
Contextualisation of ABAC Attributes through a Generic XACML
Functionality Extension Mechanism

Brecht Claerhout1, Kristof De Schepper1, David Pérez del Rey2 and Anca Bucur3

1Custodix, Kortrijksesteenweg 214, 9830 Sint-Martens-Latem, Belgium
2Grupo de Informática Biomédica, Dept. Inteligencia Artificial, Facultad de Informática

Universidad Politécnica de Madrid, Campus de Montegancedo S/N, 28660 Boadilla del Monte, Madrid, Spain
3Phillips Research, Healthcare Information Management, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands

Keywords: Contextual Attributes, Contextual Roles, ABAC, XACML, Context Aware Policies, Extension Mechanism,
Integrate Project, Breast Cancer.

Abstract: Authorisation solutions that exist today offer a broad range of functionality for defining complex access
control policies. A common requirement that is not covered by these solutions is dynamically instantiated
contexts in collaborative environments. This requirement is one of the research topics of the EU funded
INTEGRATE project. This paper will focus on the solution proposed for the INTEGRATE project which is
XACML based. The approach taken to make XACML context aware, is to enrich the XACML specification
using a contextual extension through a generic mechanism, without changing the XACML language itself.
This contextual extension operates on the XACML requests with ultimate goal to simplify the management
of context aware policies.

1 INTRODUCTION

Several solutions have been proposed for defining
and enforcing complex access control (AC) policies,
such as for example XACML (OASIS, 2005),
PERMIS (Chadwick et al., 2008), PONDER
(Damianou et al., 2001), Cassandra (Becker and
Sewell, 2004), etc. Although these solutions offer a
broad range of functionality; still they logically
cannot cover all specific demands of specialised
application domains.

A common requirement of access management in
collaborative environments is to be able to define
default AC policies for dynamically instantiated
contexts. A context instance defines the environment
in which AC requests should be evaluated, e.g. a
specific organisation in a wider cross-organisation
collaboration. In some cases, one desires that
instances of a context are governed by a set of
"default" AC policies (rather than have their own
specific policies). Typically this happens when
context instances represent dynamic collaborations
(e.g. Virtual Organisations (VOs) (Foster et al.,
2001)).

In this paper, usage of contexts and context
instances is further illustrated in the domain of Role

Based Access Control (RBAC). In RBAC access
decisions are made based on the role (e.g.
investigator, administrator, etc.) the user has. The
permissions to perform certain operations are
assigned to specific roles. Usually it suffices to
define roles for a user in a global context, however
in some situations it is required to introduce roles
that are specific to a given context (called contextual
roles). The policies linked to these contextual roles
are the same for each context but their scope is
limited to each instance of the context. It is clear that
when writing policies for contextual roles one does
not want to define a policy for each role in each
instance of a context.

2 BACKGROUND

The work described in this paper is the result of
research within the INTEGRATE project
(INTEGRATE, 2012). INTEGRATE is part of the
FP7 framework funded by the European
Commission and aims to develop innovative
infrastructures to enable data and knowledge sharing
and to foster large-scale collaboration in biomedical

52 Claerhout B., De Schepper K., Pérez del Rey D. and Bucur A..
Contextualisation of ABAC Attributes through a Generic XACML Functionality Extension Mechanism.
DOI: 10.5220/0004224700520057
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2013), pages 52-57
ISBN: 978-989-8565-37-2
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Pluggable extension handler pipeline.

research. After a thoroughly evaluation of the access
control requirements in INTEGRATE it was decided
to use XACML as authorisation solution. In this
paper the proposed solution therefore focuses on
XACML.

2.1 XACML

Attribute-Based Access Control (ABAC) presents an
access control model inherently capable of meeting
many of the “modern” access control demands (e.g.
data dependent access policies, environment
dependent policies, etc.). In ABAC, attributes that
are associated with a user, action or resource serve
as inputs to the decision of whether a given user may
access a given resource in a particular way.

The eXtensible Access Control Markup
Language (XACML) (OASIS, 2005) implements
ABAC. It is a XML based declarative access control
policy language defining both a policy, decision
request and decision response language. XACML
contains several profiles for supporting RBAC,
multiple resources, hierarchical resource, etc.
Although it offers a wide-range functional solution
for access control, it lacks support for the problem of
contextualisation.

2.2 Solution through Management
Tools

A straightforward solution for contextualisation in
XACML would be shifting the responsibilities to the
policy authoring tools. This basically means that for
each context instance separate policy files would
need to be generated, e.g. from templates describing
the default context policies. Although this approach
seems easy to implement at first sight, it suffers
from the inherent issues associated with all “auto-
generating” solutions (be it for configurations or
source code). Every change requires many policies
to be rewritten (regenerated) and possibly
redistributed. Furthermore, synchronisation becomes
a big issue when one wants to allow exceptions in
auto-generated policies (“manual” additions). For
this reasons, this solution is not the most favourable
for large scale environments such as INTEGRATE.

3 CONTEXTUAL ATTRIBUTES

3.1 Extending XACML Functionality

The main approach taken to enrich the XACML
functionality with contextual attributes is not to
make changes in the core XACML specification,
such that no modifications are needed to the
standard XACML access control decision
mechanism (meaning standard XACML Policy
Decision Points (PDP) can be used in
implementations). Instead, the XACML requests are
enhanced using a generic extension mechanism, in a
way that extensions to the XACML specification can
easily be added or be removed without needing to
touch the core of the policy language and XACML
compliant decision engines (see Figure 1). Extension
handlers are placed in a pipeline between the context
handler (strictly speaking the extensions are part of
the context handler) and the PDP. An extension
handler gets as input an XACML request from
another extension handler or the context handler;
subsequently transforms this request; and finally
feeds the transformed request to the next extension
or the PDP engine (last stage in the pipeline). This
mechanism has previously been successfully applied
for automatically translating attributes between
different security contexts and semantically
expanding them (Ciuciu et al. 2011).

3.2 Contextualisation Extension

The contextualisation extension handler proposed,
splits up an incoming XACML request (containing
possible multiple contexts and context instances in
the attributes) in multiple single-context requests.
More specifically, for each different context instance
that is included in the original XACML request, a
separate new context-specific XACML request is
generated (see Figure 2). These context-specific
requests are sent separately to the PDP engine for
evaluation. By splitting up the requests, the PDP
engine can provide an access decision for each
context instance using manageable context-specific
policies. The XACML responses containing the
context-specific access decisions are sent back to the
contextualisation extension handler where a global

Contextualisation�of�ABAC�Attributes�through�a�Generic�XACML�Functionality�Extension�Mechanism

53

Figure 2: Contextual extension flow.

(no context specific) XACML request is generated.
This request is then sent back to the PDP engine
which evaluates the request, making use of defined
global policies. The access decision is finally
returned to the extension handler and is passed back
to the access control requestor as final outcome of
the original request.

3.2.1 Incoming XACML Request

To contextualise attributes of a user and mark the
resources he/she wishes to access that are context-
specific, a special attribute syntax is defined in the
incoming XACML request that is recognizable by
the contextual extension handler.

The example below shows how a contextual role
attribute of a user is included in a request as an
XACML subject attribute with attribute id “role”
and a special formatted attribute string value
containing the role, the context and the context
instance:

For including the global context roles of a user in the
request, this special formatting is not needed,
because these roles are relevant for each of the
contexts. In this case, the attribute value is only the
role itself.

To illustrate the inclusion of contextual roles in
more detail, an example is given in the domain of
trial screening. A user called “John doe” can have
different roles within different trials, e.g. a user can
have the role of “clinical staff” over all trials (global
context), the role of “investigator” in his own trial A
(context trial A) and the role of “principal
investigator” in another trial B (context trial B).
These three roles of John are provided as subject
attributes, as shown in Example 1.

Example 1: Context roles of a user in an incoming
XACML request (pseudo-code).

To indicate that a resource is context-specific, an
extra predefined attribute is included in the
corresponding XACML resource object with the
attribute id “context" and a special formatted
attribute string value containing a reference to the
context and context instance:

Note that a resource can belong to more than one
instance of the same context. In Example 2, the user
John Doe wants to access three resources named
EHR001 in the trial context of trial A and trial B
(multiple context instances), EHR002 in the trial
context of trial B and EHR003 in the global context.

Example 2: Context(s) of resources in an incoming
XACML request (pseudo-code).

3.2.2 Context-specific Requests

When a new XACML request enters the
contextualisation extension handler, an inventory is
made of all context and context instance included in

 <att id="role">
[context role]@[context]:[context instance]
</att>

 <Request>
 <Subject>
 <att id="name">John Doe</att>
 <att id="role">investigator@trial:A</att>
 <att id="role">principal investigator@trial:B</att>
 <att id="role">clinical staff</att>
 </Subject>
 ...
 </Request>

<att id="context">
[context]:[context instance]
</att>

 ...
<Resource>
<att id="resID">EHR001</att>
<att id="context">trial:A</att>
<att id="context">trial:B</att>
<att id="type">crf</att>
</Resource>
<Resource>
<att id="resID">EHR002</att>
<att id="context">trial:B</att>
<att id="type">adm</att>
</Resource>
<Resource>
<att id="resID">EHR003</att>
<att id="type">doc</att>
</Resource>

HEALTHINF�2013�-�International�Conference�on�Health�Informatics

54

this request. For each different context instance
found, a new context-specific XACML request is
generated.

For the context-specific role attributes in the
example, this means that the role attribute of the
original request is copied to the corresponding
context-specific request. During this copying the
context instance part is stripped from the role
attribute value (this enables the generation of
context-specific policies, see further). Non context-
specific attributes are copied to each of the requests
(so that they are available during contextual policy
evaluation in each of the context instances).

Each context-specific resource object and the
underlying resource attributes defined in the
incoming request are copied to one or more of the
corresponding context-specific requests, depending
on the context instance(s) that is included in the
context attribute value(s) of this resource (a resource
can have more than one context/context instance).
The context resource attribute(s) itself is omitted
during the copying, because it is not relevant for
evaluation. Non context-specific resources are not
copied to a request, these will be used later in the
global request (see further).

Finally in each generated context-specific
request the corresponding context and context
instance are added as environment attributes. This
allows easy definition of policies concerning certain
contexts or context instances. Other environment
and action attributes in the original request are again
copied to all context-specific requests.

 Example 3 gives the result of splitting the
incoming request attributes of the given above
examples.

Example 3: Splitted context-specific XACML requests
(pseudo-code).

3.2.3 Context-specific Policies

After the request is split in multiple context-specific
requests, these requests are sent to the PDP engine
for evaluation. Because of this split up, the
management and creation of context-aware policies
is simplified. Generating policies for a context
and/or context instance can be easily done in various
ways, e.g. through the XACML “target”
specification. Example 4 shows how to target a trial
context (targeting all trial instances).
Example 5 gives the XACML code that needs to be
specified to write a policy that targets a context
instance trial A.

Example 4: Context target (all instances).

Example 5: Context instance target.

Example 6 illustrates how a policy (or rule)
could be written dealing with the access rights tied
to a specific contextual attribute across instances
(the role from the example in this case). Note that
the attribute annotation “@[context]” (in the
example, the “trail” context) facilitates policy
authoring and review. It indicates that this is a
contextual attribute and will thus be evaluated on a
“per instance basis”.

The examples illustrate that the presented
mechanism for enhancing XACML with contextual
attributes allows policies to be written in structured
and manageable way.

Example 6: Contextual role rule.

...
<Subject>
<att id="name">John Doe</att>
<att id="role">
principalinvestigator@trial
</att>
<att id="role">clinical
staff</att>
</Subject>
...
<Res>
<att id="resID">EHR001</att>
<att id="type">crf</att>
</Res>
<Res>
<att id="resID">EHR002</att>
<att id="type">adm</att>
</Res>
...
<Env>
<att id="context">trial</att>
<att id="contextInstance">
trial:B</att>
...

...
<Subject>
<att id="name">John Doe</att>
<att id="role">
investigator@trial</att>
<att id="role">clinical
staff</att>
</Subject>
...
<Res>
<att id="resID">EHR001</att>
<att id="type">crf</att>
</Res>
...
<Env>
<att id="context">trial</att>
<att id="contextInstance">
trial:A</att>
</Env>
...

Split request @ trail A Split request @ trail B

 <Target>
 <Environments><Environment>
 <EnvMatch MatchId="string-equal">
 <AttValue>trial</AttValue>
 <EnvAttDesignator AttId="context"/>
 </EnvMatch>
 </Environment></Environments>
</Target>

<Target>
 <Environments><Environment>
 <EnvMatch MatchId="string-equal">
 <AttValue>trial:A</AttValue>
 <EnvAttDesignator AttId=
 "contextinstance"/>
 </EnvMatch>
 </Environment></Environments>
</Target>

 <Target>
 <Subjects><Subject>
 <SubjectMatch MatchId="string-equal">
 <AttValue>
 principalinvestigator@trial
 </AttValue>
 <SubjAttDesignator AttId="role"/>
 </SubjectMatch>
 </Subject></Subjects>
</Target>

Contextualisation�of�ABAC�Attributes�through�a�Generic�XACML�Functionality�Extension�Mechanism

55

3.2.4 Global Request

The access control decisions for the different
context-specific requests are sent back to the
contextual extension handler. In the handler a new
XACML request (global request) is generated based
on the original access control request. This global
request additionally contains the contextual access
decision results for each resource.

To include the access results of the context-
specific resources in this global request, one or more
resource attributes “contextResult” are added for
each resource. The attribute value has a special
formatted string:

Example 7 gives the generated request for the above
example. This request is sent again to the PDP for
evaluation.

 This second evaluation, which includes the
“contextResult” responses, allows “global” policies
to be written that rely on the result(s) of the context-
specific resources or override them (i.e. there is total
freedom in combination algorithm). Example 8
shows how a rule could incorporate such a
contextual result.

Example 7: Global request.

Example 8: Global policy.

Note that in the special case where a resource
belongs to more than one context instance of the
same context, both a “permit” and “deny” for the
same context could be present. Although this seems
contradictory at first, it allows decision combination
to be specified in the XACML policies and thus
gives total freedom to policy writers.

Finally, the resulting XACML response,
containing the access result for each resource is sent
back to the contextualisation extension handler. The
handler in its turn will return this response as
outcome to “calling” handler.

4 CONCLUSIONS

In this paper the problem of contextualisation of
ABAC attributes through a generic XACML
functionality extension mechanism is described.
Today’s prominent access control solutions do not
provide sufficient support for the contextualization
of attributes. The solution that was proposed, is
based on ABAC/XACML because the relevance in
the INTEGRATE project.

The approach that was taken to enrich XACML
with contextual attributes is not to change the
specification of XACML itself but provide a generic
flexible extension mechanism compatible with the
standard XACML core specification.

The contextual extension handler described,
splits up a request containing different contexts to
multiple context-specific requests. After evaluation
of these requests, a global request is created which
in his turn is evaluated by the PDP. The advantage
of this extension is that policies can be written
specific for one context without making these
policies very complex.

ACKNOWLEDGEMENTS

This project/study is partially funded by the
European Commission under the 7th Framework
Programme (FP7-ICT-2009-6-270253).

REFERENCES

OASIS, 2005, ‘XACML: eXtensible Access Control
Markup Language’, Version 2.0, Available from:
<http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf>. [16 July 2012]

Chadwick, D, Zhao, G, Otenko, S, Laborde, R, Su, L, Anh
Nguyen, T, 2008, ‘PERMIS: a modular authorization

 <att id="contextResult">
[Resource AC Decision]@[context]
</att>

 ...
<Subject>
 <att id="name">John Doe</att>
 <att id="role">clinical staff</att>
</Subject>
...
<Res>
 <att id="resID">EHR001</att>
 <att id="contextResult">permit@trial</att>
 <att id="contextResult">deny@trial</att>
 <att id="type">crf</att>
</Res>
<Res>
 <att id="resID">EHR002</att>
 <att id="contextResult">permit@trial</att>
 <att id="type">adm</att>
</Res>
<Res>
 <att id="resID">EHR003</att>
 <att id="type">doc</att>
</Res>
...
</Env>
...

 ...
<Rule Effect="Permit">
 <Condition>
 <Apply FunctionId="any-of">
 <Apply FunctionId="string-equal"/>
 <AttValue>permit@trial</AttValue>
 <SubjAttDesignator

AttId="contextResult"/>
 </Apply>
 </Condition>
</Rule>
...

HEALTHINF�2013�-�International�Conference�on�Health�Informatics

56

infrastructure’, Concurrency and Computation:
Practice and Experience, vol. 20, no. 11, pp. 1341-
1357

Damianou, N, Dulay, N, Lupu, E, Sloman, M, 2001, ‘The
Ponder Policy Specification Language’, POLICY
2001 Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, pp. 18-
38

Moritz, Y, Becker, PS, 2004, ‘Cassandra: Distributed
Access Control Policies with Tunable Expressiveness,
Policies for Distributed Systems and Networks’,
POLICY 2004 Proceedings of the Fifth IEEE
International Workshop, pp. 159 – 168

Ciuciu, I, Claerhout, B, Schilders, L, and Meersman, R,
2011, ‘Ontology-Based Matching of Security
Attributes for Personal Data Access in e-Health’,
OTM’11, vol. 2, pp. 605-616

INTEGRATE, 2012, ‘INTEGRATE: Driving Excellence
in Integrative Cancer Research’, Available from:
<http://www.fp7-integrate.eu/>. [16 July 2012]

Foster, I, Kesselman, C, Tuecke, S, 2001, ‘The Anatomy
of the Grid: Enabling Scalable Virtual Organizations’,
International Journal of Supercomputer Applications,
vol. 15, no. 3, pp. 200-222

Contextualisation�of�ABAC�Attributes�through�a�Generic�XACML�Functionality�Extension�Mechanism

57

