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Abstract: This paper presents a solution for geometric manipulation in procedural modeling as an Application 
Programming Interface (API). This approach intends to enable a more powerful control over the geometric 
entities by performing selections based on their attributes, similar to picking features in graphical interfaces. 
This is achieved through the definition of a topological structure, which features a set of properties, such as 
scope, spatial localization and semantic information. The applicable modeling operations allow a more 
customized control, as well as successive tracking, which induce a greater, faster and more intuitive 
approach for geometry generation. This approach still constitutes ongoing work, but has already been 
successfully applied for the generation of large virtual urban environments. 

1 INTRODUCTION 

An API - Application Programming Interface – 
provides an abstraction to a problem, specifying how 
to interact with the software components that 
implement that same problem. These are typically 
distributed through software code libraries, allowing 
its use by multiple applications. In short, APIs, 
define reusable code blocks that allow certain 
feature sets to be incorporated into final applications 
(Reddy, 2011). 

In the area of geometric modeling, many APIs 
have already been conceived and are currently 
employed in some of the most popular 
tridimensional authoring tools, such as AutoCAD or 
Solid Works, used in various areas of engineering, 
architecture and media production, among others. 
Using visual interfaces for interaction, users are able 
to perceive the whole extent of their work while, at 
the same time, being able to navigate deep into the 
details of the created geometries for custom 
manipulation. When an operation is meant to be 
applied to a specific group of geometric elements 
(vertex, edge, face…), the user just needs to select 
them with its pointing device (an action commonly 
known as “picking”). While this sort of interaction is 
ideal and possible for individual and manual creation 
of tridimensional models, it is not compatible with 
the procedural paradigm of content generation. 

The use of procedural methods for generating 
three-dimensional content is becoming more 
frequent and has been delivering very interesting 
results at a lesser effort cost, by generating three-
dimensional models with much less human 
interaction. 

Procedural methods require that the user, 
capturing the knowledge about the modeling 
process, introduces some guidelines and rules. It is 
also possible to start from existing shapes or general 
information from existing data sources. In this sense, 
some methods have already been conceived, but as 
far as control is concerned, procedural ways still 
lack powerful picking and manipulation facilities to 
apply geometric operations. This motivates the 
development of more advanced methodologies for 
such control. 

The paper presents the PGCAD API, a solution 
for geometric manipulation in procedural modeling 
tools. It enables a more powerful control over 
geometric entities based on their properties and 
sequential application of modeling operations, 
therefore allowing a greater, faster and more 
intuitive approach for geometry generation. 

This paper is structured as follows: first, some 
related work will be presented, followed by the 
description of PGCAD API, where its architecture 
and features will be detailed, but not without 
explaining some important concepts first. Some 
information regarding the implementation will come 
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next, followed by the results section, which includes 
its discussion. Lastly, the conclusions and some 
future work will be described. 

2 RELATED WORK 

This subject fits into the area of Geometry Modeling 
Kernels on the one hand, as well as Procedural 
Modeling on the other hand, and both already 
possess an average number of interesting solutions 
by various researchers and companies. 

The 3D ACIS Modeler (Spatial Corporation, 
2011) is a commercial modeling component 
developed by Spatial Corporation. Among other 
features, the creators highlight their advanced 
surface and solid modeling capabilities, as well as 
their simple, flexible and interactive interface. 

Parasolid is a commercially licensed geometric 
modeling kernel now proprietary of Siemens PLM 
Software (Siemens PLM Software, 2010). It 
advertises many surface manipulation tools, Boolean 
operators, extrusion, embossing, patterning, lofting, 
sweeping, thickening, hollowing and many other 
modeling operations. 

Open Cascade (OPEN CASCADE S.A.S., 2011) 
is a powerful CAD component developed by Open 
CASCADE S.A.S., and consists in free open source 
C++ libraries. Among other features, their 
topological structure is stressed, along with the 
various modeling operations, primitive instantiation 
and rendering capabilities.  

SMLib (Solid Modeling Solutions Inc., 2011) is 
another geometry modeling kernel, developed by 
Solid Modeling Solution Inc., based in NURBS 
curves and surfaces combined with a topological 
non-manifold structure. The company emphasizes 
the choice over a Boundary representation which 
induced the possibility to model any tridimensional 
model, and with high efficiency.  

IRIT (Elber, 2009) is a solid geometry modeling 
environment that allows 3D modeling based on 
primitives and Boolean operations to connect them 
(CSG – Constructive Solid Geometry). Its original 
creator, Gershon Elber, stresses also its simultaneous 
potential for freeform curve and surface 
manipulation tools.  

Although the mentioned list of tools is not, by 
any means, extensive, it contains an overview on the 
most popular geometry modeling tools, enumerating 
some of the its most interesting and powerful 
features any modeler should possess. However, as 
said, the paradigm is not procedurally-oriented.  

On   the   other   hand, concerning   the   area   of 

procedural modeling, there is also a considerable 
amount of work.  

L-Systems (an acronym for Lindenmayer 
Systems) are amongst the most popular approach for 
procedural generation in computer graphics, having 
been initially employed, by Aristid Lindenmayer in 
the simulation of plant and organism growth 
(Prusinkiewicz & Lindenmayer, 1996). The behavior 
of the development sequence of an L-System can be 
parameterized and configured, allowing the control 
over the modeling processes. Parish and Müller 
employed the same methodology to generate 
extensive street networks (Parish & Müller, 2001). 
Geospatial L-Systems (Coelho, Bessa, Sousa, & 
Ferreira, 2007) are an extension of parametric L-
Systems which incorporates spatial awareness. This 
approach combines the ability of data amplification 
provided by the L-Systems with the geospatial 
awareness of geospatial systems. 

Wonka et al. introduced the split grammars 
(Wonka, Wimmer, Sillion, & Ribarsky, 2003), a 
new type of parametric set grammar based on the 
concept of shape brought up by Stiny and Gips 
(Stiny, 1980; Stiny & Gips, 1972), also with 
applications in the field of modeling architectural 
buildings. He also presented an attribute matching 
system oriented by a control grammar, offering the 
flexibility required to model buildings with many 
different styles and designs. Based on this work, 
Müller et al. developed the CGA Shape (Müller, 
Wonka, Haegler, Ulmer, & Gool, 2006), a shape 
grammar capable of producing extensive 
architectural models with high detail. The CGA 
Shape is a sequential grammar (such as the 
Chomsky Grammar (Chomsky, 1956)), therefore all 
the production rules are applied in sequence, in order 
to allow the characterization of the structure. The 
implementation of the CGA Shape is integrated in 
the CityEngine framework (Procedural Inc., 2009). 
Considering that text-based shape definitions were 
impractical to use by most artists, Lipp presented in 
(Lipp, Wonka, & Wimmer, 2008) a visual editing 
system which introduced traditional modeling 
techniques, allowing a more intuitive and powerful 
control over each grammar aspect. 

3 THE PGCAD API 

PGCAD is a geometric modeling kernel oriented for 
procedural modeling. Its name stands for Procedural 
Generation Computer-Aided Design and aims at 
providing a more powerful control over the 
development of procedural modeling processes, by 
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allowing actions and operations to be executed based 
on each element properties and previously applied 
operations. This is only possible due to the object-
oriented nature of all PGCAD-involved elements.  

Before the overall features can be explained, it is 
necessary for some architecture basics to be 
presented. 

3.1 Topology 

PGCAD topological structure is based on a polygon 
mesh representation, having been inspired by Open 
CASCADE (OPEN CASCADE S.A.S., 2011) and 
OGC’s Simple Features (Open Geospatial 
Consortium Inc., 2006) specification. The conceived 
modeling kernel has therefore the following basic 
geometric elements: 

Shape: The basic, not instantiable, abstract 
element, from which all the remaining ones inherit 
from, sharing therefore some common attributes. 

Vertex: A single point in 3D space owning, in its 
simplest form, a reference to its position. 

Edge: A line connecting two vertices. By 
definition, an edge does not possess an orientation. 

Wire: A set of connected and sequential edges, 
joined by common vertices. 

Face: A planar polygon, having its external 
boundary defined by a closed, non self-intersecting 
wire, and a set of internal holes, also defined as by 
wires with the same requirements. 

Shell: A set of faces connected by their edges or 
wires. 

Solid: A closed shell of planar faces, therefore a 
polyhedron. 

Compound: An element which groups sets of 
shapes, including other compounds. 

3.2 Shape Properties 

Besides the geometrical component, the concept of 
shape in PGCAD relies on four fundamental aspects: 
scoping, materials, spatial localization and 
semantics.  

The purpose of scope is to store information 
concerning the orientation and size of the shape, a 
concept similar to the one found in the CGA Shape 
(Müller, et al., 2006). In short, each shape has a 
reference for its coordinate system, in order to 
facilitate operations internal to the structure of the 
shape (for example, texture mapping). According to 
the type of shape, the scope format may vary, but is 
in most cases defined by a point of origin and 3 
sized axes, which can indicate also the dimension of 
a   line,   bounding    rectangle    or    bounding   box, 

depending on the type of shape (see Figure 1).  

 
Figure 1: Shape scoping in PGCAD, exemplified for faces 
(a) and solids (b). Note that on (a) the z-axis vector is not 
displayed, since it is of zero size. 

Spatial localization in PGCAD is essential in 
order to achieve spatial awareness features. This 
concept consists in allowing shapes to be aware of 
their surrounding elements, a fact that might be 
important when operating on the shape. Supposing 
that one’s goal is to connect a vertex with all its 
neighboring ones within a certain distance, such 
operation could use spatial awareness to avoid the 
need to indicate each one of the items to connect to. 

Another, not exactly related, property of shapes 
is its material. Each can possess certain lighting and 
rendering options, such as color, light reflectance 
(ambient, diffuse, specular), shininess, texture, etc., 
which can be afterwards be interpreted by the 
renderer to visualize the shapes. 

Finally, and perhaps the most important 
characteristic of shapes is the possibility to 
continuously store semantic information. Each shape 
has a container of “Labels”, each being able to hold 
a set of key-value pairs related to its meaning, 
location, applied operations or any other fact. 
Labeling can be done at any time, being especially 
useful to keep track of a model’s evolution process. 
In the end, by having additional semantics, the 
integration of the generated geometry with more 
interactive applications could be done more easily.  

3.3 Shape Properties 

The development of shapes can be done in two 
ways. One strategy is to manually create complex 
shapes by joining more basic shapes through their 
direct references. For instance, starting with a list of 
vertices: 

L1 = [Vertex(0,0,0), Vertex(0,5,0), Vertex(5,0,0)] (1)

One can transform it into a wire: 
W1 = Wire(L1) (2)

And afterwards into a face: 
F1 = Face(W1) (3)
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and so on, always using direct references to the 
shapes. In theory, it is possible to build very 
complex models using this approach. However, 
although this is essential for the first steps and 
usable as long as there are a reduced number of 
shapes, it is not effective when masses of shapes are 
considered. 

A second methodology, supported by PGCAD, is 
to use modeling operations, similar to what can be 
found in any geometry modeling API. PGCAD, 
however, features two major differences in how 
operations can be applied: 

1. Operations can be applied to entire sets of 
shapes, which follow a specific condition; 

2. Operations can be applied to entire sets of 
shapes, where the parameters can be based 
on each shape’s properties. 

Modeling operations are objects, which can be 
instanciated as such. This allows a greater set of 
parameters to be added, without the need to define 
multiple object constructors.  

To better explain the concept of operation, an 
example of face extrusion will be presented. 
Considering a list of shapes Ls1, an operation 
instance (which must be given a tag), receiving this 
list as shape data input. 

Extr1 = FaceExtrusion(“Extr1”, Ls1) (4)

This operation will only consider faces, ignoring 
any other types of shape that the list may contain. If 
additional filters are intended, they must be 
specified: 

Extr1.SetCondition(shape => ((Face)shape).area > 20 || 2 > 5 || 
myVariable == 15) 

(5)

The definition of conditions can be achieved 
through lambda expressions, which allow the 
condition to be based on each shape property, a 
simple Boolean expression or by using external 
variables (5). 

 So far no extrusion value has been defined. That 
constitutes another interesting feature of PGCAD. 
While the value can be the same for all the selected 
faces (6), it can also be defined base on each face’s 
properties (7): 

Extr1.SetValue(Vector(0,0,10))  (6)

Extr1. SetValue(shape => ((Face)shape).normal * 10)  (7)

Once the operations properties have been 
defined, the process may start. 

Ls2 = Extr1.Apply() (8)

The output is a list of shapes, which includes all 
shapes, including: 

 The non-face shapes; 
 The faces which did not match the 

conditions; 
 The original faces which were operated on; 
 The newly created faces. 

Out of this list it would be now useful to select 
them apart. This is possible due to the automatic 
labeling, where labels are applied to all generated 
elements according to a specific mapping, which is 
different according to the modeling operation. In 
case of face extrusion, where shells, faces, rings, 
edges and vertices are created, labeling occurs as 
demonstrated in Figure 2. 

 
Figure 2: Automatic labeling of a holed face, after being 
extruded. Due to the high number of shapes and labels, 
only a demo subset is shown. 

It is possible to query the list of shapes according 
to the applied labels. There is a common key-value 
combination that has been added to all the shapes 
that have been created in the process of face 
extrusion: “Operation” => “Extr1”, based on the 
indicated parameter at the beginning of the action 
(See (4)). Filtering such shapes can be done in the 
following way, also using lambda expressions: 

Ls3 = Ls2.Where(shape => shape.Labels.Exists( 
label => label[“Operation”] == “Extr1”)) (9)

However, it is important to understand what kind 
of shapes was actually added in the process of the 
modeling operation. In the case of face extrusion, a 
shell shape is added, which means that Ls3 contains 
now only the shells. They must now be unfolded to 
the intended type. 

Ls4 = CreateShapeList(Ls3, ShapeType.Edges) (10)

In (10) a list of edges was created, by unfolding 
the higher order shapes (shells into faces, faces into 
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rings, rings into edges), and discarding them. It is 
now possible to select, for instance, the vertical 
edges at the inner side of the model through the 
following statement (based on Figure 2): 

Ls5 = Ls4.Where(shape => shape.Labels.Exists( 
label => label[“Location”] == “Side” &&  

label[“RingNumber”] == 0)) 
(11)

4 IMPLEMENTATION 

PGCAD has been implemented in Microsoft’s .NET 
C# 4.0, whose managed, object-oriented nature 
facilitated its topological definition and integration. 
One of its most useful features, which made this API 
flexible query definition possible, is Microsoft-
specific extensible, general-purpose language LINQ 
(language-Integrated Query), as well as the 
possibility to use Lambda Expressions. Both these 
features influenced also PGCAD’s approach and 
syntax, due to their ease of use and effective 
application. 

In order to be able to visualize the produced 
results, the Microsoft XNA Framework (Microsoft 
Corporation, 2011), a popular game development 
framework, was used. An intermediate layer 
between PGCAD and XNA has been conceived, in 
order to integrate the geometric kernel’s topological 
elements to the rendering engine data structures.  

Such approach makes it directly possible for the 
API to be used in digital games. 

5 RESULTS AND DISCUSSION 

As a starting example to test PGCAD’s methodology 
and specification, an application focused on the 
popular research area of virtual urban area 
generation has been conceived (Coelho, et al., 2007; 
Müller, et al., 2006; Procedural Inc., 2009; Wonka, 
et al., 2003). 

By starting with some real-world GIS Data, the 
geometries were imported and converted using 
PGCAD’s import and conversion capabilities. The 
used information concerned building, block and road 
information, which had to be correctly integrated 
using PGCAD’s spatial localization abilities.  

At this point, PGCAD only supports a limited 
number of modeling operations, such as extrusion, 
texture mapping, geometric transformations, roof 
construction and material application. Still, they are 
enough to produce quality models, as it can be seen 
in Figure 3. 

 

 
Figure 3: Application of the PGCAD geometry kernel to 
the procedural modeling of the downtown of the city of 
Porto, Portugal. 

Concerning the efficiency of the modeler, PGCAD 
appears to perform very well. Although the number 
of applied operations per object (building, block or 
street) was reduced, it is important to consider the 
total number of objects. Table 1 indicates the 
measured times for different-sized city areas. It is 
important to note that, since information is loaded 
from a GIS data source, disk access must also take 
place, and is included in the measured times. Also, 
many optimizations can still be done. 

Table 1: Performance test of PGCAD on a Intel Core 2 
Duo 2,53Ghz, 3GB RAM, Windows 7 32-bit Laptop. 

Area Time Loading 
Time 

Generation 
Time 

Base 
Entities Faces Vertices 

1 ha 636ms 323ms 313ms 74 1053 2299 

5ha 838ms 400ms 438ms 242 3764 7906 

10ha 1000ms 493ms 507ms 478 7355 15165 

100ha 2985ms 1345ms 1640ms 2198 32413 67890 

Its speed suggests that it could be employed for 
real-time generation in virtual reality applications, 
such as games, where the virtual environment is 
created on-the-fly. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this paper, the PGCAD API has been presented as 
a new geometric modeling solution for procedural 
tools whose main characteristic lies on the powerful 
control given over the manipulated geometric 
entities. This is achieved through its intuitive 
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topological structure, which features a set of 
properties, such as scope, spatial awareness and 
semantic information. The modeling processes can 
be massively applied to sets of shapes, yet act 
according to each individual shape’s properties. This 
allows a more customized control, as well as 
successive tracking, which induce a greater, faster 
and more intuitive approach for geometry 
generation. 

PGCAD is still undergoing development, but has 
already been applied in the field of virtual urban 
environment generation, with promising results in 
reduced time, proving its usability in real-time 
applications such as games. Its concept of spatial 
awareness and semantic control constitute PGCAD’s 
most novel features, which will continue to be 
explored, as well as its mass modeling process, 
which can operate based on each shape’s properties. 
Other current limitations, such as the scarce number 
of higher-level modeling operations, will also be 
subject of future attention, so that richer and more 
detailed objects can be created. 
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