
A Flexible Schema for Document Oriented Database (SDOD) 

Shady Hamouda1,2, Zurinahni Zainol2 and Mohammed Anbar3 
1Emirates College of Technology, Abu Dhabi, U.A.E. 

2School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia 
3National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia 

Keywords: Schema, Document-Oriented Database, NoSQL. 

Abstract: Big data is emerging as one of the most important crucial issues in the modern world. Most studies mention 
that a relational database cannot handle big data. This challenge has led to the presentation of the not only 
structured query language (NoSQL) database as a new concept of database technology. NoSQL supports 
large volumes of data by providing a mechanism for data storage, retrieval and more flexible than a 
relational database. One of the most powerful types of NoSQL database is the document-oriented database. 
Recently, many software developers are willing to migrate from using relational databases to NoSQL 
database because of scalability, availability, and performance. The document-oriented database has 
challenged as to how to obtain an appropriate schema for the document-oriented database. The existing 
approach to migrate a relational database to a document-oriented database does not consider all the 
properties of the former, especially on how to handle various types of relationships. This research proposed 
a flexible schema for a document-oriented database (SDOD). This study evaluated the development of 
agility based on the schema of a document-oriented database and query execution time. The evaluation 
verifies the reliability of the proposed schema. 

1 INTRODUCTION 

The demand to migrate from a relational database to 
a document-oriented database has increased because 
of the complex structure of data and the different 
data types (El Alami & Bahaj, 2016; Hanine et al., 
2016; Stanescu et al., 2017). Therefore, moving 
from table to document will be more efficient. The 
idea of migration from a relational database to a 
document-oriented database is conducted by 
migrating the data without loss or changing any 
structure of the original database.  

However, there are many challenges and 
complex problem for design schema for NoSQL 
database such as there are no tools or methodology 
available to support a good schema (Mior et al., 
2017). Also, there is still a lack of strategies for 
conceptually representing the data model for a 
document-oriented database (Guimaraes et al., 
2015). Moreover, NoSQL databases offer many 
challenges such as de-normalization is required for 
high performance in NoSQL databases and 
repositories documents (Mior, 2014). 

According to Zhao et al. (2014), normalization 

and de-normalization are some of the variables that 
must be considered when designing a schema, as it 
can measure the schema quality. Mehmood et al. 
(2017), found the evaluation schema quality can be 
determined through the performance of 
normalization and de-normalization of the 
documents.  

The problem is that an RDBMS data model 
based on the relational model, and has a fixed 
schema with structured data, whereas the NoSQL 
can have any data format (Yoon et al., 2016). 
Moreover, there is no schema for a document-
oriented database can recognise table type, 
document structure, and forming documents 
(Kanade et al., 2014; Moore et al., 2014) due to the 
various ways of storage, management and 
implementation in NoSQL. Besides, Tauro et al. 
(2012) and Liang et al. (2015) mentioned that the 
relational database and NoSQL are different models, 
which make difficulties to migrate data from the 
relational model to the NoSQL models.  

In fact, the data models of NoSQL systems are 
very complex as there are no tools available to 
represent a scheme for NoSQL databases (Mohan, 

Hamouda, S., Zainol, Z. and Anbar, M.
A Flexible Schema for Document Oriented Database (SDOD).
DOI: 10.5220/0008353504130419
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 413-419
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

413



2013). According to Mohan (2013), there is no 
standard schema represent the data modeling of the 
document-oriented database.  Therefore, designing a 
schema and implementing the document-oriented 
database for big data applications are needed 
(Guimaraes et al., 2015; Ogunyadeka et al., 2016; 
Storey & Song, 2017). Also, modeling and querying 
data in a document-oriented database is important, 
as, it describes the rules and function of the system 
(Atzeni et al., 2016). Therefore, it is necessary to 
define a schema for the underlying principles of a 
document-oriented database.  

However, Mior et al. (2017) finding, although 
the schema of a document-oriented model is 
flexible, it is still necessary when designing the 
schema to decide whether data is normalizing or de-
normalizing it before applying to a document-
oriented database application. Moreover, González-
Aparicio et al. (2017) observe that the normalization 
of the data model is one of the important research 
issues and there are no standard principles of 
normalization in the NoSQL database. 

In addition, there is no any a variable method to 
normalize or de-normalize data to define an 
embedded and reference approach for handling the 
various types of relationships (Guimaraes et al., 
2015, Khan and Mane, 2013, Hanine et al., 2016, 
Mehmood et al., 2017). According to Mehmood et 
al. (2017), normalization and de-normalization are 
the two variables that must be considered when 
designing a schema. These variables can affect the 
performance and storage effectively as the databases 
grow very quickly. Therefore, this paper overcomes 
the issues presented above by designing a schema 
for a document-oriented database. 

2 THE PROPOSED SCHEMA FOR 
DOCUMENT ORIENTED 
DATABASE (SDOD) 

SDOD improve the concepts and data model of the 
document-oriented database which present in the 
previous studies Arora and Aggarwal (2013); Atzeni 
et al., (2016); Bhogal and Choksi (2015); Hashem 
and Ranc (2016) by providing features and 
specification to design schema for a document-
oriented database. This study aims to design a 
schema for the document-oriented database based on 
ER Model. 

2.1 SDOD Specification 

The SDOD normalize the data redundancy through 
two concepts; first is embedded document de-
normalization the relationships by the store a 
subdocument into super-document collections, and 
second is reference document that can be used to 
normalization the relationship through linked the 
collections between each other’s using a foreign key. 

The component of ER schema is entities, 
attributes, and relationships. This research represents 
entity by Collection (C) and, attributes represent by 
use Key-value (K), and the type of relationships 
(1:1), (1: N), and (M: M) is represented through 
embedded and reference document. This section 
converts ER specification to the SDOD specification 
based on the following Table 1. 

Table 1: Specification of SDOD. 

ER Specification SDOD Specification Descriptions and conditions 

Strong entity Strong Entity {} Each Strong entity is representing by a collection with two braces. 

Weak entity 
Strong Entity {Weak entity 
{}} 

The weak entity is described by using embedded document into strong 
entity.  

Hierarchical Entity 
HigherCollection {k1.ki,lower 
collection[{k1..kj}]} 

The hierarchical entity is represented by the higher hierarchical entity with 
all the related attributes and the lower collection store as embedded 
documents. 

Ordinary attribute {K1,…..,Ki} 
The attributes of each entity are described by using K, which represents the 
name of the attribute. These attributes are listed inside two braces with a 
comma in between. 

Composite attribute CA{ K1, …,Ki } 

CA the name of the composite attribute 
Ki  a set of attributes names listed into the document with a comma 
between them 
i  number of composite attributes

Multi-valued 
attribute 

MV[K1,…,Ki] 
The multi-valued attribute is described by the name of this attribute with an 
array data type and [K1..Ki] represents all of the multi-values. 

Derived attribute K# The derived attribute is described by a hash after the attribute K. 

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

414



Table 1: Specification of SDOD. (cont.) 

ER Specification SDOD Specification Descriptions and conditions 

Attribute of the 
relationship 

(K1,….,Ki)  The attributes of relationships are added to relationship document. 

Primary key K The primary key is represented by an underline of the attribute. 

Foreign key K The foreign key is represented by a dashed line of the attribute. 

Unary relationship K@ 
The unary relationship is described by adding @ after the attribute K and the 
name of the relationship. 

One-to-one 
relationship (1:1) 

Embedded document  
The 1:1 relationship is representing by using embedded document into the 
related collection. 

                                             
Reference document 

if more relationships exist or the dataset of one side will exceed 16 MB (as 
the document size is 16 MB) , then this relationship should be represented by 
using the reference document. 

One-to-many 
relationship (1:M) 

Embedded document 

The 1:M relationship is described through the embedded document or 
reference document depending on the size of the many relationship side . 
If the many relationship side  is small if M dataset is not exceed 16 MB or 
less than a tens of thousands/hundreds of thousands/ millions records, and 
also, there is no any other relationship. 

Thus, 1:M is represent through embedded document, this embedded 
document store into the related document.   

Reference document 

If the dataset of the many relationship side is exceed 16 MB or  more than 
tens of thousands/hundreds of thousands/millions records. 

The 1:M relationship is described as a reference between two entities 
through foreign key. 

Many-to-many 
relationship (M:M) 

Collection1 name [{K1,…. 
Ki},….., Collection2 
name{K1,…. Ki}] 

The M:M relationship describes the references between two entities. This 
type of relationship is identified by creating two collections named: 
Collection1 and Collection 2, and then storing the primary key of the related 
collection of the document of Collection 1 inside the collection side of 
Collection 2, and vice versa. If store the document of Collection 1 inside 
Collection 2, then the name of the document root becomes Collection 1.  

 

The principal concept of the NoSQL data model 
involves storing data as pairs of key–value. The key 
is considered as the field of a table in a relational 
database, while the value associated with the key can 
be any type of data structure. Unlike the case in the 
relational database, all the field data should have the 
same structure and may have a null value. Moreover, 
this pair of key-value can be collected into a 
document that can represent the field with the record 
in the relational database. 

Consequently, a set of related documents are 
stored and represented by a collection, which 
considers the table of the relational database. Each 
document can be identifying by a unique key or can 
be automatically created by the database. This ID 
becomes an index for the document or can create 
other indexes depending on the application 
requirements to speed up the query process. 
Relationships between the collections can be 
identifying in two ways: embedded and reference 
document.  

In the embedded document, the document can 
contain another document. This model can lead to 
the de-normalization of the database. Reference 
documents consider the relationships of the 
relational database, which shows the relationships 

between the collections and the foreign key. A 
document-oriented database store data using key-
value concept into an organized document in which 
each key is used to store a value and this value can 
be identified by a key. This concept can be 
represented by a JavaScript Object Notation (JSON) 
object. A JSON is a lightweight language of the data 
format used to store and exchange data and it 
follows the concept of JavaScript language ((Bansel 
& Chis, 2016). Moreover, JSON is a serialization 
format, which has schema-less data with all kinds of 
data type, such as string, number, list and array and 
nested structure (Florescu & Fourny, 2013). 

According to Soransso and Cavalcanti (2018), 
the structures of the document are able to deal with 
collections of heterogeneous documents. The 
document in a collection is a self-describing 
structure allows finding the intended data/content 
through specific parts of these documents. 

3 CASE STUDY: W3SCHOOL 
SCHEMA 

The case study is the schema of W3Schools Web 

A Flexible Schema for Document Oriented Database (SDOD)

415



site (http://www.w3schools.com/). This schema has 
characteristics that are completely different from 
those typically used in most applications, such as 
integration restrictions, relationships, and different 
data types. 

The W3school schema can be similar to other 
businesses that have products with categories and 
these products have suppliers and then offer these 
products to customers for ordering and shipping. 
Therefore, this schema is chosen to implements of 
mapping from a relational database to a document-
oriented database through SDOD, and then evaluates 
how SDOD can cover any new business 
requirements when changing the schema. 

 

 

Figure 1: Entity relational schema for W3schools (Rocha 
et al., 2015). 

As we can see in the above schema, the product 
has categories and suppliers, and the order has order 
details and shipping to the customer through the 
employees. Therefore, SDOD applied to map the 
above schema Figure 1. It creates product collection 
and store categories and suppliers as embedded 
documents. Also, creates order collection and stores 
the order details with shipping as embedded 
documents. Moreover, these order and products can 
be managing through the employee collection. The 
SDOD of mapping the above schema can be as 
shown following figure. 

Order { 
"OrderID" , 
"EmployeeID" , 
"OrderDate" , 
    "OrderDetials" : { 
        "OrderDetailsID" , 
        "ProductID" , 
        "Quantity"  
    }, 
    "Shippers" : { 
        "ShppierID", 
        "ShipperName", 
        "Phone"  
    }, 
    "Customer" : { 
        "CustomerID", 
        "CustomerName", 
        "ContactName", 
        "Address", 
        "City", 
        "PostalCode", 
        "Country"  
    } 
} 
 
Employee { 
    "EmployeID", 
    "LastName", 
    "FistName", 
    "BirthDate", 
    "Photo", 
    "Notes" 
} 
 
Product { 
    "ProdcutID", 
    "ProductName", 
    "Unite", 
    "Price", 
    "ProdctsCol", 
    "Category" : { 
        "CategoryID", 
        "CategoryName", 
        "Descripation"  
    }, 
    "Suppliers" : { 
        "SupplierID", 
        "SupplierName", 
        "ContactName", 
        "Address", 
        "City", 
        "PostCode", 
        "Country", 
        "Phone"  
    } 
} 

Figure 2: SDOD for W3schools. 

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

416



4 EVALUATION DEVELOPMENT 
OF AGILITY 

Development agility refers to the capability to meet 
and respond to the business change requirements 
during the development process (Rathor et al., 
2016). Agile methodologies can enable 
organizations to achieve flexibility in software 
development for managing unpredictable and 
changing conditions (Maruping et al., 2009) . 

This section evaluates the development agility to 
identify business change requirements using the 
W3Schools schema in Figure 1. This schema has 
characteristics that are completely different from 
those typically used in most applications, such as 
integration restrictions, relationships, and different 
data types. 

In a relational database, the new field should be 
added to all table records to change its schema. By 
contrast, an SDOD allows adding or changing data 
for a specific document in any structure without 
changing the database schema. An SDOD allows the 
application to use the required data and ignore the 
unrequited data. 

 

 

Figure 3: Schema after changing the relationship between 
product and supplier. 

In the W3schools schema in Figure 1, the 
relationship between products and supplies is one to 
one. If the W3schools schema needs to change the 
business requirements by allowing one product to 
have many supplies or each supplier to provide 
many products, then this new requirement brings 
difficulty in changing the database schema. To 
incorporate this requirement in the relational 
database, a new table should be added to allow the 
product to have many suppliers as the current data. 
The relational database schema will not allow the 
same product to have many suppliers because it is 
fixed and has change constraints. 

The previous scenario indicates that the change 
required will affect the database schema, query 
level, and reporting level. Given that the database 
schema needs to change, all queries related to 
product and resource need to be redesigned and 
recorded. 

By contrast, an SDOD supports a flexible 
schema with semi-structured data that can add or 
change relationships between entities without effect. 
In the previous case, the relationships between 
products and suppliers can be changed without 
affecting the schema because the product collection 
stores the suppliers as embedded documents and lists 
suppliers for each product. In an SDOD, mapping 
one-to-one or one-to-many relationships can be 
through the embedded documents. Therefore, this 
schema will store the many supplies as embedded 
documents into each product, as shown in Figure 2. 

As we can see that the SDOD is flexible schema 
and can support the new business requirements. The 
evaluation of this paper is used to evaluate the 
development agility of business requirements and 
the result shows that the SDOD provide a flexible 
schema. On the other hand, JSON is more compact 
than XML for semi-structured data because XML 
has many rules and complexity in representing a 
semi-structured data format. Therefore, JSON plays 
an important role in representing semi-structured 
data in a NoSQL database, as it is lightweight and 
uses flexible data to deal with formatted semi-
structured data and can be compatible with most 
programming languages.  

5 PERFORMANCE TEST OF 
RELATIONAL DATABASE AND 
DOCUMENT-ORIENTED 
DATABASE BASED ON SDOD 

This evaluation clarifies whether the proposed 

A Flexible Schema for Document Oriented Database (SDOD)

417



method is statistically significant. The statistical 
significance between the relational database and 
document-oriented database is measure using T-test. 
The T-test is used to compare the means from two 
different groups of data and to determine any 
significant difference between the means of two 
groups that may be related in certain features. This 
test measures the query execution time for the 
relational database (Oracle) and document-oriented 
database (MongoDB). This evaluation evaluates the 
significance of Create, Retrieve, Update, Delete and 
Join operations based on data migrations. 

In Table 2, the first show the database operation 
that used for this evaluation. The numbers that show 
in the third and fourth columns are the times in 
millisecond to execute each query for a relational 
database (Oracle) and a document-oriented database 
(MongoDB). 

Table 2: Performance test of a relational database (Oracle) 
and a document-oriented database (MongoDB). 

Operation 
Relational Database 

(Oracle) 
(Time in Millisecond) 

Document-Oriented 
Database (MonogDB) 
(Time in Millisecond)

Select  

2.226 0.003 

1.826 0.002 

2.376 0.001 

0.182 0.002 

0.171 0.099 

Insert 
16,900 2,444 

18,210 5,326 

Update 

58,587 340 

815 2 

1,925 112 

94,080 582 

20,085 2,390 

Delete 

1,514 67 

2,651 140 

8,266 251 

3,196 799 

2,752 7 

Join 

1,969 210 

647 3 

1,028 102 

1,780 155 

 

As the above table shows, the same query was 
run in MongoDB and Oracle, Therefore, this T-Test 
is paired test (oracle,mongo, conf.level = 0.95, 
vr.equal=FALSE, alternative="greater", 
paired=TRUE). 

The type of T-test is paired and the input data for 
this test is Oracle and Mongo database. The T-value 
is 2.101 in favor of mongo with 20 degrees of 
freedom; also, the p-value which is the probability of 
the result is 0.02426. In addition, the alternative 
hypothesis is true, the difference in means is greater 
than zero, and the percent confidence interval is 95. 

The T-test shows that the mean difference in the 
execution time between Oracle and MongoDB is 
statistically significant (i.e., p-value is smaller than 
0.05 for the confidence level of 0.95, p=0.024). 

The T-test shows that the mean difference in the 
execution time between Oracle 
(mean(Oracle)=11162.47, sd (Oracle)= 23233.4) and 
MongoDB (Mean(MongoDB)=615.72, 
sd(MongoDB)= 1291.533) is statistically significant 
(t(20)=2.101, p=0.02). In other words, based on the 
performance test shown in Table 2, there is strong 
evidence that MongoDB queries execute 
significantly shorter (measured in milliseconds) 
compared to Oracle. 

6 CONCLUSION 

This study successfully proposes a flexible schema 
that can cover all data types and properties of a 
document-oriented database. Besides, this study 
overcomes the issues in handling the relationships in 
a complex database by covering all types of 
relationships to be compatible with a document-
oriented database. SDOD provide new feature such 
as flexible schema by allows adding any field in any 
documents without any constrains and allows each 
document to have different numbers of fields. Thus, 
it can be an efficient schema for a semi-structured 
data with flexible schema that will keep up with the 
new business requirements. 

In addition, the document and embedded 
document in semi-structured data are less 
homogeneous than those in structured data, 
therefore, it allows each key to have different 
contents in each document, and these contents can 
be blend in the same document without a structure. 
The future work will proposed a schema for other 
types of NoSQL models. 

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

418



REFERENCE 

Arora, Rupali, & Aggarwal, Rinkle Rani. (2013). 
Modeling and querying data in mongodb. 
International Journal of Scientific and Engineering 
Research, 4(7).  

Atzeni, Paolo, Bugiotti, Francesca, Cabibbo, Luca, & 
Torlone, Riccardo. (2016). Data modeling in the 
NoSQL world. Computer Standards & Interfaces.  

Bansel, Aryan, & Chis, Adriana E. (2016). Cloud-Based 
NoSQL Data Migration. Paper presented at the 2016 
24th Euromicro International Conference on Parallel, 
Distributed, and Network-Based Processing (PDP). 

Bhogal, Jagdev, & Choksi, Imran. (2015). Handling big 
data using NoSQL. Paper presented at the Advanced 
Information Networking and Applications Workshops 
(WAINA), 2015 IEEE 29th International Conference 
on. 

El Alami, Alae, & Bahaj, Mohamed. (2016). Migration of 
a relational databases to NoSQL: The way forward. 
Paper presented at the Multimedia Computing and 
Systems (ICMCS), 2016 5th International Conference 
on. 

Florescu, Daniela, & Fourny, Ghislain. (2013). JSONiq: 
The history of a query language. IEEE internet 
computing, 17(5), 86-90.  

Guimaraes, Valeria, Hondo, Fernanda, Almeida, Rodrigo, 
Vera, Harley, Holanda, Maristela, Araujo, Aleteia, . . . 
Lifschitz, Sergio. (2015). A study of genomic data 
provenance in NoSQL document-oriented database 
systems. Paper presented at the Bioinformatics and 
Biomedicine (BIBM), 2015 IEEE International 
Conference on. 

Hanine, Mohamed, Bendarag, Abdesadik, & Boutkhoum, 
Omar. (2016). Data Migration Methodology from 
Relational to NoSQL Databases. World Academy of 
Science, Engineering and Technology, International 
Journal of Computer, Electrical, Automation, Control 
and Information Engineering, 9(12), 2369-2373.  

Hashem, Hadi, & Ranc, Daniel. (2016). Evaluating 
NoSQL document oriented data model. Paper 
presented at the Future Internet of Things and Cloud 
Workshops (FiCloudW), IEEE International 
Conference on. 

Kanade, Anuradha, Gopal, Arpita, & Kanade, Shantanu. 
(2014). A study of normalization and embedding in 
MongoDB. Paper presented at the Advance Computing 
Conference (IACC), 2014 IEEE International. 

Maruping, Likoebe M, Venkatesh, Viswanath, & Agarwal, 
Ritu. (2009). A control theory perspective on agile 
methodology use and changing user requirements. 
Information Systems Research, 20(3), 377-399.  

Mior, Michael J. (2014). Automated schema design for 
NoSQL databases. Paper presented at the Proceedings 
of the 2014 SIGMOD PhD symposium. 

Mohan, C. (2013). History repeats itself: sensible and 
NonsenSQL aspects of the NoSQL hoopla. Paper 
presented at the Proceedings of the 16th International 
Conference on Extending Database Technology. 

Moore, Philip, Qassem, Tarik, & Xhafa, Fatos. (2014). 
'NoSQL'and Electronic Patient Record Systems: 
Opportunities and Challenges. Paper presented at the 
P2P, Parallel, Grid, Cloud and Internet Computing 
(3PGCIC), 2014 Ninth International Conference on. 

Ogunyadeka, Adewole, Younas, Muhammad, Zhu, Hong, 
& Aldea, Arantza. (2016). A Multi-key Transactions 
Model for NoSQL Cloud Database Systems. Paper 
presented at the 2016 IEEE Second International 
Conference on Big Data Computing Service and 
Applications (BigDataService). 

Rathor, Shekhar, Batra, Dinesh, & Xia, Weidong. (2016). 
What Constitutes Software Development Agility? 

Rocha, Leonardo, Vale, Fernando, Cirilo, Elder, Barbosa, 
Dárlinton, & Mourão, Fernando. (2015). A 
Framework for Migrating Relational Datasets to 
NoSQL1. Procedia Computer Science, 51, 2593-2602.  

Soransso, RASN, & Cavalcanti, Maria Cláudia. (2018). 
Data modeling for analytical queries on document-
oriented DBMS. Paper presented at the Proceedings of 
the 33rd Annual ACM Symposium on Applied 
Computing. 

Stanescu, Liana, Brezovan, Marius, & Burdescu, Dumitru 
Dan. (2017). An Algorithm For Mapping The 
Relational Databases To MongoDB--A Case Study. 
International Journal of Computer Science & 
Applications, 14(1).  

Storey, Veda C, & Song, Il-Yeol. (2017). Big data 
technologies and Management: What conceptual 
modeling can do. Data & Knowledge Engineering, 
108, 50-67.  

Tauro, Clarence JM, Aravindh, S, & Shreeharsha, AB. 
(2012). Comparative study of the new generation, 
agile, scalable, high performance NOSQL databases. 
International Journal of Computer Applications, 
48(20), 1-4.  

Yoon, Jongseong, Jeong, Doowon, Kang, Chul-hoon, & 
Lee, Sangjin. (2016). Forensic investigation 
framework for the document store NoSQL DBMS: 
MongoDB as a case study. Digital Investigation, 17, 
53-65. 

A Flexible Schema for Document Oriented Database (SDOD)

419


