
FUSION: Feature-based Processing of Heterogeneous Documents for
Automated Information Extraction

Michael Sildatke1, Hendrik Karwanni1, Bodo Kraft1 and Albert Zündorf2

1FH Aachen, University of Applied Sciences, Germany
2University of Kassel, Germany

Keywords: Architectural Design, Refactoring and Patterns, Model-driven Software Engineering, Process Modeling,
Quality Management, Software and Systems Modeling, Enterprise Information Systems, Information
Extraction, Document Classification, Feature Detection, Software Metrics and Measurement.

Abstract: Information Extraction (IE) processes are often business-critical, but very hard to automate due to a het-
erogeneous data basis. Specific document characteristics, also called features, influence the optimal way of
processing. Architecture for Automated Generation of Distributed Information Extraction Pipelines (AR-
TIFACT) supports businesses in successively automating their IE processes by finding optimal IE pipelines.
However, ARTIFACT treats each document the same way, and does not enable document-specific process-
ing. Single solution strategies can perform extraordinarily well for documents with particular traits. While
manual approvals are superfluous for these documents, ARTIFACT does not provide the opportunity for Fully
Automatic Processing (FAP). Therefore, we introduce an enhanced pattern that integrates an extensible and
domain-independent concept of feature detection based on microservices. Due to this, we create two fun-
damental benefits. First, the document-specific processing increases the quality of automated generated IE
pipelines. Second, the system enables FAP to eliminate superfluous approval efforts.

1 INTRODUCTION

In many businesses, heterogeneous and human-
readable documents are the input of underlying Infor-
mation Extraction (IE) processes. Due to an unstruc-
tured data basis, classic Extract, Transform, Load
(ETL) technologies reach their limits. Environments
may change rapidly so that the number of different
formats increases over time. Flexible architectures are
the basis for businesses to react to those changes at an
early stage.

The IE processes include different tasks, like doc-
ument conversion, element decomposition and infor-
mation extraction. Single software components can
solve specific tasks, while their composition results in
document processing pipelines. Architecture for Au-
tomated Generation of Distributed Information Ex-
traction Pipelines (ARTIFACT) provides an architec-
ture that enables the separation of concerns and the
automated generation of IE pipelines. Due to auto-
matic quality determination mechanisms, the archi-
tecture finds the global best pipelines for extracting
specific information on its own.

But in practice, specific document characteristics,

also called features, can limit the set of possible so-
lution strategies. If a document does not contain ta-
bles, e.g., any table-based extraction strategies will
not be suitable for that document. In this case, the
global best pipeline does not need to be the optimal
document-specific pipeline. Therefore, opportunity
costs may arise if the system does not consider these
document features during automated pipeline gener-
ation. Furthermore, pipelines can reach excellent re-
sults for documents with specific characteristics. In
these cases, manual checks at the end of the auto-
matic process are superfluous, and Fully Automatic
Processing (FAP) is possible.

This paper extends the ARTIFACT pattern to en-
able the system to consider critical features during
the automated pipeline generation. This way, we en-
sure that the provided system always generates the
best document-specific pipeline. Furthermore, we
empower the provided system to FAP of documents.
Hence, our extension increases business value and
eliminates superfluous efforts for manual approvals.

The paper is structured as follows: Section 2
describes the project that motivates our approach.
Section 3 describes related works, while Section 4

250
Sildatke, M., Karwanni, H., Kraft, B. and Zündorf, A.
FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction.
DOI: 10.5220/0011351100003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 250-260
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

presents the key concepts of ARTIFACT as the ar-
chitectural basis. Section 5 introduces Feature Based
Processing of Heterogeneous Documents for Auto-
mated Information Extraction (FUSION). Section 6
describes the experimental evaluation of FUSION in
the real-world project, while Section 7 summarizes
the paper and gives an overview of future work.

2 MOTIVATION

The introduced pattern is domain-independent and es-
pecially applicable to any domain with a lack of doc-
ument standards. The German energy industry serves
as an example to motivate the extension of ARTI-
FACT. Due to its microservice-based architecture and
generic concepts, the approach ensures extension of
scope and the adaptability for other domains.

Service providers collect product information
from about 3,150 energy suppliers with 15,000 differ-
ent electricity or gas products. Since there is no stan-
dard, the published documents containing informa-
tion about these products have various formats. The
document basis, therefore, is heterogeneous, and ser-
vice providers mostly have to extract this information
by hand, e.g., product prices.

ARTIFACT handles every document equally and
does not consider any document-specific characteris-
tics. But in practice, these characteristics, also called
features, are metadata that can influence the optimal
way of processing. While these features are mostly ir-
relevant for human extractors, they are critical for au-
tomated IE. Depending on these features, the process-
ing system should choose different solution strate-
gies. Thus, knowledge about these features and their
consideration during pipeline generation can strongly
support the success of automated IE.

Documents can have technical (domain-
independent), and content-based (domain-specific)
features. The following list contains typical technical
features of documents:

• Presence or absence of price tables. If price ta-
bles are present, pipelines will have to integrate
specific table decomposition components. Also,
they need particular extractors that have table el-
ements as input. In case of the absence of tables,
the pipeline should integrate any non-table-based
extractors.

• Scanned or screenshot documents. If a doc-
ument is scanned or screenshot, specific pre-
processing steps will be necessary. These steps
can, e.g., be content aligning or OCR-processing.

• Page segmentation. If the document has differ-
ent columns organizing the content, e.g., if the

document is a booklet, pipelines will have to inte-
grate specific segmentation decomposers to keep
the correct content ordering.

There are also different content-based features. In
the case of the underlying research project originating
from the German energy industry, the following list
contains an exemplary set of typical ones:

• The number of listed products. A document can
list one or more products. If there is only one
product, it is clear where the presented informa-
tion belongs. If there are several products, infor-
mation has to be related to the correct product.

• Price representations. Prices can have differ-
ent representations. While gross and net prices
are common in every domain, there can be more
domain-specific representations, e.g., net exclud-
ing transportation. Automated extractors have to
understand that all representations belong to the
same price.

• Consumption-based prices. Products can have
consumption-based prices. If customers consume
2.500 kWh per year, e.g., they will have to pay
25.45 ct/kWh. If they consume more than 2.500
kWh per year, they will have to pay 26.34 ct/kWh.
Hence, extractors have to extract additional infor-
mation besides the actual prices.

• Time-variable prices. Products can have time-
variable prices. The price for a consumed kWh
can be 26.34 cents between 06:00 and 22:00, e.g.,
and 25.54 cents between 22:00 and 6:00. Au-
tomated Extractors have to recognize these time
windows to extract prices correctly.

• Presence or absence of previous prices. Some
suppliers provide previous prices belonging to a
product to have a price comparison. These prices
are irrelevant, and automated extractors have to
ignore them during extraction.

• Presence or absence of regional limits. Some
suppliers limit their products to specific regions.
The presence of this information may require ad-
ditional extraction steps.

Based on related features, there are certain document
groups. All members of a particular group have simi-
lar characteristics (cf. Figure 1).

PDF

Group A
Document

Features
● has_tables: true
● ...

Features
● has_tables: false
● ...

Group B
Document

Figure 1: Feature-Based Document Group Examples.

FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction

251

Related document features can influence the optimal
way of processing. A group A document, e.g., re-
quires table-based, while a group B document requires
text-based processing strategies.

Furthermore, specific document groups may have
the potential of FAP because particular strategies may
perform extraordinarily well on them. If a document
only lists one product in a simple price representation,
e.g., less complex processing strategies may always
achieve correct results.

Hence, the automatic detection of document fea-
tures can enable document-specific processing and
supports the automated IE from very heterogeneous
data. Additionally, the knowledge about certain fea-
tures can enable FAP.

3 RELATED WORK

The challenges mentioned are primarily related to the
fields of Business Process Automation (BPA), docu-
ment classification, IE, as well as agile development.

Business Process Management (BPM) is a dis-
cipline that combines knowledge from information
technology and management science to organize busi-
ness processes efficiently (van der Aalst, 2004).
Workflow Management (WFM) systems (Jablonski
and Bussler, 1996) or Process-Aware Information
Systems (PAISs) (Dumas et al., 2005), e.g., focus on
the best operational support for BPM.

Modern techniques like Robotic Process Automa-
tion (RPA) support the automation of business pro-
cesses. RPA replaces human interactions with robots
by automating manual inputs into the Graphical User
Interface (GUI) of an enterprise system (Ivančić et al.,
2019). In RPA systems, robots learn rule-based be-
haviors by observing users interacting with affected
systems (Aguirre and Rodriguez, 2017).

However, the underlying problem deals with an
infinite set of possible document formats, so rule-
based solution strategies are insufficient.

The developed system needs the ability of docu-
ment classification to aim at document-specific pro-
cesses. Document classification has a long history,
and the first findings originate from the 1960s (Borko
and Bernick, 1963, e.g.). In the area of text classifi-
cation, it deals with the automated assigning of cate-
gories to a text document based on specific terms, also
called features (Sebastiani, 2002).

Different algorithms solve feature-based text clas-
sification, e.g., k-nearest-neighbor (Jiang et al., 2012)
or support vector machines (Lilleberg et al., 2015).
However, these approaches and algorithms deal with
problems in which the detection of features is less rel-

evant and the classification itself is the focus.
Furthermore, the presented system must detect

features from non-machine-readable PDF documents
to solve the underlying problem. Also, the detection
of (non-)text-based features is relevant for determin-
ing critical characteristics of a document, e.g., the
presence or absence of tables. Therefore, the intro-
duced approach deals with problems in which the fea-
ture detection itself is the most relevant task.

IE deals with extracting structured information
from unstructured text (Cardie, 1997) and ETL pro-
cesses focus on the automation of extraction pipelines
(Albrecht and Naumann, 2008). Classic ETL tech-
nologies especially can handle structured data (Sk-
outas and Simitsis, 2006). (Schmidts et al., 2019),
e.g., introduce an approach to process semi-structured
tables in a well-defined format. Since the underlying
problems deal with the processing of non-machine-
readable PDF documents, such approaches are not
sufficient. Furthermore, Ontology-Based Information
Extraction (OBIE) systems focus on the IE from un-
structured text (Saggion et al., 2007), but are not de-
signed for the IE from PDF documents (Wimalasuriya
and Dou, 2010).

The combination of document classification and
IE can support implementing more efficient automa-
tion processes (Liu and Ng, 1996). Characteristics of
features may change over time or new features can
get relevant for classification tasks. Furthermore, on-
going research leads to many upcoming approaches
for classification or IE tasks. In table analysis, e.g.,
several hundred approaches arose in 2019 (Hashmi
et al., 2021). Agile development approaches like Ex-
treme Programming or Scrum allow fast prototyping
of new approaches and form the basis for flexible de-
velopment processes (Beck, 2003; Rubin, 2012). Ad-
ditionally, these approaches can ensure short feedback
loops and form the basis for continuously measuring
business-relevant quality metrics (Fowler, 2013).

Emergent architectures can enable evolution by
adding code to ensure the adaption of new situations
(Hanson and Sussman, 2021). Also, concepts like
Domain-driven Design (DDD) require modular soft-
ware (Tarr et al., 1999; Evans and Evans, 2004).
(Newman, 2015) points out that microservices and
Microservice Architecture (MSA) can form a basis
for implementing modular and flexible software.

Derived from the aforementioned findings, the in-
troduced approach uses ARTIFACT as its basis. AR-
TIFACT provides a microservice-based architecture
that integrates business metrics and the flexible de-
sign of IE pipelines (Sildatke et al., 2022). Section 4
describes its concepts and the potential for extension
resulting from the underlying problem.

ICSOFT 2022 - 17th International Conference on Software Technologies

252

Component
Registry

Converters

Decomposers

Extractors

Developer

Specific
Component

Pipeline
Builder

Push Inform

Possible
Pipelines

Generate
& Test

Gold-Data

Component
Registry

Push

Pipeline
Qualities

Document
Processor

PDF

Input
Document

Request
extraction

Best Pipeline

Extract

Quality Determination Phase Production PhaseDevelopment Phase Trigger Dev

Figure 2: Overview of the ARTIFACT Pattern.

4 ARTIFACT PATTERN

Figure 2 shows an overview of the core building
blocks of the ARTIFACT pattern.

In ARTIFACT, a pipeline consists of converters,
decomposers and extractors, each representing a mi-
croservice. An extractor is always the last component
of a pipeline and its result is specific information. De-
velopers can develop new components and push them
into the component registry, which manages all avail-
able components.

The pipeline builder can build all possible
pipelines automatically with available components. It
also tests all potential pipelines against a set of gold
documents to determine the quality of each potential
pipeline. The component registry can extract spe-
cific information in the production phase with the best
available pipeline based on the determined qualities.
Every time the component registry has an update, it
will initiate the quality determination, e.g., triggered
by the push of a new component.

Since the test data has to represent real-world con-
ditions, there may be constellations in which a spe-
cific document type dominates, e.g., documents con-
taining tables. In this case, the determination of the
global-best pipeline tends to select a suitable one for
the dominating document type (cf. Figure 3).

PDF
PDF

PDF
PDF

PDF

Type A
(60%)

Gold-Data Pipeline
Builder

Test
Pipelines

Best (Type A)

Global-
Best Pipeline

Best (Type B)

Type B
(40%)

Figure 3: Biased Determination of Global Best Pipelines.

Due to this, executing the global best pipeline may
not always be the optimal document-specific solution.
Suitable document-specific pipelines may exist, while
the systems will not take them into account following
the concept of ARTIFACT (cf. Figure 4)

Component
Registry

Type B Correct

WrongExecuted Global-
Best Pipeline

Document-Specific
Best Pipeline

Figure 4: Document-Specific Best Pipeline Not Picked.

In ARTIFACT, a higher-level BPMN process con-
trols the overall IE process. The last task of this pro-
cess is a manual approval step that makes human in-
teraction mandatory. Due to this process configura-
tion, the implementation of FAP without any manual
effort is not possible. To address these challenges, the
provided approach extends the ARTIFACT pattern. It
empowers the system to generate document-specific
pipelines and creates the ability for FAP.

5 FUSION PATTERN

The following section introduces the FUSION pattern
as an extension of ARTIFACT, while Figure 5 shows
the building blocks. FUSION enables automated
feature detection for input documents by providing
the feature detector registry microservice. The label
extender and feature matcher microservices ensure
the automated generation of best document-specific
pipelines. Based on the ARTIFACT core, developers
can continuously extend the system.

Hence, it combines the concepts of document-
specific processing and feature-based quality determi-
nation. The following subsections introduce the core
concepts of FUSION.

5.1 Label Extension

Since document features are relevant for generating
the optimal document-based pipeline, they have to be
part of gold documents. To take features into account

FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction

253

Input
Document

DeveloperARTIFACT Core (Black Box)ARTIFACT Core (Black Box)

FUSION

Feature Detector
Registry

Label
Extender

Feature
Matcher

Document-Specific
Processing

Feature-Based
Quality Determination

Figure 5: Core Components of FUSION.

when determining pipeline qualities, we manually ex-
tend the base gold standard data as shown in Figure 6.

Processed
Documents

PDFPDFPDFPDFPDFPDFPDFPDFPDFPDFPDFPDF

Extracted
Information

Gold Data

+
Document
Features

+
feature_1

...

...

...
feature_n

feature_1
...

...

...
feature_n

feature_1
...

...

...
feature_n

FUSION ARTIFACT

Figure 6: Feature Labels in Gold-Standard.

To find appropriate document groups, the system
requires information about suitable pipelines for each
gold standard document. To achieve this, FUSION
adapts the pipeline quality determination mechanism
of ARTIFACT to automatically extend the set of gold
data with required pipeline labels (cf. Figure 7).

Label Extender
(prev. Pipeline

Quality Determiner)

Test

Gold
Data

Pipeline
Builder

...

...

...
feature_n PDF

feature_1
...

...

...
feature_n

...

...

...
feature_n PDF

feature_1
...

...

...
feature_n

...

Extended
Gold Documents

Create

Possible
Pipelines

Gold-
Document 1

Suitable
Pipelines

Gold-
Document n

Suitable
Pipelines

Figure 7: Result of the Label Extender.

To extend the set of gold data, the pipeline builder
generates all possible pipelines and sends them to the
label extender. Afterwards, the label extender tests
each pipeline against each gold document. As a re-
sult, it automatically creates a list of extended gold
documents, while each extended gold document now
stores a list of suitable pipelines.

5.2 Feature Matching

The overall goal of the feature matcher is to find the
best feature-based pipelines. In other words, it deter-

mines which pipeline the system will have to choose
in production if an unknown input document has a
specific set of features. Therefore, the feature matcher
matches relevant features from extended gold docu-
ments to an ordered set of optimal pipelines (cf. Fig-
ure 8).

Label Extender

Feature-Based
Pipeline Qualities

Feature Matcher

Extended Gold Docs

...

...

...
feature_n

feature_1
...

...

...
feature_n

Feature-
Combination 1

Pipelines
with Qualities

80%

35%
...

...

...

...
feature_n

feature_1
...

...

...
feature_n

Feature-
Combination m

Pipelines
with Qualities

75%

15%
...

...

Create

Figure 8: Result of the Feature Matcher.

Due to adaptability, developers can implement any
suitable matching strategy, depending on the spe-
cific problem. In the introduced project, the feature
matcher implements a rule-based strategy that builds
all possible and unique combinations of boolean fea-
tures.

If it knows the relevant features, the system will
be able to find the optimal pipeline for an unknown
input document using feature matching.

5.3 Feature Detection

FUSION introduces automated feature detection to
determine the relevant features of an input document.

To achieve this, developers can implement differ-
ent feature detectors that detect the value of a specific
feature for any input document (cf. Figure 9).

Detection
 Request

Feature Detector

Detected
ValuePDF

Input Document

Figure 9: In- and Output of a Feature Detector.

A feature detector is a microservice that consumes
a specific type of document and detects the value of
a particular feature, e.g., the presence or absence of
tables in a PDF document.

FUSION also introduces a feature detector reg-
istry, where developers can deploy feature detectors.
The feature detector registry manages all available
feature detectors and ensures that a registering detec-
tor meets all quality requirements. For this, the reg-
istry requests the feature detector quality determiner
(cf. Figure 10).

ICSOFT 2022 - 17th International Conference on Software Technologies

254

Feature Detector
Registry

Feature
Detectors

Feature
Detector

Feature Detector
Quality Determiner

Register
Request
Quality

Figure 10: Registration to the Feature Detector Registry.

Domain experts or managers can define the neces-
sary quality criteria, as shown in Table 1.

Table 1: Quality Criteria for Relevant Features.

Information Required Quality
GLOBAL 85%

Specific Criteria for Feature 1 90%
... ...

Specific Criteria for Feature n 75%

A GLOBAL setting defines the required quality for all
features that experts can overwrite to define specific
criteria for particular features if necessary.

To determine the quality of a specific feature de-
tector, the feature detector quality determiner tests
this detector against each gold document (cf. Fig-
ure 11).

Feature Detector
Quality Determiner

Feature
Detector

Gold-Data

Detector
Quality

Feature Detector
Registry

...

feature_1
...
...
...

feature_n

Feature Matcher

Features
Test

Figure 11: Quality Determination of Feature Detectors.

Afterwards, the determiner responds with the specific
detector quality so that the registry can check if the
detector meets the required criteria. If it reaches the
requirements, the detector will be registered to the
registry to be available for specific feature detection.
Finally, the feature detector registry informs the fea-
ture matcher about the available features. The feature
matcher only considers features that a corresponding
detector can detect reliably.

This approach enables the rapid creation of new
feature detectors or the improvement of existing ones.

5.4 Feature-based Document Processing

To be able to use document-specific pipelines, FU-
SION introduces the concept of feature-based doc-
ument processing. As a basis for that, the feature

matcher sends the information about feature-based
pipeline qualities to the component registry (pre-
sented with ARTIFACT) after each matching, trig-
gered by the registration of new feature detectors.

The document processor requests the feature de-
tector registry to generate a feature-enriched docu-
ment to achieve feature-based processing (cf. Fig-
ure 12).

Feature
Detector Registry

feature_1
...

feature_n

Feature
Detectors

Requested
Feature

Detected
Value

Document
Processor

feature_1

...

...

...

feature_n

Feature-Enriched
Document

Input
Document

Input Document

Figure 12: Generation of a Feature-Enriched Document.

The component registry can now find the best
feature-based pipeline for a processed document (cf.
Figure 13).

Component
Registry

Doc. Processor Extract Information
and Response

feature_1

...

...

...

feature_n

Feature-Based
Pipeline Qualities

...

...

...
feature_n

feature_1
...

...

...
feature_n

80%

35%
...

...

...

...
feature_n

feature_1
...

...

...
feature_n

75%

15%
...

...

Feature-
Enriched
Document

Find Feature-
Based Pipeline

Figure 13: Feature-Based Document Processing.

The component registry maps the document features
of an incoming document with the list of feature-
based pipeline qualities and executes the best per-
forming pipeline.

5.5 Result Routing

To realize FAP, FUSION introduces result routing.
The basis for result routing is a configuration with de-
fined criteria for FAP (cf. Table 2).

Table 2: Document Processor Configuration.

Information FAP-Limit
GLOBAL 95%

Specific Criteria for Information 1 90%
... ...

Specific Criteria for Information 2 100%

FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction

255

Experts can define the GLOBAL criteria to treat
all information the same way. In the case of a need
to adjust the limit for specific information, e.g., if it is
more or less business-critical, they can overwrite the
GLOBAL configuration. If the extraction of all in-
formation meets the required FAP criteria, the system
will route the document to FAP. Figure 14 shows an
overview of the FUSION architecture, including the
concept of result routing.

6 EXPERIMENTAL EVALUATION

In this section, we demonstrate the practical applica-
tion of our FUSION pattern in the project motivated
in Section 2. However, the approach is extensible and
highly adjustable. Therefore, it allows flexible scope
extension and the adaption to other domains. Since
the introduced approach focuses on the automated de-
tection of document features, we do not describe de-
veloped IE components further.

6.1 Features & Configuration

The data basis is very heterogeneous, and we identi-
fied an initial set of several key document features that
characterize an input document. According to the de-
fined features, we developed several feature detectors.
Using the FUSION architecture, the system automati-
cally tests each feature detector against the set of gold
documents. Table 3 shows the quality of the devel-
oped detectors.

Table 3: Achieved Feature Detector Qualities.

Feature Detector Quality
HAS_TABLES 86%

IS_SCREENSHOT 56%
IS_COLUMN_SEPARATED 45%

HAS_EXACTLY_ONE_PRODUCT 86%
HAS_GROSS_PRICES 91%

HAS_NET_PRICES 91%
HAS_OTHER_PRICE_REPRESENTATIONS 87%

HAS_STAGGERED_PRODUCTS 92%
HAS_TIME_VARIABLE_PRODUCTS 92%

HAS_REGIONAL_CONDITIONS 45%

We reached the required quality for seven features
during the evaluation. Therefore, the system consid-
ers seven relevant features when generating feature-
based pipelines.

We defined a global FAP-limit of 95% for all in-
formation. The document processor, therefore, will
route each input document for FAP reaching this
limit.

6.2 Achieved Results

Following the simple rule-based generation of all pos-
sible feature combinations with seven features leads
to 27 = 128 feature combinations. Due to specific
domain knowledge about mutual exclusive character-
istics, we know that the number of feature combi-
nations is much smaller in reality. Hence, the rule-
based feature matcher determines a set of 35 unique
feature combinations in 1300 gold documents, while
each feature combination has at least 30 related doc-
uments.

Table 4 shows the comparison of IE results using
the global-best pipeline (ARTIFACT) and the feature-
based pipeline (FUSION). The comparison indicates
that feature-based pipelines increase quality without
adding new extraction-specific components.

Table 4: Comparison of IE Results.

Information ∅ARTIFACT ∅FUSION ±%-Pts.
DateOfValidity 91% 91% + 0

BasicPrices 59% 77% + 18
CommodityPrices 54% 74% + 20
CustomerGroups 55% 84% + 29
MeteringPrices 34% 66% + 32

ProductType 55% 82% + 27
ProductCategory 55% 86% + 31

The project is still at an early stage, so improve-
ments in converters, decomposers and extractors will
also improve the results in the future.

However, the system detected six feature combi-
nations for which specific pipelines perform extraor-
dinarily well for all requested information. Since the
extractions fulfill all FAP criteria in the test, the sys-
tem will route input documents for FAP, if they have
one of the six feature combinations. 174 documents
belong to one of the six feature combinations, so we
identified a potential for FAP of about 13% in gold
data.

During the productive use of the FUSION pattern,
the system processed 524 unknown documents and
automatically related 76 of these 524 to one of the six
feature combinations fulfilling the criteria for FAP.
The documents were routed to FAP, while an audit
showed that all results were correct. Hence, we aim
at a quote of 14% FAP in practice.

6.3 Implementation

In the following subsection, we present an exemplary
implementation of our FUSION architecture pattern.

Due to the extensibility and flexibility of the AR-
TIFACT reference implementation, we decided to
build on this implementation. Therefore, we focus on

ICSOFT 2022 - 17th International Conference on Software Technologies

256

Document
Processor

PDF

Input Document

Feature Detector
Quality Determiner

Feature Detector
Registry

Available Features

Extracted
Information

Request Extraction

Gold
Data

Test

Label Extender
(prev. Pipeline Quality

Determiner)

Pipeline
Builder

Inform
Possible
Pipelines

Data
Transfer

Component
Registry

Result Routing

Feature-Based
Pipeline Qualities

Full
Auto-

mation

Feature
Matcher

Ext.
Gold-
Docs

FUSION Component

ARTIFACT Component (Ext.)

Request
Features

Feature-Enriched
Document

Test

Developer

Detector Quality

Detector Info

ComponentDetector

Extractor
App

FAP-Limits Reached? Yes

No

Figure 14: Overview of the FUSION Architecture.

the new and modified services and only briefly men-
tion unchanged services from ARTIFACT.

Our current implementation of FUSION utilizes
microservices encapsulated in Docker1 images. We
again realize the communication between microser-
vices via Representational State Transfer (REST)
calls and heavily rely on OpenAPI2 to generate server
stubs and client SDKs.

6.3.1 Feature Detectors

As stated in Subsection 5.3, feature detectors are used
to detect a specific feature inside a document. Analo-
gous to components in ARTIFACT, we implemented
every feature detector as a microservice. Due to this,
developers can choose the most suitable language and
framework for a specific detection problem.

Each feature detector microservice offers two end-
points. The first endpoint provides information about
the detector, e.g., its name and what type of feature
it can detect. The second endpoint performs the de-
tection, receiving a document and returning a boolean
flag that indicates whether the document contains the
feature.

6.3.2 Feature Detector Quality Determiner

As also mentioned in Subsection 5.3, we need to as-
sess the quality of each feature detector and, there-
fore, implemented a FastAPI3 webservice that tests a
detector against the set of gold documents by detect-
ing the respective feature in each gold document. The
determiner calculates the resulting quality by dividing
the number of correct results by the number of gold
documents.

1https://www.docker.com/
2https://swagger.io/specification/
3https://fastapi.tiangolo.com/

6.3.3 Feature Detector Registry

As stated in Subsection 5.3, we implement a mi-
croservice that manages the feature detectors. This
microservice utilizes a Java 17 stack with Maven and
Spring Boot4. After we provide the required feature
quality criteria mentioned in Subsection 6.1, we can
start registering detectors at the feature detector reg-
istry. The registration process is mostly analogous to
that of the component registry of ARTIFACT.

Code Listing 1 shows the registration of a fea-
ture detector. When a feature detector tries to regis-
ter at the feature detector registry, the registry queries
the information endpoint of the detector to determine
its feature type. After that, the registry queries the
feature detector quality determiner for the detector’s
quality. If the received quality is high enough, the
registry informs the feature matcher by forwarding all
relevant features. In contrast to ARTIFACT, the reg-
istration of the feature detector does not require the
resulting pipelines, and the registry accepts the fea-
ture detector registration at this point.

void addDetector(InetSocketAddress address){
FeatureDetectorInfo detectorInfo =

↪→ requestDetectorInfo(address);
FeatureDetectorQuality quality =

↪→ requestDetectorQuality(detectorInfo
↪→ , address);

if (hasRequiredQuality(quality)) {
Detector detector = new Detector(address,

↪→ quality);
addresses.put(detector.getName(),

↪→ detector);

List<String> allFeatures = addresses
.values().stream()
.map(Detector::getDetects).toList();

4https://spring.io/

FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction

257

notifyFeatureMatcher(allFeatures);
}

}

Code Listing 1: Registration of New Detectors.

6.3.4 Component Registry Extension

Compared to ARTIFACT, the component registry re-
quires slight modifications to handle feature-enriched
documents. Additionally, each extracted information
now contains the quality of the used pipeline in or-
der to determine if FAP is possible. Finally, as men-
tioned in Subsection 5.4, there is no longer one global
pipeline for all documents. Instead, the system uses
feature-based pipelines depending on the features of
the received document. If the system cannot find an
exact feature match, we use a pipeline whose features
are closest to the features of the document. In this
case, FAP is not possible.

6.3.5 Label Extender

The label extender microservice combines the la-
bel extension introduced in Subsection 5.1 and the
pipeline generation into one single microservice. The
label extender is a Python FastAPI web service that
also replaces the pipeline quality determiner intro-
duced in ARTIFACT. After label extension is per-
formed, the service triggers the feature matcher ser-
vice in order to generate document-specific pipelines.

Code Listing 2 illustrates the steps to perform la-
bel extension for all gold documents. For all infor-
mation types, every pipeline is run against each doc-
ument. If the pipeline result matches the expected re-
sult, the pipeline will be considered suitable for the
document.

def extend_labels(self):
extended_docs =[]
for gold_doc in self.get_gold_documents():
suitable_pipelines =[]
for info in DomainModel.information:
for pipeline in self.

↪→ get_pipelines_for_information(
↪→ info):

result =PipelineExecutor.
↪→ execute_pipeline(

pipeline=pipeline,
gold_document=gold_doc

)
if result ==gold_doc.get(info):
suitable_pipelines.append(pipeline)

extended_docs.append(
LabeledGoldDocument(
gold_document=gold_doc,
suitable_pipelines=suitable_pipelines

)
)

return extended_docs

Code Listing 2: Label Extension of Gold Documents.

6.3.6 Feature Matcher

As explained in Subsection 5.2, the feature matcher
determines the best document-specific pipelines. As
stated there, the current implementation features a
rule-based matching strategy for pipeline generation.

Code Listing 3 illustrates the steps to create the
feature-based pipelines. For each feature combina-
tion, we select all gold documents that match this
exact feature set. After that, we extract the suitable
pipelines we received from the label extender and cal-
culate each pipeline’s quality. This results in a list of
all possible feature-based pipelines and their qualities.
After feature matching is complete, the service sends
all created feature-based pipelines to the component
registry. This enables the registry to process incom-
ing documents.

def match_features(self, labeled_docs: List[
↪→ LabeledGoldDocument]):

feature_based_pipeline_qualities =[]
for feature_combination in self.

↪→ generate_feature_combinations():
suitable_pipelines =[]
matching_gold_docs =self.

↪→ match_labeled_documents(
↪→ labeled_docs, feature_combination
↪→)

for labeled_doc in matching_gold_docs:
suitable_pipelines.extend(labeled_doc.

↪→ suitable_pipelines)
for suitable_pipeline in set(

↪→ suitable_pipelines):
feature_based_pipeline_qualities.append

↪→ (
FeatureBasedPipelineQuality(
features=feature_combination,
pipeline=suitable_pipeline,
quality=suitable_pipelines.count(

↪→ suitable_pipeline) /len(
↪→ matching_gold_docs)

)
)

return feature_based_pipeline_qualities

Code Listing 3: Feature-Based Pipeline Generation.

6.3.7 Document Processor

The document processor is a Java Spring Boot web
service that provides a Camunda5 process engine and
extends the process orchestrator introduced in ARTI-
FACT. As stated in Subsection 5.5, this microservice

5https://camunda.com/

ICSOFT 2022 - 17th International Conference on Software Technologies

258

manages the overall process and decides if the infor-
mation extraction quality justifies FAP.

When the user uploads a document for informa-
tion extraction, the processor first calls the feature
detector registry to extract the features of the given
document. The resulting feature-enriched document
is then forwarded to the component registry for in-
formation extraction. After extraction, the processor
receives the extracted information together with their
estimated quality. If the quality of the resulting in-
formation is not high enough (see Subsection 6.1),
the extracted information must be checked manually.
Otherwise, the information can be processed automat-
ically.

Code Listing 4 shows the implementation of a Ca-
munda service task that receives a document from the
DOCUMENT variable and returns a document that
additionally contains the detected features in the vari-
able ENRICHED_DOCUMENT. This variable is then
used in subsequent service tasks to query the compo-
nent registry for the document information.

void execute(DelegateExecution exec) {
FileValue docFile = exec.getVariableTyped("

↪→ DOCUMENT");
Document document = toDocument(docFile);

FeatureEnrichedDocument serverResult =
↪→ sendDocumentToServer(document);

exec.setVariable("ENRICHED_DOCUMENT",
↪→ serverResult);

}

Code Listing 4: Detection Service Task.

In Code Listing 5, the following Camunda service
task receives the ENRICHED_DOCUMENT variable
and requests the extraction of all information within
the document. If the quality of the resulting infor-
mation is not high enough, the extracted information
must be checked manually. Otherwise, the informa-
tion can be processed automatically.

void execute(DelegateExecution exec) {
ObjectValue docFile = exec.getVariableTyped

↪→ ("ENRICHED_DOCUMENT");
FeatureEnrichedDocument document = docFile.

↪→ getValue(FeatureEnrichedDocument.
↪→ class);

List<InformationWithQuality> result =
↪→ sendDocumentToServer(document);

if (result == null || result.isEmpty()) {
throw new RuntimeException("No results

↪→ received!");
}

double overallConfidence = result
.stream()

.mapToDouble(InformationWithQuality::
↪→ confidence)

.min().orElse(0);
List<Information> information = result
.stream()
.map(InformationWithQuality::information)
.toList();

exec.setVariable("
↪→ FULLY_AUTOMATED_PROCESSING",
↪→ overallConfidence >= 0.95);

exec.setVariable("RESULT", information);
}

Code Listing 5: Extraction Service Task.

7 CONCLUSION & FUTURE
WORK

With FUSION, we provide an extension of ARTI-
FACT as an architectural pattern that enables the de-
tection of document characteristics, called features, to
generate document-specific IE pipelines.

ARTIFACT treats each input document the same
and provides the automated generation of global-best
pipelines. It also integrates a task for manual ap-
provals, which is superfluous if an IE pipeline per-
forms extraordinarily well for a specific document.
Therefore, it does not enable FAP of documents.

To achieve document-specific processing and
FAP, we introduced the concepts of feature match-
ing (cf. Subsection 5.2), feature detection (cf. Sub-
section 5.3) and feature-based document processing
(cf. Figure 13) to generate and use feature-based
pipelines.

The experimental evaluation has shown that these
concepts increase the pipeline results in comparison
to the core concepts of ARTIFACT (cf. Table 4).
Hence, the introduced approach supports the auto-
mated generation of IE without adding or improv-
ing existing pipeline components and, therefore, gains
business value.

The evaluation also has shown that a simple rule-
based feature matching strategy is suitable in the case
of the introduced domain and relevant features. Fur-
thermore, the introduced concepts empower the im-
plemented system to find document groups for which
specific IE pipelines perform extraordinarily well.
Due to the automated feature detection of unknown
input documents, the system automatically identifies
the potential for FAP. In the case of the application
in the real-world project, we identified a potential of
14% for FAP. Therefore, the concept of result routing
(cf. Subsection 5.5) reduces the costs for superfluous
manual approval tasks and gains business value.

FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction

259

We would like to apply different machine-
learning-based algorithms for feature matching to find
more suitable document classifications in future work.
Also, we would like to use these algorithms to deter-
mine which features may have more or less impact on
the optimal way of processing. In parallel, we would
like to improve the quality of the detectors that cur-
rently do not reach the required quality criteria to con-
sider the corresponding features.

REFERENCES

Aguirre, S. and Rodriguez, A. (2017). Automation of
a business process using robotic process automation
(RPA): A case study. In Communications in Computer
and Information Science, Communications in com-
puter and information science, pages 65–71. Springer
International Publishing, Cham.

Albrecht, A. and Naumann, F. (2008). Managing ETL pro-
cesses. In NTII.

Beck, K. (2003). Extreme Programming - die revolu-
tionäre Methode für Softwareentwicklung in kleinen
Teams ; [das Manifest]. Pearson Deutschland GmbH,
München.

Borko, H. and Bernick, M. (1963). Automatic document
classification. J. ACM, 10(2):151–162.

Cardie, C. (1997). Empirical Methods in Information Ex-
traction. page 15.

Dumas, M., Van Der Aalst, W. M., and ter Hofstede, A.
H. M. (2005). Process-aware information systems.
John Wiley & Sons, Nashville, TN.

Evans, E. and Evans, E. J. (2004). Domain-driven De-
sign - Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston.

Fowler, M. (2013). An appropriate use of metrics.
Hanson, C. and Sussman, G. J. (2021). Software Design for

Flexibility - How to Avoid Programming Yourself into
a Corner. MIT Press, Cambridge.

Hashmi, K. A., Liwicki, M., Stricker, D., Afzal, M. A.,
Afzal, M. A., and Afzal, M. Z. (2021). Current Sta-
tus and Performance Analysis of Table Recognition in
Document Images with Deep Neural Networks.

Ivančić, L., Suša Vugec, D., and Bosilj Vukšić, V. (2019).
Robotic process automation: Systematic literature re-
view. In Business Process Management: Blockchain
and Central and Eastern Europe Forum, Lecture notes
in business information processing, pages 280–295.
Springer International Publishing, Cham.

Jablonski, S. and Bussler, C. (1996). Workflow Manage-
ment: Modeling Concepts, Architecture, and Imple-
mentation.

Jiang, S., Pang, G., Wu, M., and Kuang, L. (2012). An
improved k-nearest-neighbor algorithm for text cate-
gorization. Expert Syst. Appl., 39(1):1503–1509.

Lilleberg, J., Zhu, Y., and Zhang, Y. (2015). Support
vector machines and word2vec for text classification

with semantic features. In 2015 IEEE 14th Interna-
tional Conference on Cognitive Informatics & Cogni-
tive Computing (ICCI*CC). IEEE.

Liu, Q. and Ng, P. A. (1996). Document classification and
information extraction. In Document Processing and
Retrieval, pages 97–145. Springer US, Boston, MA.

Newman, S. (2015). Building Microservices: Designing
Fine-Grained Systems. O’Reilly Media, first edition
edition.

Rubin, K. S. (2012). Essential Scrum - A Practical Guide
to the Most Popular Agile Process. Addison-Wesley
Professional, Boston, 01. edition.

Saggion, H., Funk, A., Maynard, D., and Bontcheva, K.
(2007). Ontology-Based information extraction for
business intelligence. In The Semantic Web, Lecture
notes in computer science, pages 843–856. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Schmidts, O., Kraft, B., Siebigteroth, I., and Zündorf, A.
(2019). Schema matching with frequent changes on
semi-structured input files: A machine learning ap-
proach on biological product data. In Proceedings of
the 21st International Conference on Enterprise Infor-
mation Systems. SCITEPRESS - Science and Technol-
ogy Publications.

Sebastiani, F. (2002). Machine learning in automated text
categorization. ACM Comput. Surv., 34(1):1–47.

Sildatke, M., Karwanni, H., Kraft, B., and Zündorf,
A. (2022). ARTIFACT: Architecture for Auto-
mated Generation of Distributed Information Extrac-
tion Pipelines. In Proceedings of the 24th Interna-
tional Conference on Enterprise Information Systems
- Volume 2, pages 17–28.

Skoutas, D. and Simitsis, A. (2006). Designing ETL pro-
cesses using semantic web technologies. In Proceed-
ings of the 9th ACM international workshop on Data
warehousing and OLAP - DOLAP ’06, New York,
New York, USA. ACM Press.

Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999).
N degrees of separation: multi-dimensional separa-
tion of concerns. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (IEEE
Cat. No.99CB37002), pages 107–119.

van der Aalst, W. M. P. (2004). Business process manage-
ment demystified: A tutorial on models, systems and
standards for workflow management. In Lectures on
Concurrency and Petri Nets, Lecture notes in com-
puter science, pages 1–65. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Wimalasuriya, D. C. and Dou, D. (2010). Ontology-based
information extraction: An introduction and a survey
of current approaches. J. Inf. Sci., 36(3):306–323.

ICSOFT 2022 - 17th International Conference on Software Technologies

260

