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Abstract: A signer and message ambiguous signature enables a recipient to request a signer to sign a sensible message
such that the signer cannot guess what message he signed and the receiver cannot deduce the signer’s iden-
tity. In this work, we formalize this type of signature, introduce the corresponding security requirements and
describe two instantions. The first one assumes that the signer hides his identity in n independently generated
public keys, while the second one assumes that all n public keys share the same public parameters.

1 INTRODUCTION

In order to address the increasing interest in privacy
protection, Chen (Chen, 1994) introduced the con-
cept of oblivious signatures. He considered two such
classes. The first one is an oblivious signature scheme
with n keys, while the second one is an oblivious sig-
nature with n messages.

In the case of oblivious signatures with n keys, we
have n signers S0, . . . ,Sn−1 (or a signer with n differ-
ent keys) and a recipient R . A high level description
of the protocol is the following:

• the recipient chooses a message m and can get it
signed with one of the n keys;

• the signers, even the holder of the accepted key,
do not have an idea on who really signed m;

• when necessary, R can show that he received a
valid signature from one of the n signers.

On the other hand, in the version of oblivious signa-
tures with n messages we have only one signer S and
the main features are the following:

• the recipient chooses n messages m0, . . . ,mn−1
and can get only one signed;

• the signer cannot deduce which message he actu-
ally signed;

• when necessary, R can show that he received a
valid signature on one of the n messages.

Remark that in both cases the signer(s) can read the
received message(s) and decide if he(they) agree(s)
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with the content before signing it. The two concepts
can also be mixed and thus obtain an oblivious proto-
col with n1 messages and n2 keys. Some examples of
oblivious protocols can be found in (Chen, 1994, Tso
et al., 2008, Tso, 2016, Tso, 2019).

Blind signatures (Chaum, 1982, Juels et al., 1997)
share the same privacy goal as oblivious signatures
with n messages. More precisely, both signatures al-
low users to request a signature without revealing the
exact message to the signer. The main difference is
that in the case of blind signature the signer is not
aware of the message’s content, while in the case of
oblivious signatures the signer sees a message pool
that contains n messages. Hence, oblivious signatures
offer a guarantee to the signer that no message outside
the pool will be signed and thus can be considered an
improvement of blind signatures.

In contrast to oblivious signatures with n keys,
an 1-out-of-n signature convinces a verifier that a
message was signed by one of n possible indepen-
dent signers without allowing the verifier to deduce
which signer it was. Hence, the privacy requirement
is shifted from the signers to the verifier. Also, in this
case, only the actual signer decides if he agrees to the
message’s content, while the remaining n−1 signers
have access to the message only after the signing pro-
cess is over. Some examples can be found in (Abe
et al., 2002, Cramer et al., 1994, Rivest et al., 2001).

In some applications we encounter situations
where a mixture of oblivious signatures with n2 mes-
sages and 1-out-of-n1 signatures is required. Hence,
a receiver wants to hide his request, while the signer
wants to keep its anonymity. We further call this type
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of signatures as signer and message ambiguous signa-
tures.

A possible usage for these signatures is the fol-
lowing. Multiple small companies1 contribute with
servers to a storage pool and split the profits according
the contributed storage space. A client wants to make
a query to this cluster, but wants to be able to prove to
a third party that the answer is authentic. Therefore,
the cluster has to sign the answer. But the customer
must be oblivious of which company is hosting the
corresponding data. Hence, the cluster can use an 1-
out-of-n1 signature to hide the exact location of the
data. On the other hand, the client wants to hide the
exact content of his query. Thus, he can hide his query
into n2−1 unrelated queries. In this case, we can see
that a mixture of an 1-out-of-n1 signature and an n2
message oblivious signature can offer a possible solu-
tion.

In this paper, we propose the first signer and mes-
sage ambiguous signatures, one in the key separa-
ble model (i.e. the users’ use independently gener-
ated public parameters) and one in the non-separable
model (i.e. the users’ public parameters are identical).
In the separable model, we used the zero-knowledge
version of Abe et. al signature (Abe et al., 2002) in
conjunction with a generalized and modified Tso et.
al signature (Tso et al., 2008). In the non-separable
model, we used the same signature based on Tso et.
al, but we combined it with a generalized version of
Abe et. al signature (Abe et al., 2002). The formal-
ization method used for generalizing the signatures is
similar to the approach described in (Maurer, 2009).

Structure of the Paper. We introduce notations and
definitions used throughout the paper in Section 2. In
Sections 3 and 4 we present our main results, namely
two signer and message ambiguous signatures, one
in the separable model and one in the non-separable
model. Their performance is analysed in Section 5.
We conclude in Section 6.

2 PRELIMINARIES

Notations. Throughout the paper, the notation |S| de-
notes the cardinality of a set S. The action of select-
ing a random element x from a sample space X is de-

noted by x $←− X , while x← y represents the assign-
ment of value y to variable x. The probability of the
event E to happen is denoted by Pr[E]. The subset
{0, . . . ,s− 1} ∈ N is denoted by [0,s). Note we fur-
ther consider that all of N ’s subsets are of the form

1Each with its unique public certificate.

[0,s) and n2 ≤ s. A vector v of length n is denoted ei-
ther v = (v0, . . . ,vn−1) or v = {vi}i∈[0,n). Also, we use
the notations Cn

k to denote binomial coefficients and
exp to denote Euler’s constant.

2.1 Groups

Let (G,?) and (H,⊗) be two groups. We assume
that the group operations ? and⊗ are efficiently com-
putable.

Let f : G → H be a function (not necessarily
one-to-one). We say that f is a homomorphism if
f (x ? y) = f (x)⊗ f (y). Throughout the paper we
consider f to be a one-way function, i.e. it is in-
feasible to compute x from f (x). To be consistent
with (Maurer, 2009), we denote by [x] the value f (x).
Note that given [x] and [y] we can efficiently compute
[x? y] = [x]⊗ [y], due to the fact that f is a homomor-
phism.

2.2 Signer and Message Ambiguous
Signatures

Based on the formal models defined in (Abe et al.,
2002,Tso et al., 2008,Tso, 2016), we introduce signer
and message ambiguous signatures (SMAS) and their
corresponding security models. Hence, a SMAS in-
volves three types of entities:

• A signature requester R . For any list of public
keys L and any list of messages M, R can choose
any message from M to get signed by any of the
signers from L. Note that R is not able to learn
which signer from L actually signed the message.

• An ambiguous signer S . One of the signers from
L proceeds to sign the message chosen by R , but
he is not able to learn which message from M has
actually been signed.

• A verifier V . R converts the SMAS into a signer
ambiguous signature σ and transmits σ to V . The
verifier is able to check the validity of σ without
modifying the verification algorithm of the origi-
nal signer ambiguous signature.

Definition 2.1 (Signer and Message Ambiguous Sig-
nature). A signer and message ambiguous signature
scheme is a digital signature comprised of the follow-
ing algorithms:

Setup(λ): On input a security parameter λ, this algo-
rithm outputs the private and public keys (ski, pki)
of all the participants and the public parameters
pp = (M ,S ), where M is the message space and
S is the signature space.
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Signature Generation(): An interactive protocol be-
tween R and S . In the first step, the recipient
takes as input a list of public keys L and sends
to the signer a list of messages M and some ad-
ditional information A. Then, S takes as input
a list of messages M, the information A, the pri-
vate key skk and a list of public keys L such that
pkk ∈ L and sends a list of signatures W to R .
After receiving W , the recipient uses A to convert
the SMAS into a signer ambiguous signature σ for
a message m ∈M and then outputs (m,σ,L).

Verify(m,σ,L): An algorithm that on input a mes-
sage m, a signature σ and a list of public keys L
outputs either true or false.

The following definitions capture the intuitive notions
of signer and message ambiguity. In Definitions 2.2
and 2.3 we assume that the attacker is R and, respec-
tively, S .

Definition 2.2 (Signer Ambiguity). Let
L = {pki}i∈[0,n1), where pki are generated by the
Setup algorithm. Also, for a set L⊆ L we define L̃ =
{skk | skk is the secret key corresponding to pkk ∈ L}.
A SMAS is perfectly signer ambiguous if for any list
of messages M and their corresponding additional
information A, any L⊆ L , any skk ∈ L̃ and any signa-
ture W generated by S(M,A,skk,L), any unbounded
adversary A outputs an sk such that sk = skk with
probability exactly 1/|L|.
Definition 2.3 (Message Ambiguity). A SMAS is
perfectly message ambiguous if for any list of mes-
sages M and their corresponding additional informa-
tion A and for any message m` ∈ M chosen by R to
be signed, any unbounded adversary A outputs an m
such that m = m` with probability exactly 1/|M|.

The security requirement for S is unforgeability
of signatures, even when the signature receiver is the
adversary.

Definition 2.4 (Existential Unforgeability against
Adaptive Chosen Message and Chosen Public Key
Attacks - EUF-CMCPA). The notion of unforgeabil-
ity for signatures is defined in terms of the following
security game between the adversary A and a chal-
lenger:

1. The Setup algorithm is run and all the public pa-
rameters are provided to A .

2. For any list of messages M and any subset of
L = {pki}i∈[0,n1), A can fix a message m` ∈ M
and request the signature associated to m` to the
challenger.

3. Finally, A outputs a signature (m,σ,L), where
L⊆ L .

A wins the game if Verify(m,σ,L) = true, L⊆L and
A did not query the challenger on any pair (M,L) such
that m` = m. We say that a signature scheme is un-
forgeable when the success probability of A in this
game is negligible.

We further introduce the notions of a Boolean ma-
trix and of a heavy row in such a matrix (Ohta and
Okamoto, 1998). These definitions are then used in
stating the heavy row lemma (Ohta and Okamoto,
1998).
Definition 2.5 (Boolean Matrix of Random Tapes).
Let us consider a matrix M whose rows consist of
all possible random choices of an adversary and the
columns consist of all possible random choices of a
challenger. Its entries are 0 if the adversary fails the
game and 1 otherwise.
Definition 2.6 (Heavy Row). A row of M is heavy if
the fraction of 1’s along the row is at least ε/2, where
ε is the adversary’s success probability.
Lemma 2.1 (Heavy Row Lemma). The 1’s in M are
located in heavy rows with a probability of at least
1/2.

3 SMAS WITH KEY SEPARATION

3.1 Description

By modifying the protocol from (Tso et al., 2008)
and endowing it with the technique described in (Abe
et al., 2002) we developed a SMAS in the separable
model. Note that in a separable scheme each key pair
can be generated by a different scheme, under a dif-
ferent hardness assumption. In practice, each user can
use different trusted third parties (TTP) to generate
their public parameters and key pair. To simplify de-
scription we present the Setup algorithm as a central-
ized algorithm. We will denote the following signa-
ture with SMAS-KSS.
Setup(λ): Let i ∈ [0,n1). Choose for each user two

groups Gi, Hi, a homomorphism [·]i :Gi→Hi and
a hash function Hi : {0,1}∗ → Ci ⊆ N. Note that

we require that |Gi| ≥ 2λ. Choose ai,xi
$←−Gi and

compute yi← [xi]i and bi← [ai]i. Output the pub-
lic key pki = yi. The secret key is ski = xi. The
elements bi are known to all participants, but the
ai’s are used only once and are discarded after-
wards.

Listing(): Collect the public keys and randomly
shuffle them. Store the result into a list L =
{y j} j∈[0,n1) and output L .2

2Note that L can be fixed or periodically updated.
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Signature Generation(): Assume that recipient R
would like to get a signature from signer S on a
message m` ∈ {mt}t∈[0,n2). To compute the am-
biguous signature the following protocol is exe-
cuted:

Step 1: For j ∈ [0,n1), R selects α j
$←− G j and

computes c j← [α j] j⊗ j b`j. Then, R sends C =

{c j} j∈[0,n1) and M = {mt}t∈[0,n2) to S .
Step 2: For t ∈ [0,n2), S (with access to xk) does
the following:

a) Generate an element βt
$←− Gk and com-

pute zk,t ← ck ⊗k b−t
k ⊗k [βt ]k and dk+1,t ←

Hk+1(L ,mt ,zk,t).
b) For j ∈ [k + 1,n1) ∪ [0,k), randomly se-

lect s j,t
$←− G j and then compute z j,t ←

c j ⊗ j b−t
j ⊗ j [s j,t ] j ⊗ j y

d j,t
j and d j+1,t ←

H j+1(L ,mt ,z j,t)
3.

c) Compute sk,t ← βt ?k x
−dk,t
k .

d) Send to R the signature (d0,t ,Wt), where
Wt = {s j,t} j∈[0,n1).

Step 3: For j ∈ [0,n1) and t ∈ [0,n2),
R computes δ j,t ← [α j] j ⊗ j b`−t

j ,

e j,t ← δ j,t ⊗ j [s j,t ] j ⊗ j y
d j,t
j and then

d j+1,t ← H j+1(L ,mt ,e j,t) if j 6= n1 − 1.
R accepts the ambiguous signature if and only
if d0,t = H0(L ,mt ,en1−1,t), where t ∈ [0,n2).
Otherwise, output false.

Step 4: To convert the signer and message am-
biguous signature into a signer ambiguous sig-
nature, R sets d0 ← d0,` and computes s j ←
α j ? j s j,`, where j ∈ [0,n1). Output the signa-
ture (d0,W ), where W = {s j} j∈[0,n1).

Verify(m,d0,W ,L): For j ∈ [0,n1), compute e j ←
[s j] j ⊗ j y

d j
j and then d j+1 ← H j+1(L ,m,e j) if

j 6= n1 − 1. Output true if and only if d0 =
H0(L ,m,en1−1). Otherwise, output false.

Remark. In the Setup phase, the bi elements can be
generated for each user after they receive their pub-
lic parameters and key-pairs, and by a TTP different
from the one generating the initial system’s parame-
ters. Thus, our scheme is compatible with preexisting
signature certificates and can be seen as adding an ex-
tra functionality to existing systems.

Correctness. First we need to check that R accepts
a genuine signature. Thus, if (c0,t ,Wt) is generated

3When j = n1− 1 we abuse notation and consider j +
1 = 0.

according to the scheme, then for j 6= k we have

e j,t = δ j,t ⊗ j [s j,t ] j⊗ j y
d j,t
j

= c j⊗ j b−t
j ⊗ j [s j,t ] j⊗ j y

d j,t
j

= z j,t

and for j = k we have

ek,t = δ j,t ⊗k [sk,t ]k⊗k y
dk,t
k

= ck⊗k b−t
k ⊗k [βt ?k x

−dk,t
k ]k⊗k y

dk,t
k

= ck⊗k b−t
k ⊗k [βt ]k⊗k [xk]

−dk,t
k ⊗k y

dk,t
k

= ck⊗k b−t
k ⊗k [βt ]k

= zk,t .

Now we need to check if the verification process re-
turns true. Hence, if the pair (d0,W ) is generated
according to the scheme, then we have

e j = [s j] j⊗ j y
d j
j

= [α j ? j s j,`] j⊗ j y
d j
j

= δ j,`⊗ j [s j,`] j⊗ j y
d j
j

= e j,`.

3.2 Security Analysis

Theorem 3.1. The SMAS-KSS scheme is perfectly
signer ambiguous.

Proof. Note that all s j,t are taken randomly from G j,
except for sk,t . Since βt is a random element from Gk,
then sk,t is also randomly distributed in Gk. Hence,
for a fixed (mt ,L) the probability of Wt is always
1/∏ |Gi|, regardless of the closing point sk,t and index
t. The remaining c0,t are uniquely determined from
(mt ,L) and Wt .

Theorem 3.2. The SMAS-KSS scheme is perfectly
message ambiguous.

Proof. All the information regarding ` is contained
in the c j elements. Since α j is random, then c j is
also random. Thus, for a fixed M the probability of
{c j} j∈[0,|M|) is always 1/∏ |Gi|. So, no information
about ` is leaked to S .

Theorem 3.3. If the following statements are true

• an EUF-CMCPA attack on the SMAS-KSS has
non-negligible probability of success in the ROM,

• for all i values, fi ∈ Z are known such that
gcd(d0− d1, fi) = 1 for all d0,d1 ∈ Ci with d0 6=
d1,
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• for all i values, ui ∈Gi are known such that [ui]i =

y fi
i ,

then at least a homomorphism [·]i can be inverted in
polynomial time.

Proof. Let A be an efficient EUF-CMCPA attacker for
SMAS-KSS that requests at most qs and qh signing
and, respectively, random oracle queries. Also, let ε

be its success probability and τ its running time. By
qm we denote the total number of messages sent to S
for signing.

In order to make A work properly we simulate the
random oracles that correspond to each hash function
(see Algorithm 1) and the signing oracle (see Algo-
rithm 2). For simplicity we treat all the random or-
acles as one big random oracle OH that takes as in-
put the j-th query (i,L j,m j,r j) and returns a random
value corresponding to Hi(L j,m j,r j). To avoid com-
plicated suffixes y0 and m0, for example, refer to the
first public key and the first message from the current
L j and, respectively, M j. Hence, y0 ∈ L j and y0 ∈ L j′

could differ. The same is also true for m0.

Algorithm 1: Hashing oracle OH simulation for
all Hi.

Input: A hashing query (i,L j,m j,r j) from A
1 if ∃h j such that {L j,m j,r j,h j} ∈ Ti then
2 e← h j
3 else
4 e $←− Ci
5 Append {L j,m j,r j,e} to Ti
6 end if
7 return e

The signing oracle OS fails and returns ⊥ only if we
cannot assign d0,t to (L j,m j,e|L j |−1,t) without caus-
ing an inconsistency in T0. This event happens with
probability at most qh/q, where q = 2λ. Thus, OS is
successful with probability at least (1− qh/q)qsqm ≥
1−qhqsqm/q.

Let Θ and Ω be the random tapes given to OS and
A . The adversary’s success probability is taken over
the space defined by Θ, Ω and OH . Let Σ be the
set of (Θ,Ω,OH) with which A successfully creates
a forgery, while having access to a real signing ora-
cle. Let (m,d0,{si}i∈[0,n′),L) be A’s forgery, where
|L| = n′. Then, Ti+1 contains a query for (L,m,ei)
for all i ∈ [0,n′) with probability at least 1−1/|Ci+1|,
due to the ideal randomness of OH . Let Σ′ ⊆ Σ be the
set of (Θ,Ω,OH) with which A successfully creates
a forgery, while having access only to the simulated
oracle OS. Then, Pr[(Θ,Ω,OH) ∈ Σ′] ≥ ε′, where

Algorithm 2: Signing oracle OS simulation.
Input: A signature query (M j,C j,L j) from A

1 for t ∈ [0, |M j|) do
2 d0,t

$←− C0
3 for i ∈ [0, |L j|) do
4 si,t

$←−Gi

5 ei,t ← ci⊗i b−t
i ⊗i [si,t ]i⊗i ydi,t

i
6 if i 6= |L j|−1 then
7 di+1,t ← Hi+1(L j,mt ,ei,t)
8 end if
9 end for

10 if @ht such that {L j,mt ,e|L j |−1,t ,ht} ∈ T0

then
11 Append {L j,mt ,e|L j |−1,t ,d0,t} to T0

12 Sent to A the signature
(d0,t ,{si,t}i∈[0,|L j |))

13 else
14 return ⊥
15 end if
16 end for

ε′ = (1− qhqsqm/q)(1− 1/w)ε and w is the smallest
|Ci|.

Since the queries form a ring, there exists at least
an index k ∈ [0,n′) such that the u query Qu = (k+
1,L,m,ek) and the v query Qv = (k,L,m,ek−1) satisfy
u ≤ v. Such a pair (u,v) is called a gap index. Re-
mark that u = v only when n′ = 1. If there are two or
more gap indices with regard to a signature, we only
consider the smallest one.

We denote by Σ′u,v the set of (Θ,Ω,OH) that yield
the gap index (u,v). There are at most Cqh

2 +Cqh
1 =

qh(qh + 1)/2 such sets. If we invoke A with ran-
domly chosen (Θ,Ω,OH) at most 1/ε′ times, then
we will find at least one (Θ,Ω,OH) ∈ Σ′u,v for some
gap index (u,v) with probability 1− (1− ε′)1/ε′ >
1− exp(−1)> 3/5.

We define the sets GI = {(u,v) | |Σ′u,v|/|Σ′| ≥
1/(qh(qh +1))} and B = {(Θ,Ω,OH) ∈ Σ′u,v | (u,v) ∈
GI}. Then, we have Pr[B|Σ′]≥ 1/2. Using the heavy
row lemma we obtain that a triplet (Θ,Ω,OH) that
yields a successful run of A is in B with probability at
least 1/2.

Let OH ′ be the identical to OH except for the
Qv query to which OH ′ responds with a random
element d′k 6= dk. Then according to the heavy
row lemma, with probability 1/2, (Θ,Ω,OH ′) sat-
isfies Pr[(Θ,Ω,OH ′) ∈ Σ′u,v] = ε′′/2, where ε′′ =
ε′/(2qh(qh + 1)). Hence, if we run A at most
2/ε′′ times, then with probability 1/2 · [1 − (1 −
ε′′/2)2/ε′′ ]> 1/2 · (1−exp(−1))> 3/10 we will find
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at least one d′k such that (Θ,Ω,OH ′) ∈ Σ′u,v. Since Qu
is queried before Qv, ek remains unchanged. There-
fore we can compute

x̃k = ua
k ?k (s′k

−1
?k sk)

b,

where a and b are computed using Euclid’s algorithm
such that fka+(d′k−dk)b = 1. Note that for some β

[s′k
−1

?k sk]k = [s′k
−1
]k⊗k [sk]k

= y
d′k
k ⊗k ([β]k)

−1⊗ c−1
k ⊗ ck⊗k [β]k⊗k y−dk

k

= y
d′k−dk
k

and thus

[x̃k]k = [ua
k ?k (s′k

−1
?k sk)

b]k

= ([uk]k)
a⊗k ([s′k

−1
?k sk]k)

b

= (y fk
k )a⊗k (y

d′k−dk
k )b

= yk.

The overall success probability is 9/100 = 3/5 ·
1/2 ·3/10 and A is invoked at most 1/ε′+2/ε′′ times.

3.3 Concrete Examples

In this subsection we present a few concrete exam-
ples of the SMAS in order to help readers who are
familiar with Schnorr or Guillou-Quisquater type sig-
natures. The reader can easily infer more examples
from the unified zero-knowledge protocol’s instantia-
tions described in (Maurer, 2009, Teşeleanu, 2018).

All Discrete Logarithm Case. Let p and q be two
prime numbers such that q|p− 1. Select an element
h ∈Hp of order q in some multiplicative group of or-
der p−1. The discrete logarithm of an element z∈Hp
is an exponent x such that z = hx. We further describe
the parameters of the all discrete logarithm signature.

Define (Gi,?i) = (Zqi ,+) and Hi = 〈hi〉. The one-
way group homomorphism is defined by [xi]i = hxi

i
and the challenge space Ci can be any arbitrary subset
of [0,qi). Let 1i be the neutral element of Hi. Then the
conditions of Theorem 3.3 are satisfied for fi = qi and
ui = 0. Note that we have [u]i = [0]i = 1i = y fi

i = yqi
i

since every element of Hi raised to the group order qi
is the neutral element 1i.

All eth-root Case. Let p and q be two safe prime
numbers such that (p− 1)/2 and (q− 1)/2 are also
prime. Compute N = pq and choose a prime e such
that gcd(e,ϕ(N)) = 1. An eth-root of an element z ∈
Z∗N is a base x such that z = xe. Note that the eth-root

is not unique. We further describe the parameters of
the all eth-root signature.

Define (Gi,?i) = (Hi,⊗i) = (Z∗Ni
, ·). The one-way

group homomorphism is defined by [xi]i = xei
i and

the challenge space Ci can be any arbitrary subset of
[0,ei). The conditions of Theorem 3.3 are satisfied for
fi = ei and ui = yi.

Mixture of Discrete Logarithm and eth-root. For
simplicity, we consider the case n = 2. Let (G0,?0) =
(Zq,+), H0 = 〈h〉 and (G1,?1) = (H1,⊗1) = (Z∗N , ·).
The one-way group homomorphisms are defined by
[x0]0 = hx0 and [x1]1 = xe

1. The corresponding chal-
lenge spaces C0 and C1 can be any arbitrary subset of
[0,q) and, respectively, [0,e). Finally, the conditions
of Theorem 3.3 are satisfied for f0 = q, f1 = e, u0 = 0
and u1 = y1.

4 SMAS WITHOUT KEY
SEPARATION

4.1 Description

In this section we present a more efficient SMAS sig-
nature. This signature only works when all the partici-
pants use the same underlying commutative group. To
achieve our goal, we used a generalized version of the
technique developed in (Abe et al., 2002). We further
denote the following signature with SMAS-NKSS.
Setup(λ): Choose two commutative groups G, H, a

homomorphism [·] : G→ H and a hash function
H : {0,1}∗ → C ⊆ N. Note that we require that

|G| ≥ 2λ. Choose a $←− G and compute b← [a].

For each user, choose xi
$←− G and compute yi ←

[xi]. Output the public key pki = yi. The secret
key is ski = xi. The element b is known to all par-
ticipants, but a is used only once and is discarded
afterwards.

Listing(): Collect the public keys and randomly
shuffle them. Store the result into a list L =
{y j} j∈[0,n1) and output L .

Signature Generation(): Assume that recipient R
would like to get a signature from signer S on a
message m` ∈ {mt}t∈[0,n2). To compute the am-
biguous signature the following protocol is exe-
cuted:

Step 1: R selects α
$←−G and computes c← [α]⊗

b`. Then, R sends c and M = {mt}t∈[0,n2) to S .
Step 2: For t ∈ [0,n2), S generates a random ele-

ment βt
$←− G and d j,t

$←− C , where j ∈ [0,n1)\
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{k}. Then computes the following:

zt ← c⊗b−t ⊗ [βt ]⊗ y
d0,t
0 ⊗ . . .⊗ y

dk−1,t
k−1

zt ← z⊗ y
dk+1,t
k+1 ⊗ . . .⊗ y

dn1−1,t
n1−1

dt ← H(L ,mt ,zt)

dk,t ← dt −d0,t − . . .−dk−1,t mod |C |
dk,t ← dk,t −dk+1,t − . . .−dn1−1,t mod |C |

st ← βt ? x
−dk,t
k .

Send to R the signature (st ,Wt), where Wt =
{d j,t} j∈[0,n1).

Step 3: For t ∈ [0,n2), R computes δt ← [α]⊗
b`−t , ut ← ∑

n1−1
j=0 d j,t mod |C | and vt ← δt ⊗

[st ]⊗ (⊗n1−1
j=0 y

d j,t
j ). R accepts the ambiguous

signature if and only if ut ≡ H(L ,mt ,vt) mod
|C |, where t ∈ [0,n2). Otherwise, output
false.

Step 4: To convert the signer and message am-
biguous signature into a signer ambiguous sig-
nature, R computes s← α ? s` and sets d j ←
d j,`, where j ∈ [0,n1). Output the signature
(s,W ), where W = {d j} j∈[0,n1).

Verify(m,s,W ,L): Compute the intermediary val-
ues u←∑

n1−1
j=0 d j mod c and v← [s]⊗(⊗n1−1

j=0 y
d j
j ).

Output true if and only if u = H(L ,m,v). Other-
wise, output false.

Correctness. First we need to check that R accepts
a genuine signature. Thus, if (st ,Wt) is generated ac-
cording to the scheme, then we have

vt = δt ⊗ [st ]⊗ (⊗n−1
j=0y

d j,t
j )

= c⊗b−t ⊗ [βt ]⊗ [xk]
−dk,t ⊗ (⊗n−1

j=0y
d j,t
j )

= zt .

Now we need to check if the verification process re-
turns true. Hence, if the pair (s,W ) is generated
according to the scheme, then we have

v = [s]⊗ (⊗n−1
j=0y

d j
j )

= [α? s`]⊗ (⊗n−1
j=0y

d j,`
j )

= δ`⊗ [s`]⊗ (⊗n−1
j=0y

d j,`
j )

= v`.

4.2 Security Analysis

Theorems 4.1 and 4.2’s proofs are similar to Theo-
rems 3.1 and 3.2’s proofs and thus are omitted. The-
orem 4.3’s proof is provided in the full version of the
paper and is omitted due to space limitations.

Theorem 4.1. The SMAS-NKSS scheme is perfectly
signer ambiguous.
Theorem 4.2. The SMAS-NKSS scheme is perfectly
message ambiguous.
Theorem 4.3. If the following statements are true

• an EUF-CMCPA attack on the SMAS-NKSS has
non-negligible probability of success in the ROM,

• an f ∈ Z is known such that gcd(d0− d1, f ) = 1
for all d0,d1 ∈ C with d0 6= d1,

• for all i values, ui ∈G are known such that [ui] =

y f
i ,

then the homomorphism [·] can be inverted in polyno-
mial time.

5 PERFORMANCE ANALYSIS

When n1 = 1 and n2 = n both SMAS schemes become
an oblivious signature with n messages (denoted sim-
ply as SMAS). Two such signatures are described in
(Tso et al., 2008, Chen, 1994) for G = Z∗p. In ??
and table 1 we provide the reader with the perfor-
mance analysis of our scheme. In ?? the communi-
cation overhead is measured in bits, while in Table 1
the computation cost is measured in exponentiations.
We consider |p|= 3072 and |q|= 256, which accord-
ing to (Elaine, 2020) offers a security strength of 128
bits.

Table 1: Computation cost comparison.

Scheme S R V
SMAS 2n 3n+2 2

Tso et. al (Tso et al., 2008) 2n 3n+2 2
Chen (Chen, 1994) 3n 2n+10 8

In order to measure the efficiency of our SMAS
schemes, we compare them to the protocol described
in (Tso, 2016). Although the philosophy of this
scheme is a little bit different than ours, it is the clos-
est one. Again, let G= Z∗p. The results are presented
in Tables 2 and 3. Note that in Tso’s protocol, the
receiver transforms the signature into a Schnorr sig-
nature4 (Schnorr, 1989), while we transform it into
an Abe et.al signature (Abe et al., 2002). Hence, the
larger communication and computational overhead on
V ’s side.

4i.e. n1 = 1
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Table 2: Communication cost comparison.

Scheme Steps R → S S → R R → V
SMAS-KSS 2 n1|q| (n1 +1)n2|q| (n1 +1)|q|

SMAS-NKSS 2 |q| (n1 +1)n2|q| (n1 +1)|q|
Tso (Tso, 2016) 2 |q| 2n1n2|q| 2|q|

Table 3: Computation cost comparison.

Scheme S R V
SMAS-KSS 3n1n2−n2 3n1n2 +2n1 2n1

SMAS-NKSS (n1 +1)n2 (n1 +2)n2 +2 n1 +1
Tso (Tso, 2016) 2n1n2 3n1n2 +2 2

6 CONCLUSION

Our SMAS protocols are the abstraction of a large
class of protocols that allow users to sign sensible in-
formation, while maintaining the signers anonymity.
We introduced two versions, one with independently
selected public parameters and one with common
public parameters. We managed to relate the pre-
sented protocols’ security to the hardness of inverting
one-way homomorphisms.
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