
Genetic Programming based Iterative Improvement Algorithm for
HW/SW Cosynthesis of Distributted Embedded Systems

Adam Górski and Maciej Ogorzałek
Department of Information Technologies, Jagiellonian University in Cracow,

Prof. Stanisława Łojasiewicza 11, Cracow, Poland

Keywords: Embedded Systems, Architecture, Hardware/Software Co-Synthesis, Genetic Programming.

Abstract: In this work we present a novel genetic programming based iterative improvement approach for
hardware/software cosynthesis of distributed embedded systems. The approach starts from a ready solution
which is an embryo of a genotype. Other nodes in the genotypes are chromosomes. The chromosomes contain
system refinement options. The final solution is obtained after evolution process and mapping genotype to
phenotype. Unlike existing genetic programming iterative improvement methodologies our algorithm starts
from randomly generated system. Therefore the search space is not constrained by any initial condition. It is
also easier for the algorithm to escape local minima of optimizing parameters.

1 INTRODUCTION

Today a lot of devices can be solved as embedded
systems or Internet of Things solutions (IoT).
Examples of such devices can be: cars (Srovnal,
Machacek, Hercik, Slaby and Srovnal, 2010), drones
(Yoon, Anwar, Rakshit and Raychowdhury 2019),
digital door keys (Beaufour and Bonnet 2004),
parking management system (Tsiropoulou et al.
2017) and many others. Nowadays a lot of such
systems have distributed structure (Martins, Tavares,
Solieri, Bertogna, and Pinto, 2020). The complexity
of such systems is increasing. Therefore it is very
important to provide appropriate methodologies to
design of embedded systems.

According to DeMicheli and Gupta (DeMicheli
and Gupta 1997) exist three basic phases of designing
of embedded systems: modelling, implementation
and validation. Another very important problem
appears when system works in defined structure and
meets unexpected situation (Górski and Ogorzałek
2016).

Cosynthesis of distributed embedded systems
(Yen and Wolf 1997) is a process which concurrently
selects architecture of embedded system, assign tasks
to the resources and schedule the tasks. Most of the
cosynthesis methodologies can be divided on two
groups: constructive algorithms and iterative
improvement approaches.

Constructive algorithms (Srinivasan and Jha,
1995) build systems step by step making separate
assignment decisions for each task. The advantage of
those methodologies is low complexity. However
such methodologies can stop in local minima of
optimizing parameters. In (Dave, Lakshminarayana
and Jha 1997) is presented a constructive algorithm
that can change previously made decision, but the
complexity of the algorithm is increasing.

Iterative improvement methodologies (Oh, Ha,
2002) can escape from local minima. Such an
approaches starts from a suboptimal architecture. The
target architecture is obtained after making local
decisions like allocating or deallocating resources or
changing tasks assignment. However obtained
solutions can still be suboptimal.

Genetic methodologies (Conner, Xie, Kandemir,
Link and Dick, 2005) can also escape from local
minima but often results depends on parameters
(Dick, and Jha, 1998). Very good results obtained
using genetic programming (Deniziak and Górski
2008, Górski and Ogorzałek 2014a) especially
genetic programming based adaptive methodologies
(Górski and Ogorzałek 2014b, Górski and Ogorzałek
2017) which can adapt to the environment during its
work.

In this paper we present a novel iterative
improvement methodology for hardware/software
cosynthesis of distributed embedded systems. The
methodology is based on developmental genetic

120
Górski, A. and Ogorzałek, M.
Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems.
DOI: 10.5220/0010391501200125
In Proceedings of the 10th International Conference on Sensor Networks (SENSORNETS 2021), pages 120-125
ISBN: 978-989-758-489-3
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

programming (Koza, Bennett III, Lohn, Dunlap,
Keane and Andre, 1997). Genetic programming
evolves tree based genotypes. In the nodes of the trees
are system creating functions. The final solution is
created after evolution process by making genotype
to phenotype mapping.

2 THE NOTATION

PE – Processing Element
CL – Communication Link
b – CL’s bandwidth.
PP – Programmable Processors
HC – Hardware Core
T – task
E – edge in a task graph
G={T,E} – task graph
Cf – cost of an embedded system
c – cost of a task’s execution
tij – transmission time between tasks Ti and Tj

dij – amount of data transferred between tasks Ti and
Tj

t – time of a task’s execution
n – number of tasks
e – number of PEs in given database
Π – number of individuals in each population
α – parameter which controls number of individuals

in each population
β – parameter which controls number of individuals

obtained by reproduction
γ – parameter which controls number of individuals

obtained by crossover
δ – parameter which controls number of individuals

obtained by mutation
Φ – number of individuals obtained by reproduction
Ψ – number of individuals obtained by crossover
Ω – number of individuals obtained by mutation
X – number of tasks in a node
P – probability of selection operator
r – position of an individual in a rank list
p – number of communication links in a solution
m – number of programmable processors in a solution
ε – parameter which controls the stop of an algorithm

3 ASSUMPTIONS

Distributed embedded system is built of two kind of
resources: Processing Elements (PEs) and
Communication Links (CLs). PEs execute the tasks.
CLs provides communication between connected
PEs. Processing elements can be divided into:

Programmable Processors (PPs) and Hardware Cores
(HCs). PPs are universal resources and can execute
more than one task. HCs are resources dedicated to
execute a single task only. The cosynthesis process
consists of: resource allocation, task assignment and
task scheduling. Resource allocation is a phase that
selects number and type of Processing Elements.
Task assignment chooses appropriate PE for each
task. In this paper we use a graph representation of
embedded system G={T, E}. The task graph
describes dependencies between tasks. Each node of
the graph contains a task (T). Each edge (E) presents
amount of data that has to be sent between two
connected tasks. The transmission time is described
by the following formula:

b

d
t ji

ji
,

, 

(1)

Where b represents a bandwidth. If two connected
tasks are executed on the same resources, the
transmission time is equal to 0.
On figure 1 an example of a task graph was presented.

T2

T0

T1

T4 T5

40 24 4

18 6

T8 T9

27 12

T3

T7 T6

26
10

36

Figure 1: Example of task graph.

The graph consists of ten nodes: T0, T1, T2, T3, T4,
T5, T6, T7, T8 and T9. Tasks T1 and T2 can start their
execution only after execution of T0 is terminated. T3
starts its execution after T1. T4 and T5 can start the
execution after T2 is executed. T7 and T8 can be
executed after T4. T9 can start its execution after T9.
Task T6 can start its execution after terminating
execution of T4 or T3. The following groups of tasks:
T1 and T2, T3, T4 and T5, T6, T7, T8 and T9 can be
executed at the same time using another resources.

There are four possible kinds of processing
elements: two Programmable Processors (PP1 and
PP2) and two Hardware Cores (HC1 and HC2).
Processing elements can be connected by two

Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems

121

communication links (CL1 and CL2). The costs of all
processing elements (C) and connection of PPs to
communication links (c) are given in the database.
Cost of PP1 is equal to 130. Cost of PP2 is equal to
210. Each task is characterized by the cost (c) and
time (t) of its execution. Cost of dedicated resources
(HC1 and HC2) is added to the cost of tasks
execution. Cost of connecting PP1 to CL1 is equal to
8. Cost of connection of PP1 to CL2 is equal to 18.

Table 1: Example of resource database.

Tas
k

PP1
C=130

PP2
C=210

HC1 HC2

t c t c t c t c
T0 10 9 20 5 5 300 4 380
T1 35 10 14 15 6 200 9 150
T2 18 3 15 4 10 80 2 110
T3 25 5 20 8 9 250 4 300
T4 81 23 72 16 23 180 18 190
T5 13 8 10 9 4 130 5 140
T6 19 25 16 40 9 180 8 210
T7 49 6 23 19 7 200 8 160
T8 14 8 20 10 5 200 4 300
T9 28 12 32 20 8 180 6 250

CL1,
b=2

c=8 c=2 c=35

CL2,
b=12

c=18 c=12 c=41

If n presents a number of tasks to be executed by

the system described by the graph from table1, m is a
number of programmable processors (PPs) and p
describes number of communication links (CLs) the
cost of a final system (Cf) is described by the
following formula:


 


p

z

P

y
PCCL

n

l
l

m

k
PEf

z

kzk
ccCC

1 1
,

11

 (2)

The methodology presented in next chapter must
find a system with the lowest Cf value which does not
exceed the time constrains.

4 THE APPROACH

The presented methodology is genetic programming
approach. Therefore at the beginning the initial
population of genotypes must be created. The number
of individuals in the population is described by the
formula 3 below:

e*n* = (3)

n is a number of tasks executed by the system, e is
a number of PEs in the database, α is given by the

designer.
According to genetic programming rules every

individual is a tree. The first node in the tree is an
embryo. In existing constructive GP based algorithms
(Deniziak and Górski, 2008, Górski and Ogorzałek,
2014a) embryo is a random implementation only of
the first task. Others iterative improvement GP based
solutions (Górski Ogorzałek 2014b) stat with the
fastest implementation of all the tasks. Unlike others
methodologies in presented approach embryo is
random implementation of all the tasks. Every next
node include number of tasks taken from the previous
node and system building option for the tasks. Such
an approach is also unique in GP based co-synthesis
algorithms in which so far the number of tasks in the
nodes was constrained (equal to 1) or determined by
genes. The number of reassignment tasks is chosen
randomly from 1 to X -1. The algorithm selects task
by maximum value of the following formula:

t)*max(c=iF (4)

X is the number of tasks in predecessor node.
Number of nodes and theirs positions are

generated randomly.
Table 2 include the options for reassignment of

tasks. The options are divided into two groups: for
PEs and for CLs. For PEs the following options are
possible: the cheapest implementation of the tasks,
the fastest implementation of the tasks, min value of
multiply of time and cost, the same as task’s
predecessor and the rarest used PP. For CLs the
algorithm can choose from options: the fastest CL, the
cheapest CL and the rarest used CL. Each option,
either for PEs and CLs, has a probability of being
chosen. Options a and b for PEs have probability
0,15, option c 0,3, and options d and e 0,2. Options
a and b for CLs have probability equal to 0,3, option
c equal to 0,4.

Table 2: Options for building system.

Step Option Probability

PE a. The cheapest implementation
of the tasks

0,15

b. The fastest implementation of
the tasks

0,15

c. min (t*c) 0,3
d. The same as task’s predecessor 0,2
e. The rarest used PP 0,2

CL a. The fastest CL 0,3
b. The cheapest CL 0,3
c. The rarest used 0,4

Task
scheduling

list scheduling

SENSORNETS 2021 - 10th International Conference on Sensor Networks

122

If there is more than one task assignment to one
PE list scheduling is used to set the tasks’ order.

Every next generation is created using genetic
operators: mutation, crossover and reproductions.
The evolution process is controlled by the parameters
β, γ, δ which value is given by the designer. Number
of individuals created by the reproduction (Φ),
crossover (Ψ) and mutation (Ω) are given by the
following formulas below:
 Φ = β*П
 Ψ = γ*П
 Ω = δ*П

To have the same number of individuals in every
population the following condition must be satisfied:

β + γ + δ = 1 (5)

Crossover randomly selects Ψ genotypes. Then
the crossing point is chosen randomly different for
every genotypes. Next the subtrees of the genotypes
are substituted.

Mutation randomly chooses Ω individuals and
a node. Next the option in the node is substitutes on
another from table 2.

Reproduction selects Φ genotypes and copies
them to a new population. Every individual has
a probability of being chosen. The probability
depends on a position of the individual in a rank list
(r) as follows:





r

P
(6)

The approach stops calculating if in ε next
generations better solution was not found. Parameter
ε is given by the designer of the system.

5 THE EXAMPLE

On figure 2 was presented an example of a genotype.
The genotype was generated randomly for the graph
from figure 1. The genotype consists of 5 nodes. In
every node (except the first one) there is an option
from table 2 for PE and for CL. The nodes consists
also a number of a tasks which are taken from the
previous node.

d/c
4

embryo

a/b
5

c/a
3

c/b
2

Figure 2: Example of genotype.

The first node in the genotype is an embryo. The
embryo is random implementation of all the tasks.
The task assignment was made as follows: PP1: T0,
T2, T4 and T6, PP2: T1 and T8, HC1: T3 and T9,
HC2: T5 and T7. The cost of the solution was 1335.
and the time of execution of all the tasks 135. In the
next node option a for PEs and option b for CLs for 5
tasks were chosen. In the third node for 4 task option
d for PEs and c for CLs was selected. The next node
include options c (PEs) and a (CLs) for 3 tasks. In the
last one node options c for PEs and b for CLs for 2
tasks were chosen. The final cost of generated
solution is 475 and the time of execution of all tasks
is equal to 225.

6 FIRSTS RESULTS

Firsts results obtained by the algorithm described in
this paper were compared with results obtained using
constructive GP based algorithm for cosynthesis
proposed by Deniziak and Górski (Deniziak and
Górski 2008). The results were made on a benchmark
with 10 nodes (Deniziak and Górski 2008).
Algorithm proposed by Deniziak and Górski was
proved to give better results than algorithm EWA for
cosynthesis (Deniziak, 2004) which is not genetic
approach. In table 3 the results were presented. The
parameters were set as follows:
α = 10, β = 0.2, δ = 0.1, γ = 0.7 ε = 5.

Table 3: Options for building system.

Algorithm Tmax t c generation
DGP08 1000 956 1063 4
GP21 1000 956 788 6

The maximum time constrained was set to 1000.

Algorithm presented in this paper (GP21) generated
solution with the same time as algorithm DGP08

Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems

123

(time was equal to 956) but with much lower time
(equal to 788). The figure 3 presents graphical
comparison of the results.

Figure 3: Graphical presentation of obtained results.

As it can be observed for used beenchmark
algorithm GP21 generated result about 26% better
than DGP08.

7 CONCLUSIONS AND FUTURE
WORK

The paper presents a novel iterative improvement,
Genetic Programming based approach for
hardware/software cosynthesis of distributed
embedded systems. Unlike other methodologies the
algorithm starts from randomly generated solution.
Therefore it is easier for the algorithm to escape from
local minima of optimizing parameters. Starting from
randomly generated genotype can also increase the
search space. First results are promising, however the
algorithm needs to be further investigated.

The future work will concentrate on providing
more experimental results and test the behaviour of
proposed approach. We will also provide more
Genetic Programing based algorithms in which we
will investigate another system building options and
test others genetic operators.

REFERENCES

Srovnal V. Jr, Machacek, Z. Hercik, R., Slaby, R., Srovnal,
V., 2010. Intelligent car control and recognition
embedded system. In Proceedings of the International
Multi- conference on Computer Science and
Information Technology, pp. 831–836.

Yoon I., Anwar A., Rakshit T., Raychowdhury A., 2019.
Transfer and online reinforcement learning in STT-
Mram based embedded systems for autonomous

drones. In 2019 Design, Automation & Test in Europe
Conference & exhibition (DATE)., pp.1489-1494, IEEE.

Martins J., Tavares A., Solieri M., Bertogna M., Pinto S.,
2020. Bao: A lightweight static partitioning hypervisor
for modern Multi-Core Embedded Systems. In
Workshop on Next Generation Real-Time Systems

L. Sun, L. Zhang, D., Li, B., Guo, B., Li, S., 2010. Activity
recognition on an accelerome- ter embedded mobile
phone with varying positions and orientations. In Zhi-
wen Yu, Ramiro Liscano, Guanling Chen, Daqing
Zhang, Xingshe Zhou (Eds.), Ubiquitous Intelligence
and Computing, Lecture Notes in Computer Sciences,
6406, pp. 548–562, Springer, Xi’an, China.

Beaufour, A., and Bonnet, P.,2004 Personal Servers as
Digital Keys. In Proceedings of the 2nd IEEE
International Conf. of Pervasive Computing and
Communications (PerCom).

Tsiropoulou, E. E., Baras, J. S., Papavassiliou S. and Sinha,
S., 2017. RFID-based smart parking management
system. In Cyber-Physical Systems, Vol.3, pp.22-41.

De Micheli, G., Gupta, R., 1997. Hardware/software
co-design. In Proceedings IEEE 95.3 (Mar). IEEE.

Górski, A., Ogorzałek, M.J., 2016. Assignment of
unexpected tasks in embedded system design process.
Microprocessors and Microsystems, Vol. 44, pp. 17-21,
Elsevier.

Yen, T., Wolf, W., 1995. Sensivity-Driven Co-Synthesis of
Distributed Embedded Systems. In Proceedings of the
International Symposium on System Synthesis.

Srinivasan, S., Jha, N.K., 1995. "Hardware-Software Co-
Synthesis of Fault-Tolerant Real-Time Distributed
Embedded Systems", In Proceedings European Design
Automation Conference. pp. 334-339.

Dave, B., Lakshminarayana, G., Jha, N., 1997. COSYN:
Hardware/software Co-synthesis of Embedded
Systems. In Proceedings of the34th annual Design
Automation Conference (DAC’97).

Oh, H., Ha, S., 2002. Hardware-software cosynthesis of
multi-mode multi-task embedded systems with real-time
constraints. In Proceedings of the International Work-
shop on Hardware/Software Codesign, pp.133–138.

Dick, R., P., Jha, N., K., 1998. MOGAC: a multiobjective
Genetic algorithm for the Co-Synthesis of
Hardware-Software Embedded Systems. In IEEE
Trans. on Computer Aided Design of Integrated
Circiuts and systems, vol. 17, No. 10.

Conner, J., Xie, Y., Kandemir, R., Link, G., Dick, R., 2005.
FD-HGAC: AHybrid Heuristic/Genetic Algorithm
Hardware/Software Co-synthesis Framework with
Fault Detection. In Proceedings of Asia South Pacific
Design Automation Conf. (ASP-DAC), pp. 709-712.

Deniziak, S., Górski, A., 2008. Hardware/Software Co-
Synthesis of Distributed Embedded Systems Using
Genetic programming. In Proceedings of the 8th
International Conf. Evolvable Systems: From Biology
to Hardware, ICES 2008. Lecture Notes in Computer
Science, Vol. 5216. SPRINGER-VERLAG.

Górski, A., Ogorzałek, M.J., 2014a. Adaptive GP-based
algorithm for hardware/software co-design of
distributed embedded systems. In Proceedings of the

0

500

1000

1500

DGP08 GP21

SENSORNETS 2021 - 10th International Conference on Sensor Networks

124

4th International Conf. on Pervasive and Embedded
Computing and Communication Systems, Portugal.

Górski, A., Ogorzałek, M.J., 2014b. Iterative improvement
methodology for hardware/software co-synthesis of
embedded systems using genetic programming. In
Proceedings of the 11th Conf. on Embedded Software
and Systems (Work in Progress Session), Paris, France.

Górski, A., Ogorzałek, M.J., 2017. Adaptive iterative
improvement GP-based methodology for HW/SW co-
synthesis of embedded systems. In Proceedings of the 7th
International Joint Conf. on Pervasive and Embedded
Computing and Communication Systems, Madrid, Spain.

Koza, J., R., Bennett III, F., H., Lohn, j., Dunlap, F., Keane,
M., A., Andre, D., 1997. Automated synthesis of
computational circuits using genetic programming. In
Proceedings of the IEEE Conf. on Evolutionary
Computation. IEEE.

Deniziak, S., 2004. Cost-efficient synthesis of
multiprocessor heterogeneous systems. In Control and
Cybernetics, Vol.33, No. 2, pp.341-355.

Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems

125

