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Abstract: In this work we present a novel genetic programming based iterative improvement approach for 
hardware/software cosynthesis of distributed embedded systems. The approach starts from a ready solution 
which is an embryo of a genotype. Other nodes in the genotypes are chromosomes. The chromosomes contain 
system refinement options. The final solution is obtained after evolution process and mapping genotype to 
phenotype. Unlike existing genetic programming iterative improvement methodologies our algorithm starts 
from randomly generated system. Therefore the search space is not constrained by any initial condition. It is 
also easier for the algorithm to escape local minima of optimizing parameters. 

1 INTRODUCTION 

Today a lot of devices can be solved as embedded 
systems or Internet of Things solutions (IoT). 
Examples of such devices can be: cars (Srovnal, 
Machacek, Hercik, Slaby and Srovnal, 2010), drones 
(Yoon, Anwar, Rakshit and Raychowdhury 2019), 
digital door keys (Beaufour and Bonnet 2004), 
parking management system (Tsiropoulou et al. 
2017) and many others. Nowadays a lot of such 
systems have distributed structure (Martins, Tavares, 
Solieri, Bertogna, and Pinto, 2020). The complexity 
of such systems is increasing. Therefore it is very 
important to provide appropriate methodologies to 
design of embedded systems. 

According to DeMicheli and Gupta (DeMicheli 
and Gupta 1997) exist three basic phases of designing 
of embedded systems: modelling, implementation 
and validation. Another very important problem 
appears when system works in defined structure and 
meets unexpected situation (Górski and Ogorzałek 
2016). 

Cosynthesis of distributed embedded systems 
(Yen and Wolf 1997) is a process which concurrently 
selects architecture of embedded system, assign tasks 
to the resources and schedule the tasks. Most of the 
cosynthesis methodologies can be divided on two 
groups: constructive algorithms and iterative 
improvement approaches. 

Constructive algorithms (Srinivasan and Jha, 
1995) build systems step by step making separate 
assignment decisions for each task. The advantage of 
those methodologies is low complexity. However 
such methodologies can stop in local minima of 
optimizing parameters. In (Dave, Lakshminarayana 
and Jha 1997) is presented a constructive algorithm 
that can change previously made decision, but the 
complexity of the algorithm is increasing. 

Iterative improvement methodologies (Oh, Ha, 
2002) can escape from local minima. Such an 
approaches starts from a suboptimal architecture. The 
target architecture is obtained after making local 
decisions like allocating or deallocating resources or 
changing tasks assignment. However obtained 
solutions can still be suboptimal. 

Genetic methodologies (Conner, Xie, Kandemir, 
Link and Dick, 2005) can also escape from local 
minima but often results depends on parameters 
(Dick, and Jha, 1998). Very good results obtained 
using genetic programming (Deniziak and Górski 
2008, Górski and Ogorzałek 2014a) especially 
genetic programming based adaptive methodologies 
(Górski and Ogorzałek 2014b, Górski and Ogorzałek 
2017) which can adapt to the environment during its 
work. 

In this paper we present a novel iterative 
improvement methodology for hardware/software 
cosynthesis of distributed embedded systems. The 
methodology is based on developmental genetic 
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programming (Koza, Bennett III, Lohn, Dunlap, 
Keane and Andre, 1997). Genetic programming 
evolves tree based genotypes. In the nodes of the trees 
are system creating functions. The final solution is 
created after evolution process by making genotype 
to phenotype mapping.  

2 THE NOTATION 

PE – Processing Element 
CL – Communication Link  
b – CL’s bandwidth. 
PP – Programmable Processors 
HC – Hardware Core 
T – task  
E – edge in a task graph 
G={T,E} – task graph 
Cf – cost of an embedded system 
c – cost of a task’s execution 
tij – transmission time between tasks Ti and Tj 

dij – amount of data transferred between tasks Ti and 
Tj 

t – time of a task’s execution 
n – number of tasks 
e – number of PEs in given database 
Π – number of individuals in each population 
α – parameter which controls number of individuals 

in each population 
β – parameter which controls number of individuals 

obtained by reproduction 
γ – parameter which controls number of individuals 

obtained by crossover 
δ – parameter which controls number of individuals 

obtained by mutation 
Φ – number of individuals obtained by reproduction 
Ψ – number of individuals obtained by crossover  
Ω – number of individuals obtained by mutation 
X – number of tasks in a node 
P – probability of selection operator 
r – position of an individual in a rank list 
p – number of communication links in a solution 
m – number of programmable processors in a solution 
ε – parameter which controls the stop of an algorithm 

3 ASSUMPTIONS 

Distributed embedded system is built of two kind of 
resources: Processing Elements (PEs) and 
Communication Links (CLs). PEs execute the tasks. 
CLs provides communication between connected 
PEs. Processing elements can be divided into: 

Programmable Processors (PPs) and Hardware Cores 
(HCs). PPs are universal resources and can execute 
more than one task. HCs are resources dedicated to 
execute a single task only. The cosynthesis process 
consists of: resource allocation, task assignment and 
task scheduling. Resource allocation is a phase that 
selects number and type of Processing Elements. 
Task assignment chooses appropriate PE for each 
task. In this paper we use a graph representation of 
embedded system G={T, E}. The task graph 
describes dependencies between tasks. Each node of 
the graph contains a task (T). Each edge (E) presents 
amount of data that has to be sent between two 
connected tasks. The transmission time is described 
by the following formula: 

b
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,

, 
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Where b represents a bandwidth. If two connected 
tasks are executed on the same resources, the 
transmission time is equal to 0. 
On figure 1 an example of a task graph was presented.  
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Figure 1: Example of task graph. 

The graph consists of ten nodes: T0, T1, T2, T3, T4, 
T5, T6, T7, T8 and T9. Tasks T1 and T2 can start their 
execution only after execution of T0 is terminated. T3 
starts its execution after T1. T4 and T5 can start the 
execution after T2 is executed. T7 and T8 can be 
executed after T4. T9 can start its execution after T9. 
Task T6 can start its execution after terminating 
execution of T4 or T3. The following groups of tasks: 
T1 and T2, T3, T4 and T5, T6, T7, T8 and T9 can be 
executed at the same time using another resources. 

There are four possible kinds of processing 
elements: two Programmable Processors (PP1 and 
PP2) and two Hardware Cores (HC1 and HC2). 
Processing elements can be connected by two 
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communication links (CL1 and CL2). The costs of all 
processing elements (C) and connection of  PPs to 
communication links (c) are given in the database. 
Cost of PP1 is equal to 130. Cost of PP2 is equal to 
210. Each task is characterized by the cost (c) and 
time (t) of its execution. Cost of dedicated resources 
(HC1 and HC2) is added to the cost of tasks 
execution. Cost of connecting PP1 to CL1 is equal to 
8. Cost of connection of PP1 to CL2 is equal to 18. 

Table 1: Example of resource database. 

Tas
k 

PP1 
C=130 

PP2 
C=210

HC1 HC2 

t c t c t c t c
T0 10 9 20 5 5 300 4 380
T1 35 10 14 15 6 200 9 150
T2 18 3 15 4 10 80 2 110
T3 25 5 20 8 9 250 4 300
T4 81 23 72 16 23 180 18 190
T5 13 8 10 9 4 130 5 140
T6 19 25 16 40 9 180 8 210
T7 49 6 23 19 7 200 8 160
T8 14 8 20 10 5 200 4 300
T9 28 12 32 20 8 180 6 250

CL1, 
b=2 

c=8 c=2 c=35 

CL2, 
b=12 

c=18 c=12 c=41 

 
If n presents a number of tasks to be executed by 

the system described by the graph from table1, m is a 
number of programmable processors (PPs) and p 
describes number of communication links (CLs) the 
cost of a final system (Cf) is described by the 
following formula:  
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The methodology presented in next chapter must 
find a system with the lowest Cf value which does not 
exceed the time constrains. 

4 THE APPROACH 

The presented methodology is genetic programming 
approach. Therefore at the beginning the initial 
population of genotypes must be created. The number 
of individuals in the population is described by the 
formula 3 below: 

e*n* =  (3)

 

n is a number of tasks executed by the system, e is 
a number of PEs in the database, α is given by the 

designer.  
According to genetic programming rules every 

individual is a tree. The first node in the tree is an 
embryo. In existing constructive GP based algorithms 
(Deniziak and Górski, 2008, Górski and Ogorzałek, 
2014a) embryo is a random implementation only of 
the first task. Others iterative improvement GP based 
solutions (Górski Ogorzałek 2014b) stat with the 
fastest implementation of all the tasks. Unlike others 
methodologies in presented approach embryo is 
random implementation of all the tasks. Every next 
node include number of tasks taken from the previous 
node and system building option for the tasks. Such 
an approach is also unique in GP based co-synthesis 
algorithms in which so far the number of tasks in the 
nodes was constrained (equal to 1) or determined by 
genes. The number of reassignment tasks is chosen 
randomly from 1 to X -1. The algorithm selects task 
by maximum value of the following formula: 

t)*max(c=iF  (4)

X is the number of tasks in predecessor node.  
Number of nodes and theirs positions are 

generated randomly.  
Table 2 include the options for reassignment of 

tasks. The options are divided into two groups: for 
PEs and for CLs. For PEs the following options are 
possible: the cheapest implementation of the tasks, 
the fastest implementation of the tasks, min value of 
multiply of time and cost, the same as task’s 
predecessor and the rarest used PP. For CLs the 
algorithm can choose from options: the fastest CL, the 
cheapest CL and the rarest used CL. Each option, 
either for PEs and CLs, has a probability of being 
chosen. Options a and b for PEs have probability 
0,15, option c 0,3, and options d and e 0,2. Options 
a and b for CLs have probability equal to 0,3, option 
c equal to 0,4. 

Table 2: Options for building system. 

Step Option Probability

PE a. The cheapest implementation 
of the tasks

0,15 

b. The fastest implementation of 
the tasks

0,15 

c. min (t*c) 0,3
d. The same as task’s predecessor  0,2
e. The rarest used PP 0,2 

CL  a. The fastest CL 0,3 
b. The cheapest CL 0,3
c. The rarest used 0,4

Task 
scheduling

list scheduling 
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If there is more than one task assignment to one 
PE list scheduling is used to set the tasks’ order.  

Every next generation is created using genetic 
operators: mutation, crossover and reproductions. 
The evolution process is controlled by the parameters 
β, γ, δ which value is given by the designer. Number 
of individuals created by the reproduction (Φ), 
crossover (Ψ) and mutation (Ω) are given by the 
following formulas below: 
 Φ = β*П  
 Ψ = γ*П 
 Ω = δ*П 

To have the same number of individuals in every 
population the following condition must be satisfied: 

β + γ + δ = 1         (5) 
 

Crossover randomly selects Ψ genotypes. Then 
the crossing point is chosen randomly different for 
every genotypes. Next the subtrees of the genotypes 
are substituted.  

Mutation randomly chooses Ω individuals and 
a node. Next the option in the node is substitutes on 
another from table 2.  

Reproduction selects Φ genotypes and copies 
them to a new population. Every individual has 
a probability of being chosen. The probability 
depends on a position of the individual in a rank list 
(r) as follows: 





r

P  
(6)

The approach stops calculating if in ε next 
generations better solution was not found. Parameter 
ε is given by the designer of the system. 

5 THE EXAMPLE 

On figure 2 was presented an example of a genotype. 
The genotype was generated randomly for the graph 
from figure 1. The genotype consists of 5 nodes. In 
every node (except the first one) there is an option 
from table 2 for PE and for CL. The nodes consists 
also a number of a tasks which are taken from the 
previous node. 

d/c 
4 

embryo 

a/b
5 

c/a
3 

c/b 
2 

 
Figure 2: Example of genotype. 

The first node in the genotype is an embryo. The 
embryo is random implementation of all the tasks. 
The task assignment was made as follows: PP1: T0, 
T2, T4 and T6, PP2: T1 and T8, HC1: T3 and T9, 
HC2: T5 and T7. The cost of the solution was 1335. 
and the time of execution of all the tasks 135. In the 
next node option a for PEs and option b for CLs for 5 
tasks were chosen. In the third node for 4 task option 
d for PEs and c for CLs was selected. The next node 
include options c (PEs) and a (CLs) for 3 tasks. In the 
last one node options c for PEs and b for CLs for 2 
tasks were chosen. The final cost of generated 
solution is 475 and the time of execution of all tasks 
is equal to 225. 

6 FIRSTS RESULTS 

Firsts results obtained by the algorithm described in 
this paper were compared with results obtained using  
constructive GP based algorithm for cosynthesis 
proposed by Deniziak and Górski (Deniziak and 
Górski 2008). The results were made on a benchmark 
with 10 nodes (Deniziak and Górski 2008). 
Algorithm proposed by Deniziak and Górski was 
proved to give better results than algorithm EWA for 
cosynthesis (Deniziak, 2004) which is not genetic 
approach. In table 3 the results were presented. The 
parameters were set as follows:  
α = 10, β = 0.2, δ = 0.1, γ = 0.7 ε = 5. 

Table 3: Options for building system. 

Algorithm Tmax t c generation
DGP08 1000 956 1063 4 
GP21 1000 956 788 6 
 
The maximum time constrained was set to 1000. 

Algorithm presented in this paper (GP21) generated 
solution with the same time as algorithm DGP08 
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(time was equal to 956) but with much lower time 
(equal to 788). The figure 3 presents graphical 
comparison of the results. 

 

Figure 3: Graphical presentation of obtained results. 

As it can be observed for used beenchmark 
algorithm GP21 generated result about 26% better 
than DGP08. 

7 CONCLUSIONS AND FUTURE 
WORK 

The paper presents a novel iterative improvement, 
Genetic Programming based approach for 
hardware/software cosynthesis of distributed 
embedded systems. Unlike other methodologies the 
algorithm starts from randomly generated solution. 
Therefore it is easier for the algorithm to escape from 
local minima of optimizing parameters. Starting from 
randomly generated genotype can also increase the 
search space. First results are promising, however the 
algorithm needs to be further investigated.  

The future work will concentrate on providing 
more experimental results and test the behaviour of 
proposed approach. We will also provide more 
Genetic Programing based algorithms in which we 
will investigate another system building options and 
test others genetic operators. 
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