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Deep learning (DL) networks have the dual benefits due to over parameterization and regularization rendering
them more accurate than conventional Machine Learning (ML) models. However, they consume massive
amounts of resources in training and thus are computationally expensive. A single experimental run consumes
a lot of computational resources, in such a way that it could cost millions of dollars thereby dramatically
leading to massive project costs. Some of the factors for vast expenses for DL models can be attributed
to the computational costs incurred during training, massive storage requirements, along with specialized
hardware such as Graphical Processing Unit (GPUs). This research seeks to address some of the challenges
mentioned above. Our approach, HyperEstimator, estimates the optimal values of hyperparameters for a given
Convolutional Neural Networks (CNN) model and dataset using a suite of Machine Learning algorithms.
Our approach consists of three stages: (i) obtaining candidate values for hyperparameters with Grammatical
Evolution; (ii) prediction of optimal values of hyperparameters with supervised ML techniques; (iii) training
CNN model for object detection. As a case study, the CNN models are validated by using a real-time video
dataset representing road traffic captured in some Indian cities. The results are also compared against CIFAR10

and CIFAR100 benchmark datasets.

1 INTRODUCTION

Deep learning has started to gain dominance since
early 2000 and is now being used in prominent indus-
trial applications such as, language translations, gam-
ing, analysing medical scans, prediction of protein
folds to name a few. Convolutional Neural Networks
(CNN) is a powerful approach to solve image analy-
sis tasks. However, it is not trivial finding the optimal
architecture from the huge search space of all possi-
ble architectures for the given task. CNN model con-
sists of various elements, layers and hyperparameters,
leading to a huge number of possible CNN architec-
tural designs. As a result, a lot of time is invested on
determining the optimal structure based on multiple
manual experiments. With the exponentially increas-
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ing amounts of data, much research has been done in
this area and numerous architectures have been con-
structed, such as LeNet (Lecun et al., 1998), AlexNet
(Krizhevsky, 2009), VGG (Simonyan and Zisserman,
2014), ResNet (He et al., 2015), and Google Net
(Szegedy et al., 2014). One of the well-known issues
about CNN is choosing optimal hyperparameters for
academic or toy benchmarks and even more difficult
on real-world scenarios. There is no definitive answer
as to which activation function to choose, which op-
timizer or learning rate suits the best for all datasets.
Moreover, deep learning networks have millions of
parameters and if they are trained with flexible com-
puter models then such learnings can lead to universal
approximations, meaning that the values can fit any
type of data. This is the emerging research direction
with the introduction of data-centric AI (Ng, 2021b)
which has given rise to the research for finding opti-
mal settings of hyperparameters or the CNN architec-
tures. Data-centric Al approaches the field of solv-
ing Al problems with a data driven approach. In other
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words, instead of investing in high-end computational
resources for finding an appropriate Al model for a
given dataset, the focus is shifted to finding appropri-
ate data for the model. The other paradigm of data-
centric Al focuses on shifting from big data to good
quality data for training the Al models (Ng, 2022). Al
model training can start on small datasets which can
subsequently be scaled to big data. These approaches
are beneficial when dealing with small amounts of
data as is the case in the healthcare domain. More-
over, collecting and processing big data is an expen-
sive activity. Hence, collecting unbiased (from human
interventions), valid and good training data samples
is an interest to the researchers (Ng, 2021a). The Al
models that are characterized by the following prop-
erties are able to achieve the targets of data-centric
Al

o It should use limited computational power;

o It should be trained efficiently on smaller amount
of data;

e It should be flexible enough to adapt to varying
data instances;

e It should be interpretable and explainable.

If all of the above characteristics are satisfied, the Al
model could lead to huge savings in revenues thereby
reducing the overall project cost in terms of computa-
tional resources and efforts. The aim of this research
work is to achieve the above defined characteristics
for Al models, with a specific focus on obtaining op-
timal CNN architectures. In particular, the objective
is to tune the hyperparameters of state-of-the-art CNN
model with our approach.

2 BACKGROUND STUDY

The design of CNN is based on the visual perception
of living beings (Ghosh et al., 2020). The model’s
learning ability is attributed to the utilization of many
features extraction stages that can automatically learn
patterns from data. The performance of a CNN is not
only affected by layer design but also by other hy-
perparameters such as activation function, normaliza-
tion method, loss function, regularization, optimiza-
tion, learning rate, etc. One of the most difficult as-
pects of using CNN-based approaches is determining
the best hyperparameters to use.

The authors in (Bochinski et al., 2017) argue that
there seem to be no reliable ways to identify certain
network architectures that could contribute to big per-
formance gains. The techniques based on experience
yields typically conventional hyperparameters rather
than optimal ones (Yu and Zhu, 2020). The problem
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with the brute force techniques results in massive hy-
perparameter combinations leading to computational
overheads. Hence, there is a need to automate the
process of finding the optimal hyperparameters. Ac-
cording to (Andonie and Florea, 2020), Grid Search,
Random Search (RS), Bayesian Optimization (BO),
Nelder- Mead, Simulated Annealing, Particle Swarm
Optimization, and Evolutionary Algorithms are the
most well-known methods for finding optimal hyper-
parameters.

Evolutionary algorithms combine the ideas of RS and
BO, where each possible solution reflects a point in
the hyperparameter space. This technique is partic-
ularly suited for optimization problems over high-
dimensional variable spaces, because maintaining
several individuals, i.e., potential solutions, resulting
in exploring several solutions in parallel. A number of
studies have proposed different techniques using evo-
lutionary algorithms, especially GE, to design and op-
timize neural networks. For example, (Tsoulos et al.,
2008) present a grammar to build and train a neural
network using GE. The grammar proposed specifies
the topology of the network, as well as the parameters
weights, inputs and bias. This research only evolved
two-layer networks, which were tested on classifica-
tion and regression problems.

(Ahmadizar et al., 2015) described an approach that
combines genetic algorithm (GA) and grammatical
evolution. Specifically, GE is used to represent the
network topology, while GA encodes the connection
weight. Similar to the study of (Tsoulos et al., 2008),
this method also creates a feedforward artificial neu-
ral network with only one hidden layer.

Another interesting approach is proposes by (Stanley
and Miikkulainen, 2002) called NEAT (NeuroEvolu-
tion of Augmenting Topology) to evolve the struc-
ture of a neural network with its weights. NEAT has
proven to be successful in generating structure and
weights of relatively small recurrent networks (Mi-
ikkulainen et al., 2017). An Extension to NEAT is
DeepNEAT, which is a method to evolve network
topology and hyperparameters of deep neural net-
works. However, the resulting networks are fre-
quently complex and unprincipled. Consequently,
(Miikkulainen et al., 2017) improved this method and
created the variant called CoDeepNEAT. CoDeep-
NEAT includes evolving two separate populations,
one for the modules and one for the blueprints, based
on the concept used in DeepNEAT. In contrast to
DeepNEAT, CoDeepNEAT is capable of exploring
more diverse and deeper architectures. However, the
downside of CoDeepNEAT is the huge demand of
computational resources (Miikkulainen et al., 2017).
In 2018, (Assun¢do et al., 2018) introduced
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DENSER, which is a method for evolving deep neural
networks. It combines GA and GE in order to evolve
sequences of layers and their parameters. The param-
eters are encapsulated in a position of the GA geno-
type, which makes the use of genetic operators easier.
In their study, they applied this approach to CNNs
with remarkable results. In fact, it outperforms pre-
vious state-of-the-art evolutionary concepts to gener-
ate CNNs, such as CoDeepNEAT, in terms of accu-
racy. However, DENSER does not include optimiza-
tion layers such as the dropout layer (Assuncdo et al.,
2018).

(Baldominos et al., 2018) used GE in order to gener-
ate the optimal topology of a CNN along with many
of its hyperparameters. Since the computational com-
plexity of training and evaluating a CNN model is
very high, a proxy was utilized to estimate the CNN
performance. In particular, the fitness of the CNN
models, which was the Fl-score, were evaluated on
drastically reduced number of epochs and training
samples. As a result, the improved CNN model out-
performed earlier state-of-the-art findings, which in-
spired us to design a data-driven approach.

We try to address the targets of data-centric Al as ex-
plained in Section 1 - finding optimal hyperparame-
ters for an Al model using minimal data and compu-
tational power, while also focusing on the explain-
ability and interpretability of its predictions.

3 PROPOSED SYSTEM

In this research work, we propose a system named
as HyperEstimator that estimates - for a given CNN
architecture - the optimal hyperparameters, from
the given search space of their configurations. The
pipeline of the proposed system is as illustrated
in Figure 1. HyperEstimator comprises a suite
of Machine Learning (ML) techniques, viz. GE,
Linear Regression and Bayesian Optimser which
sequentially estimate the optimal hyperparameter
configurations. GE exploits the global search space
and finds the possible candidates for the optimal
configurations. These are then fed to the Linear
Regression and Bayesian Estimator models which
exploit the local search space and results in the
possible best optimal configuration for the hyperpa-
rameters.

Mathematically, we can say F is a function of Hy-
perEstimator that finds the optimal hyperparameters
H\,H,,H;,...,H,. As this is a challenging task to es-
timate hyperparameters for a given CNN architecture,
the function F is learnt by the model using Bayesian
Estimator s parameterised with weights w. So, we

can define F as, s = F(Y} | Hiw;) . The function s
estimates the optimal values of H,H»,Hs,. .. ,H,.
The weights are fed to the Bayesian model, s by
learning the weights w,wy,w3,...,w, and intercept
o with regressor function r. Hence, the function s can
now be defined as in Equation (1).

s = r(F (Y. Howy), ) M)
i=1

where a is the intercept of the regression model, r.
The metadata for the linear regression model, which
provides information about the important features
for predicting the accuracy, is generated by the
GE framework. When the population in GE starts
evolving, the phenotypes of the individuals I over
the population size p, and their fitness values V over
the last generation g are collected and fed to the
regressor model. Mathematically, the GE model &
can be represented as in Equation (2).

h={(I,sVpe)|lp € 1,2,... popsize, g € 0,1..gensize}
@)

Hence, in summary, the mathematical model of

HyperEstimator can be represented as follows

s=r(F() i=1"Hw;),a)
where the input instances to the regressor model, r
are given follows:

h={(IpeVpe)|p € 1,2,...popsize, g € 0,1..gensize}

3.1 Automatic Exploration of
Hyperparameter Space with GE

Algorithm 1 defines automatic exploration of hy-
perparameter space with GE. HyperEstimator ap-
proaches the tuning of hyperparameters in a data-
driven way. Hence, HyperEstimator tries to deter-
mine the optimal hyperparameter configurations by
testing the feasibility of using minimal data for tun-
ing the hyperparameters. However, we also make sure
that we are providing a balanced dataset capturing
all the real-world instances of the image dataset. In
the process of tuning hyperparameters, we start the
preliminary studies by creating a custom dataset for
vehicle detection in road traffic. We collect images
from multiple sources and capture to the best of our
knowledge, all the real-world instances of the vehicle
classes. We then take a sample of 5% of the training
dataset in the first phase for obtaining the values of
the hyperparameters. (Baldominos et al., 2018) also
shows that this strategy works while tuning hyperpa-
rameters if we have a balanced dataset.
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Figure 1: Pipeline of the HyperEstimator Model.

GE (Ryan, 2010; O’Neill and Ryan, 2001; Ryan et al.,
2018) is an evolutionary algorithm that evolves a so-
lution from the search space for a given problem with
the evolutionary strategies. The key functionality of
genotype to phenotype mapping with Backus-Naur
Form (BNF) (Ryan, 2010) grammar in GE generates
syntactically correct phenotypes, and makes it pro-
gramming language independent and hence, useful
across multiple problem domains. In the proposed
system, the search space of hyperparameter config-
uration of the CNN model is converted to BNF gram-
mar. The CNN architecture is then evolved using 5%
of the training dataset. The phenotypes of the popula-
tion in the search space of GE and their fitness scores
(Lima et al., 1996) are collected for the last genera-
tion, in our case, the 5" generation, in a separate file
to feed to the regressor model.

3.2 Finding Optimal Hyperparameters
with Supervised Machine Learning

A linear regressor model is a ML technique that ex-
tracts the relationship between one or more explana-
tory variable and the target variable (Bindra et al.,
2021). The dependent variables are hyperparameters
{H\,H,,Hs...,H,} and the predictor variable is the
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Algorithm 1: Automatic exploration of hyperparameter
space with Grammatical Evolution.

Input: BNF Grammar, CNN architecture, 5% of the
image dataset, generation size gen size, popula-
tion size pop size

Output: Dataset of phenotypes of the individuals
and their fitness

1: for g =1 to gen size do
2: for p =1 to pop size do

3: I,, = Phenotype of the individual
from the BNF Grammar

4: Vep = Fitness of the individual I,

5: end for

=)

if g is equal to the last generation then
Add I,, and Vg, to the individuals.csv file

7: end if

8: end for

validation accuracy. The regressor model performs
the feature extraction and predicts the weights for
each of the hyperparameter configurations and the in-
tercept, by minimising the regression loss as defined
in Algorithm 2.

The Bayesian Optimiser (Bindra et al., 2021),
which is based on the maximum likelihood function,
then uses this regression model to predict the optimal
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Algorithm 2: Finding optimal hyperparameters with super-
vised Machine Learning - Regressor Model.

Input: Individuals from individuals.csv file returned
by GE
Output: Weights {w;,w»,...w, } and intercept a
1: while w; not converged do

2: Initialise the weights {wy,wy,...w, } and
intercept o with random values
3: validation accuracypregicrea = o+ Hiwy +
Hywy+ ...+ H,wy
4: error = f’f{“"ces(val idation accuracy gepyal —
validation accumcypred,-cled)z
5: Update weights {wj,ws,...w,} and intercept

O to minimize error
6: end while

hyperparameters for the CNN model as defined in Al-
gorithm 3. The Bayesian Optimiser maximises the
validation accuracy (objective function). The CNN
model is then trained on the entire dataset with the
optimal hyperparameters obtained from the HyperEs-
timator.

Algorithm 3: Finding optimal hyperparameters with super-
vised Machine Learning - Bayesian Estimator.

Input: Hyperparameter space D, number of
iterations  n, target  objective  function
validation accuracy = o + Hywy + Hywy +
.. +H,w,

QOutput: Optimal hyperparameter
HC={H\,H,,H;...,H,}

1: Set initial hyperparameter configuration HC =
{H17H2,H3' .. aHn}
2: Evaluate the
validation accuracy
3: while i <n do
4: Select new hyperparameter configuration
HC, 1 by optimizing the acquisition
function a: HC,+1 = HC a(HC,D)

configuration

objective function

5: Evaluate the objective function
validation accuracy,
6: Augment
Dn+l =
{Dy,(HCy+1,validation accuracy,+1)}
7: Update model
8: end while

3.3 HyperEstimator Computational
Complexity

The computational complexity of our approach can
be seen as a combination of the complexity of all ML

techniques used in the pipeline. Hence, we can define
the complexity of the HyperEstimator as in Equation

3).

O(HyperEstimator) = O(GE) + O(LR) + O(BO)
3)
where O(GE) is the computational complexity of
the GE model, O(LR) is the computational complex-
ity of the linear regressor and O(BO) is the compu-
tational complexity of the Bayesian Optimizer. The
computational complexity for Bayesian Optimization
is known to be O(x?) (Lan et al., 2022), where x is
the total number of candidate solution evaluations.
The computational complexity for the linear regres-
sion model is O(k*(n+k)), where n is the number of
observation and k is the number of weights (Baner-
jee, 2020). GE is an evolutionary approach driven by
an evolutionary search engine. In this research work,
we have used GE driven by Genetic Algorithms (GA).
Hence, computational complexity for GE is the com-
plexity for GA and GE. The complexity for GA is de-
fined as computational efforts for the evaluation of the
individuals. This leads to an overall complexity of GE
as the product of complexity fitness function and the
number of fitness evaluations.

O(GE) = O(fitness function) « (#fitness evaluations)
“

The computational efforts of the fitness evalu-
ations are determined by the population size, size
of each individual and number of generations, and
the genetic parameters used such as crossover and
mutation. However, according to (Oliveto and Witt,
2015), as the time for genetic parameters applied
is same for each individual, we do not consider it
in the computational efforts and it is considered
as O(1). Hence, the number of fitness evaluations
can be calculated as #of fitness evaluations =
(population size)(size of individual )
(#ofgenerations). The complexity of the fitness
function in our case is the complexity of the
CNN architecture. To determine it, the number
of floating-point operations (FLOPs) (Molchanov
et al., 2016) are assessed for each layer in the CNN
model. Combining all these individual computational
complexities, we get the overall complexity of our
approach. Hence, the computational complexity is as
defined in Equation (5).

O(HyperEstimator) = O(GE) +0(x>) + O(k*(n+k))
&)
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Table 1: Dataset Details. S1: MIO-TCD, S2: TAU Vehicle,
S3: DelftBikes, S4: PASCAL VOC 2012.

Data Source

Class ST 2 S3 1S4 Total
bicycle 2284 | 1618 | 1098 | - 5000
car 3000 | 2000 - - 5000
motorcycle | 1982 | 2986 - 32 | 5000
pedestrian | 5000 - - - 5000
van 4000 | 1000 - - 5000
background | 5000 - - - 5000
truck 3000 | 2000 - - 5000
Total 35000

4 EXPERIMENTAL SETUP

This section discusses the dataset details and experi-
mental setup for our approach.

4.1 Dataset Details

The dataset we used in our experiments are a combi-
nation of several sources which include labelled ve-
hicle images. We combined them and created a sub-
set consisting only of different vehicle classes. The
datasets involved in this process are:

e The MIOvision Traffic Camera Dataset (MIO-
TCD) dataset, which was released as a part of
challenge in CVPR 2017 (Luo et al., 2018)

e TAU Vehicle Type Recognition Competition
dataset from Kaggle (tau, 2020)

e DelftBikes (Kayhan et al., 2021)

e PASCAL VOC 2012 dataset (Everingham et al., )

The MIO-TCD contains 11 different classes of ve-
hicles for image classification and object detection
tasks while TAU Vehicle data contains 36,500 images
for 17 different classes of vehicle. DelftBikes con-
tains 10,000 bike images while PASCAL VOC con-
tains 20 object categories. There was a couple of mo-
tivation behind combining these four datasets:

e To have a balanced dataset for each vehicle class
and hence avoid the problem of bias.

e To have a sufficiently large dataset for training the
CNN model to avoid problems related to overfit-
ting.

In the real-time video captured in some Indian
cities, we observe the following classes of vehicles:
{background, bicycles, car, trucks, van, motorcycle,
pedestrian}. As the objective of the experiments was
to test the CNN model on the above real-time traffic
videos, we selected only those classes as mentioned
above from the MIO-TCD dataset. We have used 7
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classes for training with 5000 images in each class.
The distribution of images from each of the datasets
into respective classes is shown in Table 1.

Class Original Image Horizontal Flip Vertical Flip

Background

Bicyde

Motorcyde

Pedestrian

Truck

Figure 2: Sample images for each class from the image
dataset with data augmentation techniques.

4.2 CNN Architecture

For the experiments, we used the VGG-16 model and
incorporated transfer learning by using the pretrained
weights from the Imagenet (Deng et al., 2009) dataset.
The CNN architecture used was the same as that of the
literature (Kshirsagar et al., 2022; Kshirsagar et al.,
2021). Hence, we used the same CNN architecture for
a fair comparison. We followed the process of freez-
ing 70% of the layers while training only the remain-
ing 30% of layers. The activation function used for
the last layer was Softmax with 7 neurons, each rep-
resenting a vehicle class and the image size, 224x224.
The dataset was distributed into 80% for training and
20% for testing purposes. We augmented the image
data by horizontal flip, vertical flip and rotating the
images by 90° for robust training of the model. Fig-
ure 2 illustrates the samples of augmented images for
each class of the dataset. The steps per epoch were
calculated by dividing the number of training samples
by the batch size while the validation steps were cal-
culated by dividing the test samples by the batch size.
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Table 2: Sample individuals obtained during evolutionary
runs.

_ learning | batch | validation

# | optimiser .
rate size accuracy
1 | adam 0.001 128 0.142857
2 | adam 0.0001 128 0.574286
3 | rmsprop 0.0001 32 0.52
4 | rmsprop 0.001 16 0.142857
5 | rmsprop 0.000001 | 8 0.428571
5 RESULTS

The hyperparameter space for the model consisted of
{learning rate, batch size and optimiser}. The hyper-
parameter space was transformed into BNF grammar
as shown in Figure 3 and fed to the GE model (Bal-
dominos et al., 2018; de Lima et al., 2019).

<parameters> ::= <opt> <batch_size>

<opt> ::= <opt_type> <lr>

<opt_type> ::= adam | rmsprob

<lr> ::= 0.000001 | 0.00001 | 0.0001 | 0.001
<batch_size» ::= 16 | 32 | 64 | 128 | 256

Figure 3: BNF Grammar defining the hyperparameters of
the CNN model.

A fitness function evaluates how well the indi-
viduals are performing in an evolutionary algorithm.
In this research work, the evolved CNN models
were evaluated by defining validation accuracy of the
model as the fitness function with the goal of max-
imising it. The choice of values for each of the hyper-
parameters forms an individual or chromosome. e.g.,
one of the sample chromosomes from the BNF gram-
mar can be adam 0.0001 128. Using the CNN archi-
tecture and 5% of the data from our dataset, we per-
formed evolutionary runs with the BNF grammar for
5 epochs where the parameter setup was as follows:
population size: 10, generations: 5, tournament size:
2, elitism, initialization: sensible. The experiments
were performed using PonyGE2 (Fenton et al., 2017),
the Python tool for GE using TensorFlow and keras
library, and trained on Quadro RTX 8000 - Nvidia
GPU. We stored all the candidate individuals from the
5'" generation in a .csv file to be used for the next step
in our proposed pipeline. Sample values of the indi-
viduals generated during the evolutionary process are
shown in Table 2.

The .csv file of the candidate solutions for the hy-
perparameter space was then fitted to a linear regres-
sion model to find the values of coefficients for the
equation (6).

F=Hw+Hywy+ Hzws +Q (6)
validation accuracy was the dependent variable

while the independent variables were {optimiser,
learning rate, batch size}. The Python library
statsmodels (Seabold and Perktold, 2010) was
used to fit the data into linear regression model.
The values for {w;,wz,w3} and o obtained were
as follows: —3.18194782¢ — 02,—3.80413117¢ +
02,—-3.09998001e — 04 and 0.6085946681414556 re-
spectively. Replacing the values for the coefficients
we get the following regression model as seen in
equation (7).

F = (—3.18194782¢” % H,) + (—3.80413117¢ " Hy)

+(—3.09998001e M H3)+
0.6085946681414556
@)
Maximum likelihood function was then used to get
the best value of the hyperparameters for the CNN
model with Bayesian Optimiser.  The hyperopt
(Bergstra et al., 2013) library was used to estimate
the optimal values of hyperparameters. The hyper-
opt library contains a f,,;,, function that minimizes the
target. In our case, the target function was validation
accuracy with an objective to maximise it, hence fi,,
was the reciprocal of validation accuracy. hyperopt
contains a parameter, named as max_evals, that de-
fines the number of configurations that the Bayesian
Optimiser tries. This parameters is useful while track-
ing the subspaces of hyperparameters and their ex-
plainability. The following were found to be the
best with Bayesian Optimiser: {H(optimizer): adam,
Hy(learning rate): 0.000001, Hz(batch size): 16 }.
The optimal hyperparameters obtained from our
approach HyperEstimator were then used to train the
CNN model on the entire dataset over 40 epochs, with
an early stopping for the final model. The dataset was
divided into 80% for training and 20% for validation.
It took around 6 hours to train the CNN model with
the optimal hyperparameters, achieving a validation
accuracy score of 8§7%.

5.1 Comparative Analysis

In order to compare the results to those obtained in
the literature, we also ran an experiment without the
HyperEstimator approach using the hyperparameters
as used in the literature (Kshirsagar et al., 2022).
The CNN architecture was the same in both the ap-
proaches, only differing in the hyperparameters.

The performance of training and validation ac-
curacies and losses across the epochs for both ap-
proaches are as illustrated in Figure 4. It can be ob-
served from the graphs that there is a dramatic im-
provement in the validation accuracy when the model
was trained with the hyperparameters tuned with Hy-
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Figure 4: (a) Training and Validation accuracy and (b)
Training and Validation loss for CNN models trained with
hyperparameters with HyperEstimator (c) Training and Val-
idation accuracy and (d) Training and Validation loss for
CNN model trained with hyperparameters from (Kshirsagar
et al., 2022).
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Table 3: Qualitative analysis between models pre- and post-
tuning with HyperEstimator. The pre-training model is re-
ferred from the literature (Kshirsagar et al., 2022). TA:
Training Accuracy, TL: Training Loss, VA: Validation Ac-
curacy, VL: Validation Loss. #1 Hyperparameters tuned
without HyperEstimator, #2 Hyperparameters tuned with
HyperEstimator.

Approach | TA | TL | VA | VL (ITn‘;‘I::)
# 0.66 | 0.9 | 0.54 | 1.2 | 3 mins
) 0.96 [ 0.09 | 0.87 | 0.4 | 365 mins

perEstimator as compared to the model without using
HyperEstimator. The validation accuracies for both
the approaches are illustrated in Figure 4a and Fig-
ure 4c respectively. The validation accuracy achieved
with the model tuned with HyperEstimator was 87%
while that with without HyperEstimator was only
54%. We also observe a significant improvement
in validation loss when the model was trained with
the hyperparameters tuned with HyperEstimator, as
shown in Figure 4b and Figure 4d. The comparative
analysis of both the approaches in terms of accuracy
and loss at 40" epoch is presented in Table 3. As can
be observed in column 4, the model’s validation accu-
racy has improved significantly, though the time taken
for the model training was competitively high.

We also plotted the confusion matrix against the test
data to understand how well the model performed for
each class. Figure 5 shows the confusion matrix for
both the approaches on the test dataset. All the classes
were balanced and the accuracy has been normalized
while plotting the confusion matrix; hence, each row
will sum up to 1. In the plots, we can observe the
CNN model tuned with HyperEstimator has learnt
the major parameters for each class as compared to
the traditional approach as illustrated in Figure 5a and
Figure 5b. The model has achieved the maximum ac-
curacy in classifying the background class with an ac-
curacy of 96%. On the other hand, the model seems to
misclassify the bicycle as motorcycle and pedestrian
and vice versa. This may be due to the fact that the
structures of motorcycles and bicycles are similar in a
way and the images for pedestrian are blurred. This
indicates the model still has scope to learn the features
for these classes. Similar is the case with the classes,
truck and van; the model misclassifies the truck with
van and vice versa. This may be again due to the over-
lapping of the visual structures.

5.2 Model validation

The CNN model was tested against the real-world
benchmark CIFAR10 (Krizhevsky, 2009) and CI-
FAR100 (Krizhevsky, 2009) datasets. CIFAR10
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Figure 5: Confusion matrix plots for CNN model trained
with 40 epochs and tested on test dataset with (a) Hyperpa-
rameters tuned with HyperEstimator; (b) Hyperparameters
tuned without HyperEstimator.

Table 4: Comparative analysis of the CNN model tuned
with HyperEstimator on real-world benchmark datasets.

Dataset Classes Accuracy
Car 0.64

CIFAR10 Truck 0.57
Bicycle 0.88

CIFAR100 | Motorcycle | 0.45
Truck 0.71

dataset consists of a total of 60000 images across 10
classes, 5000 images per class for training and 1000
per class for testing. The size of the images is 32x32
in 3 color channels. CIFARI100 dataset consists of
60000 images across 100 classes, with 500 images
per class for training and 100 per class for testing pur-
poses. The images in CIFAR100 are of size 32x32

with 3 color channels. For CIFAR10, we had two
similar classes in our dataset car and fruck while for
CIFAR100, we had three similar classes, bicycle, mo-
torcycle and truck. While testing the images were
upscaled to 224x224 as our CNN model had the in-
put size of 224x224 and we tested the performance
of our proposed model on these classes for CIFAR10
and CIFAR100 datasets. Table 4 shows the accuracy
for each of the class against the CNN model evolved
with HyperEstimator. From the tables we can infer
that the model has good accuracy against real-world
benchmark datasets.
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: : o
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Figure 6: Confusion matrix plot for the CNN model
tuned with HyperEstimator against real-world traffic video
dataset.

5.3 Model Testing

To test the performance of the CNN model, we cap-
tured the real-time videos of the traffic in some Indian
cities. We collected three videos of one minute each
during daytime and at night. We divided the videos
into frames and predicted the class obtained with the
CNN model. We used 70 frames in total, 10 images
per class for testing. The accuracy obtained was 0.65.
Figure 7 illustrates the confusion matrix plot for the
testing of the video dataset for each class. The re-
sults imply that the model tuned with HyperEstimator
performs well in real-world scenarios for most of the
class while there is still some scope for improvement
against background and pedestrian class.

5.4 Interpretability of HyperEstimator
While using the trained AI models in real-world

scenarios, it is critical to understand which param-
eters are important and how the model has learnt

65



ICSBT 2022 - 19th International Conference on Smart Business Technologies

[ batch_size ]
o

adam 0.000001

Figure 7: Example derivation tree from BNF grammar.

them for their trustworthiness. Explainable Al (XAI)
(Holzinger, 2018) motivates the research for such
models to explain their decisions. In this research
work, HyperEstimator uses three key ML techniques
all of which can be explainable for their results. GE
uses genotype to phenotype mapping and generates
a derivation tree for the individuals. This helps in
understanding the solutions in human understandable
form. The derivation tree in Figure 7 is obtained from
BNF grammar, as shown in Figure 3. The statsmodels
library from Python used for linear regression is inter-
pretable. It displays all the metadata (statistical tests,
confidence intervals, etc.) about the regression model
in human understandable form. Similarly, Bayesian
Optimiser is a probabilistic way of optimizing and
incorporating explainability into the HyperEstimator
system. In this research work, we have visualized
the values of the features contributing to the target
function in Bayesian Optimiser with hyperopt library.
As explained in Section 5, max_evals determines the
number of trials that the model uses to find the opti-
mal hyperparameters. These trials can be visualised
to analyse the contributions of each sub-space of the
hyperparameters across the trials. Figure 8 illustrates
the sub-spaces of hyperparameters in Bayesian Opti-
miser model. The figures clearly illustrate the major
contributions of the optimal values across the trials.
In this way, all the ML techniques of HyperEstimator
system illustrate interpretability.

6 CONCLUSIONS AND FUTURE
SCOPE

In this research work, we propose HyperEstimator,
a system consisting of a suite of ML techniques to
reduce the computational efforts for tuning hyperpa-
rameters of CNN models. We employed GE for the
hyperparameter search space whereas the Bayesian
Optimiser exploited the local search space for the op-
timal values of hyperparameters. We present a case
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Figure 8: Feature subsets with their contribution in estimat-
ing optimal hyperparameters for Bayesian Optimiser.

study on a real-world traffic image dataset and pro-
pose to use only 5% of the training data for hyper-
parameter tuning, to reduce the computational cost.
With the obtained configurations for hyperparame-
ters, we could significantly improve the validation ac-
curacy to 87% for the CNN model. Initial results from
our approach tested against the real-world benchmark
datasets, CIFAR10 with two overlapping classes, viz.
car and trucks, and CIFAR100 with three overlapping
classes, viz. bicycle, motorcycle and truck, suggested
the strong potential about our approach. The evolved
CNN model was also tested against real-world traf-
fic video datasets as a case study which resulted into
65% accuracy from a sample of 70 frames from the
videos. The use of GE and Bayesian Optimiser also
leads to explainability of the proposed approach. The
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immediate future scope to this approach is to extend
the hyperparameters we consider to tune.
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APPENDIX

The datasets used in the experiments and the
code for HyperEstimator can be found at
https://github.com/gauriivaidya/HyperEstimator.
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