
Model Driven Extraction of NoSQL Databases Schema: Case of

MongoDB

Amal Ait Brahim, Rabah Tighilt Ferhat and Gilles Zurfluh
Toulouse Institute of Computer Science Research (IRIT),

Toulouse Capitole University, Toulouse, France

Keywords: Schema Less, NoSQL, Model Extraction, Big Data, Model Driven Architecture.

Abstract: Big Data have received a great deal of attention in recent years. Not only the amount of data is on a completely

different level than before but also, we have different type of data including factors such as format, structure,

and sources. This has definitely changed the tools we need to handle Big Data, giving rise to NoSQL systems.

While NoSQL systems have proven their efficiency to handle Big Data, it’s still an unsolved problem how

the extraction of a NoSQL database model could be done. This paper proposes an automatic approach for

extracting a physical model starting from a document-oriented NoSQL database, including links between

different collections. In order to demonstrate the practical applicability of our work, we have realized it in a

tool using the Eclipse Modeling Framework environment.

1 INTRODUCTION

Big data have received a great deal of attention in

recent years. Not only the amount of data is on a

completely different level than before but also, we

have different type of data including factors such as

format, structure, and sources. In addition, the speed

at which these data must be collected and analyzed is

increasing (Chen, 2014). This has definitely impacted

the tools required to store Big Data, and new kinds of

data management tools i.e. NoSQL systems have

arisen (Han, 2014). Compared to existing systems,

NoSQL systems are commonly accepted to support

larger volume of data, provide faster data access,

better scalability and higher flexibility (Angadi,

2013).

One of the NoSQL key features is that databases

can be schema-less. This means, in a table,

meanwhile the row is inserted, the attributes names

and types are specified. Unlike relational systems -

where first, the user defines the schema and creates

the tables, second, he inserts data -, the schema-less

property offers undeniable flexibility that facilitates

the physical schema evolution. End-users are able to

add information without the need of database

administrator. For instance, in the medical program

that follows-up patients suffering from a chronic

pathology – case of study detailed in Section 2 – one

of the benefits of using NoSQL databases is that the

evolution of the data (and schema) is fluent. In order

to follow the evolution of the pathology, information

is entered regularly for a cohort of patients. But the

situation of a patient can evolve rapidly which needs

the recording of new information. Thus, few months

later, each patient will have his own information, and

that’s how data will evolve over time. Therefore, the

data model (i) differs from one patient to another and

(ii) evolves in unpredictable way over time. We

should highlight that this flexibility concerns the

physical level i.e. the stored database exclusively.

The importance and the necessity of the database

model are widely recognized. There is still a need for

this model to know how data is structured and related

in the database; this is particularly necessary to write

declarative queries where tables and columns names

are specified.

On the one hand, NoSQL systems have proven

their efficiency to handle Big Data. On the other

hand, the needs of a the NoSQL database physical

model remain up-to-date. Therefore, we are

convinced that it’s important to provide a precise and

automatic approach that guides and facilitates the

Database model extraction task within NoSQL

systems. This approach will assist the user to express

his queries.

For this, we propose the "ToNoSQLModel"

MDA-based approach. The Model Driven

Architecture (MDA) is well-known as a framework

Brahim, A., Ferhat, R. and Zurfluh, G.
Model Driven Extraction of NoSQL Databases Schema: Case of MongoDB.
DOI: 10.5220/0008176201450154
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 145-154
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

145

for models automatic transformations. Our approach

starts from a document-oriented NoSQL database

and extracts automatically its physical model. As

discussed in the related work, few solutions have

dealt with the NoSQL database model extraction. To

the best of our knowledge, none of the existing

contribution has treated the links between

collections.

The remainder of the paper is structured as

follows. Section 2 motivates our work using a case of

study in the healthcare field. Section 3 introduces our

NoSQL database model extraction process. Section 4

reviews previous work. Section 5 details our

experiments as well as the validation of our process.

Finally, Section 6 concludes the paper and announces

future work.

2 ILLUSTRATIVE EXAMPLE

To motivate and illustrate our work, we relied on a

case study in the healthcare field that we have used

in previous work (Abdelhedi, 2017). This case study

concerns international scientific programs for

monitoring patients suffering from serious diseases.

The main goal of this program is (1) to collect data

about diseases development over time, (2) to study

interactions between different diseases and (3) to

evaluate the short and medium-term effects of their

treatments. The medical program can last up to 3

years. Data collected from establishments involved in

this kind of program have the features of Big Data

(the 3 V): Volume: the amount of data collected from

all the establishments in three years can reach several

terabytes. Variety: data created while monitoring

patients come in different types; it could be (1)

structured as the patient’s vital signs (respiratory rate,

blood pressure, etc.), (2) semi-structured document

such as the package leaflets of medicinal products,

(3) unstructured such as consultation summaries,

paper prescriptions and radiology reports. Velocity:

some data are produced in continuous way by

sensors; it needs a [near] real time process because it

could be integrated into a time-sensitive processes

(for example, some measurements, like temperature,

require an emergency medical treatment if they cross

a given threshold).

This is a typical example in which the use of a

NoSQL system is suitable. On the one hand, in the

medical application, briefly presented above, the

database contains structured data, data of various

types and formats (explanatory texts, medical

records, x-rays, etc.), and big tables (records of

variables produced by sensors). On the other hand,

NoSQL data stores are ideally suited for this kind of

applications that use large amounts of disparate data.

Therefore, we are convinced that a NoSQL DBMS,

like MongoDB, is the most adapted system to store

the medical database.

As mentioned before, this kind of systems operate

on schema-less data model. Nevertheless, there is

still a need for the database model in order to know

how data is structured and related in the database and

then to express queries. Regarding the medical

application, doctors enter measures regularly for a

cohort of patients. They can also record new data in

cases where the patient's state of health evolve over

time. Few months later, they will analyze the entered

data in order to follow the evolution of the pathology.

For this, they need the database model to express

their queries.

In our view, it’s important to have a precise and

automatic solution that guides and facilitates the

database model extraction task within NoSQL

systems. For this, we propose the ToNoSQLModel

process presented in the next section that extracts the

physical model of a database stored in MongoDB.

This model is expressed using the JSON format.

3 ToNoSQLModel PROCESS

This article focuses on extracting the model from a

NoSQL database with the "schema less" property.

We limit ourselves to the document-oriented type

which is the most complete in terms of expression of

links (use of references and nesting). For this, we

propose the ToNoSQLModel process which

automatically extracts the model from a document-

oriented NoSQL database.

The ToNoSQLModel process is based on OMG's

Model Driven Architecture (Hutchinson, 2011). We

recall below the outlines of this model transformation

approach. MDA is a formal framework for

formalizing and automating model transformations.

The purpose of this architecture is to describe

separately the functional specifications and

implementation specifications of an application on a

given platform. For this, MDA uses three models

representing the abstraction levels of the application.

These are (1) the Computational Independent Model

(CIM) describing the services that the application

must provide to meet the needs of users, (2) the

analysis and design model (PIM for Platform

Independent Model) which defines the structure and

the behavior of the system without indicating the

execution platform and (3) the model of code (PSM

for Platform Specific Model) which is the projection

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

146

of a PIM on a particular technical platform. Since the

input of our process corresponds to a NoSQL

database and its output is a physical model, we retain

only the PSM level.

The extraction of the model from a NoSQL

database is done via a sequence of transformations.

We will formalize these transformations using the

QVT standard (Query View Transformation) defined

by the OMG (§ Experiments). Figure 1 shows an

overview of our process.

In the following sections, we detail the

components of ToNoSQLModel by specifying the

inputs / outputs as well as the transformation rules.

3.1 Input

In the following sections, we detail the components

of ToNoSQLModel by specifying the inputs / outputs

as well as the transformation rules.

A document-oriented NoSQL database (DB) is

defined as a pair (N, CLL), where:

- N is the DB name,

- CLL = {𝑐𝑙𝑙1, … , 𝑐𝑙𝑙𝑛} is a set of collections

∀ i ∈ [1..n], 𝑐𝑙𝑙𝑖 ∈ DB. CLL is a pair (N, 𝐹𝐿𝐼𝑁),

where:

 - 𝑐𝑙𝑙𝑖 .N the collection name,

 - 𝑐𝑙𝑙𝑖 . 𝐹𝐿𝐼𝑁 = AFLIN ∪ CFLIN, is a set of

input fields of 𝑐𝑙𝑙𝑖 , where:

 - AFLIN = {𝑎𝑓𝑙1
𝐼𝑁 , … , 𝑎𝑓𝑙𝑘

𝐼𝑁} is a set of

atomic fields, where:

∀ i ∈ [1..k], 𝑎𝑓𝑙i
𝐼𝑁 ∈ AFLIN is defined as a pair

(N, V), where:

 - 𝑎𝑓𝑙i
𝐼𝑁.N is the name of 𝑎𝑓𝑙i

𝐼𝑁,

 - 𝑎𝑓𝑙i
𝐼𝑁.V is the value of 𝑎𝑓𝑙i

𝐼𝑁,

 - CFLIN = {𝑐𝑓𝑙1
𝐼𝑁 , … , 𝑐𝑓𝑙𝑙

𝐼𝑁} is a set of

complex fields, where:

∀ i ∈ [1..l], 𝑐𝑓𝑙𝑖
𝐼𝑁 ∈ CFLIN is defined as a pair (N,

𝐹𝐿𝐼𝑁′), where:

 - 𝑐𝑓𝑙𝑖
𝐼𝑁.N is the name of 𝑐𝑓𝑙𝑖

𝐼𝑁 ,

 - 𝑐𝑓𝑙𝑖
𝐼𝑁 . 𝐹𝐿𝐼𝑁′ ∈ 𝐹𝐿𝐼𝑁 is the set of

fields that 𝑐𝑓𝑙𝑖
𝐼𝑁contains.

Figure 1: Overview of ToNoSQLModel process.

To express a link between the collections, we used a

field called: reference field, denoted by 𝑐ℎ𝑟𝑒𝑓

(Mongo, 2019). This one is a special case of a

complex field. 𝑐ℎ𝑟𝑒𝑓 is composed of two atomic

fields 𝑐ℎ1
𝑟𝑒𝑓

 and 𝑐ℎ2
𝑟𝑒𝑓

, each of them is defined as a

pair (N, V), where:

- 𝑐ℎ1
𝑟𝑒𝑓

.N = $id

- 𝑐ℎ1
𝑟𝑒𝑓

.V : corresponds to the identifier of the

referenced document

And,

- 𝑐ℎ2
𝑟𝑒𝑓

.N = $ref

- 𝑐ℎ2
𝑟𝑒𝑓

.V : is the name of the collection that

contains the referenced document.

We present these different concepts through the

meta-model of Figure 2. Note that all the meta-

models presented in this article are formalized with

the standard Ecore language (EMF, 2018).

3.2 Output

The NoSQL model noted M generated by our process,

is stored in a collection 𝑐𝑙𝑙𝑀𝑜𝑑𝑒𝑙 . This is defined as a

pair (N, D), where:

- 𝑐𝑙𝑙𝑀𝑜𝑑𝑒𝑙. N is the model name,

- 𝑐𝑙𝑙𝑀𝑜𝑑𝑒𝑙. D = {𝑑1, … , 𝑑𝑛} is a set of documents

that 𝑐𝑙𝑙𝑀𝑜𝑑𝑒𝑙 contains.

∀ i ∈ [1..n], 𝑑𝑖 is defined as a pair (Id, 𝐹𝐿𝑂𝑈𝑇),

where

 - 𝑑𝑖 . Id is the identifier of 𝑑𝑖,

 - 𝑑𝑖 . 𝐹𝐿𝑂𝑈𝑇 = {𝐴𝐹𝐿𝑂𝑈𝑇 , … , 𝐶𝐹𝐿𝑂𝑈𝑇 } is a set

of imput fields of 𝑑𝑖, where :

 - AFLOUT = {𝑎𝑓𝑙1
𝑂𝑈𝑇 , … , 𝑎𝑓𝑙𝑘

𝑂𝑈𝑇} is a set

of atomic fields of 𝑑𝑖, where:

∀ i ∈ [1..k], 𝑎𝑓𝑙i
𝑂𝑈𝑇 ∈ AFLOUT is defined as a pair

(N, Ty), where:

 - 𝑎𝑓𝑙i
𝑂𝑈𝑇 .N is the name of 𝑎𝑓𝑙i

𝑂𝑈𝑇 ,

 - 𝑎𝑓𝑙i
𝑂𝑈𝑇 .Ty is the type of 𝑎𝑓𝑙i

𝑂𝑈𝑇 .

Note that the type of 𝑎𝑓𝑙i
𝑂𝑈𝑇 can be either

predefined (for example: String, Boolean, Integer, ...)

or defined by the user (for example: Patient, Doctors,

...).

 - CFLOUT = {𝑐𝑓𝑙1
𝑂𝑈𝑇 , … , 𝑐𝑓𝑙𝑙

𝑂𝑈𝑇} is a set

of complex fields of 𝑑𝑖, where:

∀ i ∈ [1..l], 𝑐𝑓𝑙𝑖
𝑂𝑈𝑇 ∈ CFLOUT is defined as a pair

(N, 𝐹𝐿𝑂𝑈𝑇 ′), where:

 - 𝑐𝑓𝑙𝑖
𝑂𝑈𝑇 .N is the name of 𝑐𝑓𝑙𝑖

𝑂𝑈𝑇 ,
 - 𝑐𝑓𝑙𝑖

𝑂𝑈𝑇 . 𝐹𝐿𝑂𝑈𝑇 ′ ∈ 𝐹𝐿𝑂𝑈𝑇 is the set

of fields that 𝑐𝑓𝑙𝑖
𝑂𝑈𝑇contains.

Model Driven Extraction of NoSQL Databases Schema: Case of MongoDB

147

Figure 2: Input metamodel.

Figure 3: Output metamodel.

3.3 Transformation Rules

We have formalized the concepts present in the

source (document-oriented database) and in the target

(NoSQL physical model). In this section, we present

our process as a sequence of transformation rules

described below.

R1: The DB model is stored in a collection 𝑐𝑙𝑙𝑚𝑜𝑑𝑒𝑙.
This is defined as a pair (N,D), where:

- 𝑐𝑙𝑙𝑚𝑜𝑑𝑒𝑙 .N= DB.N,

- 𝑐𝑙𝑙𝑚𝑜𝑑𝑒𝑙 .D is generated by applying R2.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

148

R2: For each collection 𝑐𝑙𝑙𝑖 ∈ DB. CLL with i ∈
[1..n], we create a document 𝑑𝑖, where:

- 𝑑𝑖 .N = 𝑐𝑙𝑙𝑖 . 𝑁

- 𝑑𝑖 . 𝐹𝐿𝑂𝑈𝑇 is generated by applying R3 or R4.

Note that 𝑑𝑖 contains a unified template for all
documents that 𝑐𝑙𝑙𝑖 contains. This means that our
process generates a unique collection model grouping
all the fields of the documents. We therefore do not
consider several versions of models for the same input
collection.
R3: Each atomic field 𝑎𝑓𝑙j

𝐼𝑁 ∈ 𝑐𝑙𝑙𝑖 . AFLIN is
transformed into a field 𝑎𝑓𝑙j

𝑂𝑈𝑇 with i ∈ [1..n] and j ∈
[1..k], where:

- 𝑎𝑓𝑙j
𝑂𝑈𝑇 . 𝑁 = 𝑎𝑓𝑙j

𝐼𝑁.N

- 𝑎𝑓𝑙j
𝑂𝑈𝑇 . 𝑇𝑦 is generated according to the form of

the value of 𝑎𝑓𝑙j
𝐼𝑁.

For example, if 𝑎𝑓𝑙j
𝐼𝑁 . 𝑉 = " ", then 𝑎𝑓𝑙j

𝑂𝑈𝑇 . 𝑇𝑦 =
String. And, If 𝑎𝑓𝑙j

𝐼𝑁 . 𝑉 = {" "," ", … " "}, then
𝑎𝑓𝑙j

𝑂𝑈𝑇 . 𝑇𝑦 = Set (String).

R4: Each complex field 𝑐𝑓𝑙j
𝐼𝑁 ∈ 𝑐𝑙𝑙𝑖 . CFLIN is

transformed into a field 𝑐𝑓𝑙j
𝑂𝑈𝑇 with i ∈ [1..n] and j ∈

[1..l], where:

- 𝑐𝑓𝑙j
𝑂𝑈𝑇 . 𝑁 = 𝑐𝑓𝑙j

𝐼𝑁.N

- 𝑐𝑓𝑙j
𝑂𝑈𝑇 . 𝐹𝐿𝑂𝑈𝑇 ′ is generated as follows:

 - Apply R3 for each atomic field 𝑎𝑓𝑙𝐼𝑁 ∈
𝑐𝑓𝑙j

𝐼𝑁 . 𝐴𝐹𝐿𝐼𝑁′.

 - Apply the R4 for each complex field 𝑐𝑓𝑙𝐼𝑁 ∈
𝑐𝑓𝑙j

𝐼𝑁 . 𝐶𝐹𝐿𝐼𝑁′

R5: A reference field 𝑐ℎ𝑟𝑒𝑓 is transformed into a
complex field 𝑐𝑓𝑙j

𝑂𝑈𝑇 with j ∈ [1..2], where :

- 𝑐𝑓𝑙1
𝑂𝑈𝑇 . N = 𝑐ℎ1

𝑟𝑒𝑓
.N

- 𝑐𝑓𝑙1
𝑂𝑈𝑇 . Ty = ObjectID

- 𝑐𝑓𝑙2
𝑂𝑈𝑇 . N = 𝑐ℎ2

𝑟𝑒𝑓
.N

- 𝑐𝑓𝑙2
𝑂𝑈𝑇 . Ty = 𝑐ℎ2

𝑟𝑒𝑓
.V

4 RELATED WORK

Several research works have been proposed to extract

a NoSQL databases model, mainly for document-

oriented databases such as MongoDB. In (Klettke,

2015), the authors present a process to extract a model

from a collection of JSON documents stored on

MongoDB. The model returned by this process is in

JSON format; it is obtained by capturing the names of

the attributes that appear in the input documents and

replacing their values with their types. Attribute

values can be atomic, lists, or nested documents.

Authors in (Sevilla, 2015) propose a model

extraction process from a document-oriented NoSQL

database that can include several collections. The

returned result is not a unified model for the whole

database but it is a set of model versions. These

versions are stored in JSON format.

More specific to document-oriented databases, we

can mention (Gallinucci, 2018) where authors

describe a process called BSP (Build Schema Profile)

to classify the documents of a collection by applying

a set of rules that correspond to the user requirements.

These rules are expressed through a decision tree

where nodes represent the attributes of the documents

and edges specify the conditions on which the

classification is based. These conditions reflect either

the absence or the presence of an attribute in a

document or its value. As in the previous article

(Sevilla, 2015), the result returned by this approach is

not a unified model but a set of model versions; each

of them is common to a group of documents.

We can also mention (Maity, 2018) that describes

a mapping from a document-oriented NoSQL

database to a relational model. The process groups

together all documents that have the same fields

name. For each class of documents, it generates a

table that have as columns the fields names and as

rows the fields values.

Another study (Baazizi, 2017) have proposed a

model extraction process from a collection of JSON

documents. This process is based on the use of

MapReduce. The Map step consists of extracting the

schema of each document in the collection by

mapping each couple (field, value) into another

couple (field, type). The Reduce step consists of

unifying all the schemas produced in the Map step in

order to provide an overall schema for the input

collection. The same authors have proposed in

another paper (Baazizi, 2019) an extension of the

process prposed in (Baazizi, 2017) in order to take

into account the parameterization of the extraction at

the Reduce step. Thus, the user can choose either to

unify all the schemas of the collection, or to unify

only the schemas having the same fields (same names

and types).

On the other hand, (Comyn-Wattiau, 2017)

proposes a process for extracting a model from object

insertion queries and relations in a graph-oriented

databases. The proposed process is based on an MDA

architecture and applies two treatments. The first one

build a graph (Nodes + Edges) starting from Neo4j

queries. The second one consists of extracting an

Entity / Association model from the graph returned

by the first treatment.

In Table 1, we summarize the previous works

using three criteria: the database content (one or

several classes), the considered NoSQL system type

Model Driven Extraction of NoSQL Databases Schema: Case of MongoDB

149

(document or graph) and the way used to implement

links (references, nested data or edges).

Table 1: Comparative table of previous works.

Regarding the state of the art, the solutions

proposed in (Gallinucci, 2018), (Klettke, 2015),

(Maity, 2018), (Baazizi, 2017) and (Baazizi, 2019)

start from a single collection of documents and take

into account only the links implemented using nested

data ; the links presented using references are not

considered. The process proposed in (Sevilla, 2015)

takes as input a set of collections ; however, only the

use of nested data to express links is considered. On

the other hand, authors in (Comyn-Wattiau, 2017)

have worked on graph-oriented systems. This kind of

NoSQL systems does not offer many solutions to

implement links as like document-oriented systems ;

it expresses explicitly links between data using edges.

To overcome these limits, we define an automatic

process to extract the database model within

documents-oriented NoSQL systems. This process

takes into account the links between collections.

5 EXPERIMENTS AND

VALIDATION

5.1 Experiments

We have formalized this mapping using the QVT

(Query / View / Transformation) language, which is

the OMG standard for models transformation. We

carry out the experimental assessment using a model

transformation environment called Eclipse Modeling

Framework (EMF). It’s a set of plugins which can be

used to create a model and to generate other output

based on this model. Among the tools provided by

EMF we use:

(1) Ecore: the metamodeling language that we used to

create our metamodels,

(2) XML Metadata Interchange (XMI): the XML

based standard that we use to create models,

(3) Query / View / Transformation (QVT): the OMG

language for specifying model transformations.

ToNoSQLModel transformation is expressed as a

sequence of elementary steps that builds the resulting

model step by step from the source (NoSQL

database):

Step 1: we create Ecore metamodels corresponding to

the source (Figure 2) and the target (Figure 3).

Step 2: we build an instance of the source metamodel.

For this, we use the standard-based XML Metadata

Interchange (XMI) format (Figure 4).

Step 3: we implement the mapping by means of the

QVT plugin provided within EMF. An excerpt from

the QVT script is shown in Figure 5.

Step 4: we test the transformation by running the

QVT script created in step 3. This script takes as input

the source database builded in step 2 and returns as

output the NoSQL physical model. The result is

provided in the form of XMI file as shown in Figure

6.

5.2 Validation

5.2.1 Experimental Environment

Our problem is to extract the model of a database

managed by a NoSQL system. Such a feature is

intended for users who do not know the data structure

(developer who has not created the database, decision

makers, etc.); its major interest is to allow the

expression of queries as can be done in relational

systems.

The experiments of our proposal were carried out

on a cluster composed of 3 machines. Each machine

has the following specifications: Intel Core i5, 8 GB

of RAM and 2 TB of disk. One of these machines is

configured to act as a master; the other two machines

have slave status.

To implement our solution, we used the tools

JSON Generator (JSON Generator 2018) and

Generate Test Data data generation tools (Generate

Test Data 2018). We produced a 3TB dataset in the

form of JSON files. These files were loaded into

MongoDB using shell commands.

5.2.2 Query Set

For our experiment, we have considered four kinds of

queries: (1) those using one collection (example :

select the patients whose age is between 10 and 70),

(2) queries that use two related collections with the

link is expressed using a monovalued reference field

(example: we want the name of doctor who has

performed the consultation number 41), (3) queries

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

150

that use two related collections with the link is

expressed using a multivalued reference field

(example: select the antecedents of patient

”DUPONT David”), (4) queries that use two related

collections with the link is expressed using nested

data.

Table 2 shows the comparison results between our

solution and those proposed in (Klettke, 2015),

(Sevilla, 2015), (Gallinucci, 2018), (Maity, 2018),

(Baazizi, 2017) and (Baazizi, 2019) regarding the

expression of queries. Note, however, that we only

consider works that deal with document-oriented

NoSQL databases. Thus, we have excluded the work

of (Comyn-Wattiau, 2017) which uses a graph-

oriented database. For each query we have considered

to perform this comparison, we indicate if it can be

formulated using the model obtained by each solution

proposed in the mentioned works.

Table 2: Comparison results between our solution and state

of the art.

Table 2 shows that the absence of taking into
account the links between collections in the
referenced works (Klettke, 2015), (Sevilla, 2015),
(Gallinucci, 2018), (Maity, 2018), (Baazizi, 2017)
and (Baazizi, 2019), does not make it possible to write
complex queries. Considering for example the
following query that applies a join between the
Patients collection and the Doctors collection:

db.Patients.aggregate (
[
{$ lookup: {from: "Doctors", localField:

"Treating-Doctors._id", foreignField: "_id", as:
"Doctors"}}

])
We can see that we can not write this query if we

do not visualize the link between Patients and
Doctors.

For better readability, we give the equivalent of

Figure 6 in the form of a class diagram as shown in

Figure 7. This is a graphical description of the data

structures stored in the MongoDB system that we

used in our experimentation. Note that as MongoDB

is a schema less system, it does not provide this

model, either in textual form or in graphical form.

Figure 7: Excerpt from the physical model of data.

6 CONCLUSION AND

PERSPECTIVES

Our work is part of the evolution of databases

towards Big Data. They are currently focused on the

extraction mechanisms of the model of a NoSQL

database "schema less" to allow the expression of

queries by end-users.

In this article, we have proposed an automatic

process that builds the physical model of a NoSQL

database as it is used. This process is based on the

Model Driven Architecture (MDA) architecture that

provides a formal framework for automating model

transformations. Our process generates a NoSQL

physical model from a document-oriented NoSQL

database by applying a sequence of transformations

formalized with the QVT standard. The returned

model describes the structure of the collections that

make up the database as well as the links between

them. We have experimented our process on the case

of a medical application that deals with scientific

programs for the follow-up of pathologies; the

database is stored on the MongoDB system.

Regarding future work, we aim to enrich our

process so that it can take into consideration the

diversity of particular cases related to the data

entered. In fact, when feeding the database, users can

enter incorrect data: misspelled field names, values

associated with the same field of different types, etc.

The current version of our process is based on

consistent strategies, but the result may not be entirely

satisfactory to users.

Model Driven Extraction of NoSQL Databases Schema: Case of MongoDB

151

Figure 4: Document-oriented NoSQL database model.

Multivalued

field

Complex field

Reference field

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

152

Figure 5: QVT script.

Figure 6: NoSQL Physical model.

modeltype NoSQL_DB uses "http://nosqldatabaseMM.com";

modeltype NoSQL_Schema uses "http://nosqlschemaMM.com";

transformation NoSQLdb2NoSQLschema(in Source: NoSQL_DB, out Target: NoSQL_Schema);

main() {

Source.rootObjects()[NoSQL_DB] -> map toNoSQL_Schema();}

mapping NoSQL_DB ::NoSQL_DB::toNoSQL_Schema():NoSQLSchema::NoSQL_Schema{

sName:=self.dbName;

collection:=self.collections -> map toCollection();}

-- Transforming Collections

mapping Insert ::Collections::toCollection():Update::Collection{

cName:=self.cName;

atomicufield:=self.atomicifield -> map toAtomicField();

structuredufield:=self.structuredifield -> map toStructuredField();}

-- Transforming Atomic Fields

mapping Insert ::AtomicIField::toAtomicField():Update::AtomicUField{

fielduname:=self.fieldiname -> map toFieldName();

fielduvalue:=self.fieldivalueform -> map toFieldValue1();

fielduvalue:=self.fieldivalue -> map toFieldValue2();}

mapping Insert ::FieldIName::toFieldName():Update::FieldUName{NameU:=self.NameI;}

mapping Insert::FieldIValue::toFieldValue1():Update::FieldUValue{

if ((self.FieldIValue = "True") or (self.FieldIValue = "False")) {FieldUValue:= "Boolean";}

FieldUValue:= "Number"; endif;}

mapping Insert::FieldIValueForm::toFieldValue2():Update::FieldUValue{

if (self.FieldIValueForm = "") {FieldUValue:= "String";} endif;

if (self.FieldIValueForm = --/--/--/) {FieldUValue:= "Date";}endif;}

-- Transforming Structured Fields

 mapping Insert ::StructuredIField::toStructuredField():Update::StructuredUField{

Multivalued link
Monovalued link

Monovalued link

Model Driven Extraction of NoSQL Databases Schema: Case of MongoDB

153

REFERENCES

Abdelhedi, F., Brahim, A. A., Atigui, F., & Zurfluh, G.

(2017, August). MDA-Based Approach for NoSQL

Databases Modelling. In International Conference on

Big Data Analytics and Knowledge Discovery (pp. 88-

102). Springer, Cham.

Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013). Growth

of New Databases & Analysis of NOSQL Datastores.

International Journal of Advanced Research in

Computer Science and Software Engineering, 3, 1307-

1319.

Baazizi, M. A., Lahmar, H. B., Colazzo, D., Ghelli, G., &

Sartiani, C. (2017, March). Schema inference for

massive JSON datasets. In Extending Database

Technology (EDBT).

Baazizi, M. A., Colazzo, D., Ghelli, G., & Sartiani, C.

(2019). Parametric schema inference for massive JSON

datasets. The VLDB Journal, 1-25.

Bondiombouy, C. (2015). Query processing in cloud

multistore systems. In BDA : Bases de Données

Avancées.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., &

Merks, E. (2004). Eclipse modeling framework: a

developer's guide. Addison-Wesley Professional.

Chen, CL Philip et Zhang, Chun-Yang. Data-intensive

applications, challenges, techniques and technologies:

A survey on Big Data. Information Sciences, 2014, vol.

275, p. 314-347.

Comyn-Wattiau, I., & Akoka, J. (2017, December). Model

driven reverse engineering of NoSQL property graph

databases: The case of Neo4j. In 2017 IEEE

International Conference on Big Data (Big Data) (pp.

453-458). IEEE.

Douglas, L., 2001. 3d data management: Controlling data

volume, velocity and variety. Gartner. Retrieved, 6,

2001.

EMF. https://www.eclipse.org/modeling/emf/. Online; 5

July 2018.

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2018). Schema

profiling of document-oriented databases. Information

Systems, 75, 13-25.

Generate Test Data (2018) http://www.convertcsv.com/

generate-test-data.htm Online; 5 July 2018.

Han, Jing, Haihong, E., LE, Guan, et al. Survey on NoSQL

database. Pervasive computing and applications

(ICPCA), 2011 6th international conference on. IEEE,

2011. p. 363-366.

Harrison, G. (2015). Next Generation Databases :

NoSQLand Big Data. Apress.

Hutchinson, J., Rouncefield, M., & Whittle, J. (2011, May).

Model-driven engineering practices in industry. In

Proceedings of the 33rd International Conference on

Software Engineering (pp. 633-642). ACM.

JSON Generator (2018) http://www.json-generator.com/.

Online; 5 July 2018.

Klettke, M., U. Störl, et S. Scherzinger (2015). Schema

extraction and structural outlier detection for json-

based nosql data stores. Datenbanksysteme für

Business, Technologie und Web (BTW 2015).

Maity, B., Acharya, A., Goto, T., & Sen, S. (2018, June). A

Framework to Convert NoSQL to Relational Model.

In Proceedings of the 6th ACM/ACIS International

Conference on Applied Computing and Information

Technology (pp. 1-6). ACM.

MongoDB, The database for modern applications (2019)

https://www.mongodb.com/fr Online; 5 July 2019.

Sevilla, Diego Ruiz, Severino Feliciano Morales, and Jesús

García Molina. "Inferring versioned schemas from

NoSQL databases and its applications." International

Conference on Conceptual Modeling. Springer, Cham,

2015.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

154

