unencrypted,
uncompressed binary code malware in Microsoft Windows compatible C and C++ GitHub repositories and
characterize the threat. We mined 1,835 repositories for already-compiled malicious files and data suggesting
whether the repository is malware-related. We focused on these repositories because Windows is frequently
targeted by malware written in C or C++. These repositories are good resources for attackers and could target
Windows users. We extracted all Portable Executable (PE) files from all commits and queried the malware
resource VirusTotal for analysis from its 76 anti-virus engines. Of the 24,395 files, 4,335 are suspicious, with
at least one detection; 440 could be considered malicious, with at least seven detections. We identify topic tags
suggesting malware or offensive security content, to differentiate from seemingly benign repositories. 197 of
440 malicious executables were in 27 ostensibly benign repositories. This work illustrates risks in source code

repositories and lessons learned in relating GitHub and VirusTotal data.

1 INTRODUCTION

GitHub is the most popular open source soft-
ware website, with over 188 million reposito-
ries (GitHub.com, 2020a). GitHub is known
to host malware-related projects for research and
educational purposes—described as allowable in
their “GitHub Community Guidelines” (GitHub.com,
2020c)—including source code examples of exploita-
tion and generally nefarious functionality, such as
keyboard logging. GitHub originally became popu-
lar as a service to host software source code reposi-
tories but has also become a popular hosting environ-
ment for non-source code information, such as raw
data sets, including curated malware collections such
as theZoo (ytisf, 2020). GitHub has also been used by
malware for command and control, download infras-
tructure, or serving backdoored code (Avast Threat
Intelligence Team, 2018), (Munoz, 2020). Given
that malware resides on GitHub both legitimately and
maliciously, we study whether malware lurking in
GitHub repositories poses a threat to repository users
and downstream consumers of these repositories.
Malware is a huge cybersecurity problem, with
over 350,000 new malicious programs and potentially
unwanted applications discovered every day (AV-
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Test, 2020). Malware developers target many plat-
forms (e.g., desktop, mobile, servers, cloud, and deep
learning systems), use many different programming
languages (e.g., C, C++, Java, JavaScript, Assembly,
Python, Ruby, C#, and Delphi), and produce many
different forms of malware (e.g., Windows Portable
Executable (PE), Linux Executable and Linkable For-
mat (ELF), shell code injection, database injection,
and raw malicious data). For this malware research,
we focused on Windows Intel x86 binary files written
in C and C++ because of their volume, reach, com-
plexity, and potential for uniform analysis methods.
It is therefore natural that our research started with
ostensibly Windows C and C++ repositories.

In July 2019, we found 1,870 GitHub repositories
using the search terms of “windows” and “c” or “cpp.”
Of those, 1,862 have source code that could be built
using a modern Windows C++ compiler, and 1,835
were still online when we checked again in Decem-
ber 2019. Some related web Ul searches, such as for
Microsoft Visual C++ project files (.vcxproj), yielded
repositories outside of this initial set. Additionally,
keywords mined from these repositories suggest more
repositories of interest beyond our search terms. Ex-
panding the data set is future work.
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To determine whether a file might be malicious,
we searched the VirusTotal malware information ser-
vice that aggregates the detection results of 76 anti-
virus (AV) products (VirusTotal, 2020b). Any reg-
istered user can submit a sample to VirusTotal for
analysis. The detection results and other file infor-
mation are available to anyone for subsequent query,
by submitting a cryptographic hash of the file. Virus-
Total’s Application Programming Interface (API) in-
cludes rescan requests for results from the most up-
to-date AV products and much threat intelligence data
related to malware (VirusTotal, 2020a).

The contribution of this paper is a methodology
for investigating the presence of malware over all the
commits in the lifetime of a GitHub repository. While
it is straightforward to clone a repository to a specific
point in time - e.g., the current head state or some
arbitrary branch in the past - our approach investi-
gates all of the commits throughout the history of the
repository to identify files for analysis. We use the
well-established method of VirusTotal anti-virus en-
gine results to assess maliciousness of a particular file
type (Windows portable executable binaries), and we
apply our methodology to a subset of GitHub reposi-
tories (Windows C and C++ repositories) in this pre-
liminary investigation. However, this methodology
could be applied to additional populations of GitHub
repositories, identifying other file types of interest
through the repository lifetimes, and using other mal-
ware analysis methods.

In this paper, we present our preliminary inves-
tigation into the presence of malware files in Win-
dows C/C++ GitHub repositories. Section 2 provides
background on GitHub and related work in VirusTotal
malware research. We describe our approach to mine
Windows binary files from GitHub and then query
VirusTotal for malware detection results in Section 3.
Section 4 presents our initial VirusTotal analysis re-
sults for the Windows files that we mined from our
GitHub repositories of interest. Section 5 provides a
discussion and more detailed analysis of our results.
We present our conclusions and directions for future
research in Section 6.

2 BACKGROUND AND RELATED
WORK

GitHub is known to host malware, both legitimately
(i.e., in compliance with GitHub’s terms of use) and
illegitimately. GitHub prohibits content that “con-
tains or installs any active malware or exploits, or
uses our platform for exploit delivery” (GitHub.com,
2020b). An example of GitHub hosting malware in
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violation of this policy occurred in March 2018, when
cybercriminals uploaded cryptocurrency mining mal-
ware to forked GitHub projects and used phishing ads
to download and execute the malware (Avast Threat
Intelligence Team, 2018). More recently, 26 open
source projects were discovered to have backdoors in-
serted by the Octopus malware, which used the build
process to spread to other NetBeans projects (Munoz,
2020). GitHub appears to allow executable malware
in curated malware collections. A search for “mal-
ware samples” returns over 250 repositories. Al-
though many repository descriptions suggest analy-
sis tools or malware-related resources, some explic-
itly indicate that they include malware samples.

In terms of detecting malware or malicious repos-
itories in GitHub, only recently have two efforts sys-
tematically studied this problem. Recent work by
Rokon et al. developed a methodology for find-
ing malware source code within GitHub projects and
identified 7,504 malware source repositories (Rokon
et al., 2020). While the findings from this work can be
used to search for malware binaries in GitHub as well,
our work seeks to find malicious binaries in GitHub
repositories that are not necessarily purporting to con-
tain malware. Zhang et al. developed a deep neural
network approach to detect malicious GitHub reposi-
tories using content-based features from source code
files, investigating a population of blockchain and
crytocurrency repositories (Zhang et al., 2020). They
used VirusTotal as part of their evaluation process
for comparison purposes, ultimately labeling 1,492
repositories as malicious out of their population of
3,729 repositories, but again this work was more fo-
cused on malicious source code in GitHub.

Many previous research efforts have used Virus-
Total to support malware detection and analysis
in the domains of malware binaries run in dy-
namic analysis sandboxes (Graziano et al., 2015),
signed malware binaries (Kim et al., 2018), and mo-
bile applications (Hurier et al., 2017), (Pendlebury
et al., 2019), (Salem et al., 2019), (Suciu et al.,
2018), (Wang et al., 2019). VirusTotal can also be
used for analysis of malicious web addresses, i.e.,
Uniform Resource Locators (URLSs), such as those
used in phishing campaigns (Peng et al., 2019). These
research efforts and others each utilize VirusTotal in
different ways, either using various thresholds for the
number of VirusTotal engines needed to consider a
sample as malicious (e.g., 1, 5, or 10), thresholds
based on percentage of engines (e.g., 50%), or results
from a subset of engines based on high reputation or
market share. In short, there is little consensus on
how to definitively interpret VirusTotal results to de-
termine whether a sample is malicious.
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Recently, Zhu et al. published a study on the
behavior of the anti-virus engines within VirusTotal,
which included a survey of 115 academic papers that
used VirusTotal (Zhu et al., 2020). The most common
approach to using VirusTotal was to set the thresh-
old at one malicious engine detection for labeling a
sample as malware (50 out of 115 papers). How-
ever, one key finding of their research was that the en-
gines within VirusTotal “flip” detection results over
time, sometimes oscillating between malicious and
benign labels for the same sample over short peri-
ods of time. The authors recommended setting the
threshold somewhere between 2 and 39 for stability
of engine labels. Zhu et al. also found that the de-
tection results from certain engines are highly corre-
lated, which affects how one should set a threshold,
with the largest cluster containing six engines using a
hierarchical clustering algorithm with a threshold of
0.001 (Zhu et al., 2020).

3 APPROACH

We used GitHub to find and clone repositories, with
the intent of compiling the code for binary analysis
and getting data and metadata that provide insights
into the software development process. In the course
of that work, we discovered the presence of suspi-
cious files and a paucity of rigorous research on them.
We cloned all of our repositories of interest 9-July-
2019. By picking a specific date, we eliminated the
need to account for the variable of time in our anal-
ysis of GitHub data. Git repositories provide core
ground truth through SHA-1 cryptographic hashes of
files, commits (file versions, predecessors, and com-
ments), and tags. GitHub provides ground truth of
user-provided data and approval of commits by the
repository maintainer. We performed as much mining
as possible on local copies to avoid API limits.

3.1 Mining GitHub and Git

GitHub and Git present data management challenges:
GitHub provides additional online context for the po-
tentially offline Git commit activities, but it provides
snapshot or event-driven data rather than historical in-
formation through its API. For example, to find can-
didate repositories, we used GitHub’s GraphQL API,
querying for languages “c” and “cpp” and the “win-
dows” topic and cloned them locally. However, those
topics associations can change over time.

To be thorough in analyzing all commits through-
out a repository’s history, it is necessary to scan all
files (“blobs”) in Git’s local key-value store. It is very
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Figure 1: VirusTotal Query Flowchart.

efficient, O(b) for b = |Blobs|, to sweep the database
for all file content that ever was in the history of com-
mits and tags. But it is impossible to establish where
and when they are referenced without walking the
commit tree and tag graphs, naively O(¢ - c¢) for r =
|Blobs U TreeltemLists| and ¢ = |Commits U Tags|.
We used pygit2, a wrapper of libgit2, which
was anecdotally an order of magnitude faster than
GitPython during our early prototyping. We used
python-magic content type identification, which
wraps libmagic. Because Git SHA-1 hashes are
computed on file contents and additional metadata,
we needed to compute pure cryptographic hashes
for VirusTotal submission and used Python’s hashlib,
written in C. By performing operations in-memory
using underlying C, performance was strong and we
did not change repository file system state. For cross-
repository analysis and structured ad hoc data we used
PostgreSQL relations and JSON columns.

3.2 Querying VirusTotal

VirusTotal supports queries by MD5, SHA-1, and
SHA-256 cryptographic hashes. Although SHA-1 is
generally deprecated because of collisions, it is fast
and sufficient for file identification.

Figure 1 shows the flowchart of our VirusTotal
query process. We started by querying VirusTotal us-
ing the file content’s SHA-1 hash. If VirusTotal has
previously received and analyzed the file, it returns
JSON results that include the last analysis from its AV
engines, labeled “prior” analysis in our results. That
analysis could have occurred years ago, depending on
the file’s age, when it was first submitted, and when it
was last analyzed. We saved those “prior” results to
characterize the initial results and subsequent analy-
sis. VirusTotal AV detections generally improve over
time, as vendors improve algorithms and signatures,
and as VirusTotal adds new engines. To establish re-
sults across contemporary engines, we requested re-
analysis. We also uploaded all files that VirusTotal
has not previously received and then queried those de-
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Table 1: VirusTotal Detection Results - Suspicious Files, Previously Scanned and Unseen.

Binary Code Files # Samples | # Prior Hits | # Latest Hits
Previously scanned by VT 10,413 1,353 1,090
Previously unseen by VT 13,982 N/A 3,245
Total 24,395 1,353 4,335

Table 2: VirusTotal Detection Results - Malicious Files, Previously Scanned and Unseen.

Binary Code Files # Samples | # Prior Hits | # Latest Hits
Previously scanned by VT 10,413 226 240
Previously unseen by VT 13,982 N/A 200
Total 24,395 226 440

tection results. We downloaded “latest” results from
24-December-2019 to 7-January-2020.

VirusTotal provides four core file-related AV re-
quest APIs for non-premium users: the most recent
scan results of a file, the request to rescan a file, the re-
sults of the request to scan a file, and the results from
a specific non-public request identifier. The commer-
cial/premium API service also offers users the ability
to query the list of non-public request identifiers, nec-
essary to obtain results from arbitrary past requests.

3.3 Threats to Validity

VirusTotal introduces inherent variability of results
that challenge reproducibility: the accuracy of any
given AV engine scan; the variability of available
engines in VirusTotal at any given time; the suc-
cess of individual engines processing the sample in
a VirusTotal-managed processing window, the results
from specific engines over time; the opacity, consis-
tency, and provenance of details in reports; and the
ability to obtain the most recent results without ob-
taining a paid premium account. It is not controver-
sial to say that a given AV engine scanning a given file
at a given time may report false positive or false neg-
ative results. We do not consider that a threat to our
experiment’s validity because of the well-understood
caveats one may apply to an interpretation of AV re-
sults. In this research, the main threat is that data cap-
ture is not instantaneous and that the same file could
garner different results at the beginning and end of a
capture window.

We captured data in a two-week period, December
2019 — January 2020 to minimize the period of time
that a change could have occurred. We provide results
for any Windows binary that has at least one AV en-
gine detection of “malicious”, which indicates that the
sample is “suspicious.” We also report results using
a threshold of seven AV engine detections of ~’mali-
cious”, based on recommendations and interpretation
of the recent Zhu paper. Given the finding that certain
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engines’ detection results are highly correlated, and
the largest cluster consisted of six engines, a threshold
of seven ensures that at least two independent engines
are indicating “malicious.”

4 RESULTS

In this section we present the VirusTotal detection
results for the Windows binaries extracted from our
1,835 GitHub repositories of interest. We built a data
set of 24,395 unique binary code files, mining all
commits from all 1,835 GitHub repositories of inter-
est. A file was included if its MIME type was “exe-
cutable.” (One 171 MB file was excluded because we
were unable to upload it to VirusTotal.) The first sub-
section presents the results for the data set as a whole,
and the second subsection provides results based on
repository characteristics.

4.1 VirusTotal Results

Table 1 shows the results of VirusTotal scans for new
and previously uploaded binary files when setting the
threshold to at least one malicious detection, indicat-
ing that a file is “suspicious.” Of the 24,395 files,
10,413 had been submitted previously, indicated by
“Previously scanned by VT”; 1,353 of those had at
least one malicious detection at the time of prior anal-
ysis in VirusTotal, labeled “# prior hits.” When we
requested reanalysis for these files, 1,090 files had at
least one malicious engine detection, showing that de-
tections decreased overall on rescan. Of the 13,982
files “Previously unseen by VT” that we uploaded for
analysis, 3,245 had a malicious detection.

Table 2 shows the results of VirusTotal scans for
new and previously uploaded binary files when at
least seven engines provide a malicious detection,
our threshold to determine that a file is “malicious.”
Setting the detection threshold higher results in far
fewer hits, of course: only 440 out of the 24,395
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Table 3: VirusTotal Detection Results - Suspicious Files, Previous Scan and Rescan Results.

Binary Code Files # Samples | Detected | Not Detected
Previously submitted to VT 10,413 1,353 9,060
Resubmitted to VT 10,413 1,090 9,323

Table 4: VirusTotal Detection Change in Results - Suspicious Files.

Originally Benign Originally Suspicious
# samples 9,060 # samples 1,353
# that became suspicious 289 # that became benign 552
% that became suspicious 3% % that became benign | 41%
# AV engines 1-69 # AV engines 1-3

have at least seven AV engines indicating malicious
detections. Of the 10,413 files previously scanned
by VirusTotal, 226 previously exceeded our malicious
detection threshold and 240 are currently deemed ma-
licious in the latest results. Of the 13,982 files pre-
viously unseen by VirusTotal, 200 are deemed mali-
cious in the latest results.

Both tables of VirusTotal detection results demon-
strate the change in engine detections over time. To
highlight these changes in more detail for the suspi-
cious file results (i.e., those with at least one mali-
cious detection), Table 3 shows that some previously
benign-seeming files were considered suspicious—and
vice-versa—in the reports that we requested in the De-
cember 2019 — January 2020 timeframe. The overall
decrease of 263 files—from 1,353 to 1,090—having
at least one malicious detection is the net result of
289 files being detected as malicious that were not
previously and 552 files previously being detected as
malicious no longer having any AV engine detections.

Table 4 shows the relative change in results for the
suspicious files. The substantial re-characterization of
files as having detections vs. not having detections co-
incides with a relatively small number of initial posi-
tives results, with 1 to 3 AV engines previously indi-
cating malicious. On the other hand, files only later
getting malicious detections have a much larger range
of 1 to 69 detecting engines.

Table 5 shows the breakdown of files within differ-
ent categories of Windows executable binaries. The
vast majority of binary code files are targeted to run
on modern 32- or 64-bit Windows versions. There
are also files targeting DOS and 16-bit Windows in
the “Pre-Win32” category, which are ostensibly com-
patible with Windows. Finally, there are incompat-
ible ELF and boot image files in the “Other” cate-
gory (presumably misclassified by libmagic). As seen
in the second column of Table 5, 4,280 Windows-
compatible files were suspicious and 418 were ma-
licious. Except for “Other” files, any standalone ex-
ecutable file poses an immediate risk to a repository
user who runs it, while a dynamically linked library

(DLL) on modern Windows poses a risk of incorpo-
ration into the repository’s build outputs or execution
as a system service or code injected into a process on
a build host. Table 5 shows that of the 4,280 suspi-
cious files, 1,074 are DLLs and 3,206 are standalone
executable files. For the 418 malicious files, 28 are
DLLs and 390 are standalone executable files.

Table 6 presents the number of files in weighted
bins by the number of engines indicating “malicious.”
This shows the range of hits and the large proportion
of samples with low hit counts.

The results above for all files represent the aggre-
gate across all commits over the lifetime of the repos-
itory. For results at a single point in time, we also
analyzed the files that were accessible from the head
of the repository. A repository’s head commit—the
files accessible after cloning and updates—represents
a public view of the repository at the time of cloning
and analysis. Across all 1,835 of our repositories of
interest, there are 7,772 unique binary files in the head
commits on 9-July-2019, of which 939 were suspi-
cious with at least one AV detection in VirusTotal,
and 204 were malicious with at least seven AV de-
tections. 5,512 files were already analyzed by Virus-
Total, while 2,260 had to be uploaded for analysis.

4.2 Repository-based Results

Of the 1,835 repositories queried, 593 repositories
contain binary files. 314 have at least one suspicious
binary file, which is a significant subset. 52 reposito-
ries have at least one malicious binary with seven or
more VirusTotal AV engine detections.

We examined the concentration of suspicious bi-
naries across repositories, presented in Table 7. Of
the 314 repositories having suspicious files, a major-
ity, 182 repositories, have one (1) or two (2) suspi-
cious files. Across the population, the mean file count
is 7.03 and standard deviation is 20.67. Similarly, Ta-
ble 8§ presents the distribution of malicious file counts
across the 52 repositories with malicious binaries and
shows that most only have one or two.
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Table 5: VirusTotal Detection Results — By File Type.

All | Win 32/64 | DLLs | EXEs | Pre-Win32 | Other

Benign 20,060 19,385 | 12,331 7,054 431 244

Suspicious 4,335 4,280 1,074 3,206 14 41

Malicious 440 418 28 390 2 20

Total 24,395 23,665 | 13,405 | 10,260 445 285
Table 6: VirusTotal Hit Counts in Weighted Bins.

Hit Count 1 2 3 4 5| 6] 7-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61+
#samples | 2,491 | 722 | 298 | 161 | 135 | 88 | 100 92 92 71 59 20 6
Table 7: Suspicious File Count by Repository Count.

# suspicious files 1 21 3| 4| 5]|6-10 | 11-617
# repos 131 | 54 | 20 | 24 | 16 22 47
Table 8: Malicious File Count by Repository Count.

# maliciousfiles | 1 | 2 (3 |4 |5]6-10 | 11-617
# repos 2010|513 |2 1 8
Table 9: Top 10 Repositories by Files Having VirusTotal Detection - Suspicious Files.

Repository Name # Detected | # Binaries | score
papyrussolution/OpenPapyrus 617 1,259 1.19
Ihmouse/mcfgthread 507 1,175 1.45
fttp/fttftp 305 1,061 1.13
processhacker/processhacker 220 282 | 4.10
arjunae/myScite 205 1,762 1.99
RomaniukVadim/hack_scripts 198 313 | 21.45
arizvisa/windows-binary-tools 166 924 | 2.34
tomdaley92/kiwi-8 116 186 | 5.27
Twilight-Dream-Of-Magic/BackDoorProgram-EncryptOrDecryptFile 113 160 | 2.74
alexfru/SmallerC 109 300 | 20.79

Table 9 shows the top ten repositories by num-
ber of suspicious files and the mean score of those
detections. The second column of Table 9 provides
the number of overall binary files in these reposito-
ries for additional context, indicating how prevalent
binary files are in each of these repositories and the
ratio of suspicious binaries.

To assess the stated purpose of each GitHub repos-
itory, we extracted the user-provided repository tags
and found 1,802 unique tags across the 1,835 reposi-
tories. We classified 70 tags as potentially related to
malware or other offensive security topics. Each au-
thor identified candidate tags, and those receiving a
majority of votes were selected. Our malware-related
tags have overlap with the Malware Attribution Enu-
meration and Characterization (MAEC) structured
language for malware information sharing (The Mitre
Corporation, 2017), allowing for fuzzy matching and
semantic equivalence. It is important to note that
MAEC is a prescriptive taxonomy for documenting
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security incidents and not a computer security natu-
ral language topic model. There are other efforts to-
wards defining cyber security ontologies (Syed et al.,
2016), which could contribute to a characterization of
malware-related purposes. This is an area of future
exploration.

Of the 314 repositories that contain at least one
suspicious binary, only 50 have at least one malware
or offensive security-related tag. This leaves 259
repositories with suspicious/malicious binaries where
users might not expect that risk. Of the 52 reposi-
tories that contain at least one malicious binary, 25
have at least one malware or offensive security-related
tag. The 27 repositories not tagged as being related to
malware or offensive security contain 197 malicious
binaries, representing risk to unsuspecting repository
users.
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Table 10: Examples of Varying Scan Results over Time.

] | Example 1 | Example 2 [ Example 3 [ Example 4 |

Our Scan Requests

scan date 12/24/2019 | 12/24/2019 | 12/24/2019 | 12/24/2019
# engines 74 73 75 75
# malicious 0 43 12 2
Previous Scans
last analysis date 12/10/2015 | 9/29/2019 11/26/2019 | 2/1/2017
# engines 52 71 71 58
# malicious 0 43 11 0
Earlier Activity
last modification date | 1/8/2019 9/29/2019 12/4/2019 | 2/1/2017
first submission date 9/20/2013 | 5/12/2016 | 5/7/2011 1/4/2017
Submitter or Author-Reported Data
PE file “creation date” | 9/11/2013 | 5/8/2016 5/7/12011 7/28/2014
“first seen itw date” 9/11/2013 | 5/8/2016 11/20/2010 | 12/31/2097
5 DISCUSSION by AV engines.

5.1 Risks Posed by Unhygienic
Repositories

Without even considering the risk of malicious con-
tent, binary files in repositories should raise concerns.
It is almost always a bad practice to store build out-
puts in any repository because they increase the repos-
itory size, are not amenable to editing or compar-
isons across versions, and may be accidentally up-
dated when the repository is built—especially Win-
dows PE files, which contain the build timestamp.

Including binaries, such as libraries, as build in-
puts or runtime dependencies violates the spirit of
open source development. It may be unavoidable for
a repository owner seeking to baseline specific build
inputs while holding a software license that allows
redistribution of binaries. In most cases, however,
GitHub repository maintainers should provide pre-
built software in GitHub release bundles, outside the
Git repositories.

The virus research community has adopted safe
handling procedures, including packaging malware in
encrypted archives (Zeltser, 2020), and sharing sam-
ples only after vetting interested researchers. Reposi-
tories that violate these rules expose non-malware re-
search environments. Indeed, when we cloned repos-
itories from our Linux environment onto a Windows
server, we set off over 100 alerts in our enterprise AV
sensors—and that was only in the file system copies
from the head branches. Many malicious binaries lay
dormant and unscanned while they rest in Git’s cus-
tom storage formats, likely unsupported for scanning

Finally, build files such as Makefiles, .vcxproj
files, and continuous integration orchestration files are
essentially executable scripts, which pose the risk that
building a project can compromise a system. Non-
malware repository researchers would also benefit
from safe handling, such as processing as much as
possible on less-targeted OSs and with repositories
that are bare or mirrors without local file copies.

5.2 Not All Windows Malware Is in PE
Files

Malware comes in many forms. We looked for bi-
nary files, but these repositories may have malware
in other formats, such as documents and scripts. It
is worth noting that in scanning repository head com-
mits, we identified 761 archive files (WinZip, 7-Zip,
and RAR), 33 of which are or could be encrypted.
Perhaps the 33 represent responsibly encrypted mal-
ware samples. There are other forms of malware
that we could mine from GitHub repositories beyond
Windows binaries, such as Linux malware, mobile
malware, malicious scripts, and malicious PDF docu-
ments.

5.3 Git-related Observations

In the course of this research we used many in-
terfaces to Git-related data. While not necessarily
critical to this immediate work, our experience pro-
vides some insights for future researchers. Online
APIs such as GitHub REST v3, GitHub GraphQL,
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GH Archive (gharchive.com, 2020), and Google Big-
Query (Google Cloud, 2020a) are powerful for high-
level data, but for compute-intensive file analysis, lo-
cal execution may be the only option. While Git is the
primary source for commit history and files, its data
model is optimized for efficiency and extensibility of
end-user file-based operations. The researcher is left
to develop a new data model to manage the federation
of Git and online APIs.

GitHub provides a rich online community and
source of data, but does not provide direct temporal
control over results comparable to the cryptograph-
ically stable Git commit log, which admittedly is
coming under attack because of SHA-1’s emerging
weaknesses to hash collisions. So, while it may be
straightforward to time-box commits up to a certain
date, finding the GitHub topic associations at that
date requires forethought to query all GitHub infor-
mation, sifting through events from the beginning of
the repository to that point in time (or in reverse from
the present time), or queries using third-party services
such as GH Archive and Google BigQuery. GitHub’s
5,000 REST requests or GraphQL 5,000 points per
hour (GitHub.com, 2020d) and BigQuery’s 1 TB free
per month API (Google Cloud, 2020b) quotas re-
quire considerable planning and data acquisition de-
sign, and therefore we attempted to maximize local
analysis with Git. Moreover, a local checkout of Git
provides groundtruth for what a developer would see
from cloning the repository.

5.4 VirusTotal Observations

As previous research has shown (Zhu et al,
2020), (Pendlebury et al., 2019), (Peng et al.,
2019), (Salem et al., 2019), VirusTotal engine data is
subtle: results change based on when a query is run,
and the non-premium API provides only the most re-
cent results based on the time of the last requested
scan, which could have been any arbitrary point in
time in the past. It is possible that one or more en-
gines within VirusTotal could provide a false positive
detection for a file. VirusTotal’s AV engines change
over time and the results from the engines can change
based on AV engine implementation and signature up-
dates. While it may be tempting to use VirusTotal as
a form of oracle for malware detection, there is no
universally accepted threshold for the number of AV
engines in VirusTotal that “guarantees” a file is mali-
cious.

There are at least three interesting points in the
lifetime of a file analyzed by VirusTotal: (1) initial
analysis at the time of first submission to VirusTo-
tal; (2) “prior” analysis relative to the current exper-
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imentation time, which will be whenever the file last
had an analysis requested; and (3) “latest” analysis,
requested at the current experimentation time. Ta-
bles 1 and 2 previously presented the change in de-
tection results between points (2) and (3). Table 10
illustrates with four example files that metrics based
on these points in time can be inconsistent within a
small time window, across larger windows, and fabri-
cated.

For example, before our rescan request (“Our
Scan Results” in Table 10), the results for one “be-
nign” binary named ‘“curl.exe” (Example 1) were
originally created when scanned on 20-September-
2013, updated with scan results from 52 engines on
10-December-2015, and modified on 8-January-2019.
Other dates in a report, such as first seen in the wild
(the year 2097 in Example 4 in Table 10), and of
course, the PE header timestamp have no assurance
because they are subject to spoofing by the submit-
ter or binary author (sometimes the same individ-
ual! (Zetter, 2014)).

Across all of our rescan requests started on 24-
December-2019, we received results from 46 to 76
engines, with a mean of 73.4 engines and standard
deviation of 1.21.

The VirusTotal terms of service do not allow shar-
ing full reports that would reveal AV vendor capabili-
ties. Therefore, experiments relying on precise scan
details are not reproducible and the data cannot be
broadly shared. One researcher could affect an un-
related researcher’s work by requesting a rescan at a
non-deterministic time during overall data capture, a
significant risk with a public API rate limited to four
per minute and with a potential for three requests for
a single sample. Indeed, the footprints of our queries
are all over the data. It is also possible that the foot-
prints from the authors’ IT department can be ob-
served in the data, as the authors were contacted by
them in the course of cloning repositories to explore
build experimentation.

It is possible to get all scan history for a sample,
by purchasing the premium service—but those results
indicate which scans were requested, not whether a
given file might have been considered malicious at
a particular point in time, if only someone had re-
quested a scan at that time. For example, it is infeasi-
ble to perform a post-mortem of an attack by asking,
”Could all of the files in an intrusion have been identi-
fied as malware on 1-June-2015?” Although VirusTo-
tal adds a very different dimension of data to software
repository research, it does not offer the temporal con-
trol required in many studies and experiments.
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6 CONCLUSIONS AND FUTURE
WORK

Does the malware lurking in GitHub pose a threat?
Yes, we found 4,335 suspicious Windows binary files
with at least one malicious AV detections in Virus-
Total across 314 of 1,835 repositories studied. We
found 440 malicious binaries with at least seven AV
detections across 52 repositories. Just as some re-
searchers found hidden API keys in repositories (Meli
et al., 2019), we found hidden malicious content, not
easily queried because of the number of files and
repositories, the cost of querying online services, and
changing malware scan results. Users and researchers
should be careful when downloading open source
repositories, because it is difficult to be sure that the
content is safe, especially binary content. Reposi-
tory owners should be vigilant given their role in the
open source software supply chain. We have submit-
ted the hashes and repository URLs to GitHub, out
of an abundance of due care in exercising responsible
disclosure.

This study mined a particular slice of GitHub
for malicious Windows binaries—we could obviously
expand the population of GitHub repositories, beyond
those tagged as Windows and C or C++, and expand
the types of malware investigated. The substantial ob-
served swing in VirusTotal results over time motivates
more study to identify the controlling variables and
ultimately to achieve a better understanding of how to
assess confidence in a particular scan.

GitHub is a convenient platform for hosting
source code and other user-provided content. GitHub
users hosting malware should, at a minimum, apply
basic safety measures, such as storing malware in
encrypted archives (Zeltser, 2020). More troubling,
though, is that the mere presence of binary content
in a source code repository suggests a violation of
best practices—mining the repository history can pro-
vide insights into a project’s overall quality and ma-
turity. The accidental presence of malicious binary
content suggests a violation of trust—mining the con-
tributors’ history might provide insights into the kinds
of people unwittingly compromised. The intentional
and surreptitious insertion of malicious binary con-
tent is an attack on trust—mining the entire repository
history might help identify future targets and enable
attribution of the those willfully corrupting the open
source software supply chain.
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