
On the Practicality of Relying on Simulations in Different Abstraction
Levels for Pre-silicon Side-Channel Analysis

Javad Bahrami1, Mohammad Ebrahimabadi1, Sofiane Takarabt2, Jean-luc Danger3,
Sylvain Guilley2,3 and Naghmeh Karimi1

1University of Maryland Baltimore County, Baltimore, 21250, U.S.A.
2Secure-IC S.A.S., Think Ahead Business Line, Paris, France

3LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Keywords: Side-channel Attacks, Pre-silicon Evaluation, Toggle Count, SPICE Simulation, Masked Implementations.

Abstract: Cryptographic chips are prone to side-channel analysis attacks aiming at extracting their secrets. Side-channel
leakage is particularly hard to remove completely, unless using a bottom-up approach (compositional security).
On the contrary, industrial secure-by-design methods are rather relying on a top-down approach: (would-be)
protected circuits are synthesized by Electronic Design Automation (EDA) tools. Tracking that no leakage ex-
ists at any refinement stage is therefore a challenge. Experience has shown that multiple leakages can resurge
out of the blue when a sound RTL design is turned into a technology-mapped netlist.
Checking for leaks and identifying them is a challenge. When the netlist is unstructured (e.g., it results from
an EDA tool), dynamic checking appears as the most straightforward approach. It is feasible, given only a
few thousand execution traces, to decide with a great certainty whether a leakage hides at some time samples
within the trace or not. In practice, such easy detection is fostered by the fact that the activity of signals in
cryptographic implementations (even more true for masked implementations) is almost maximal (=50%).
The remaining question is about the adequate abstraction level of the simulation. The higher as possible ab-
stractions are preferred, as they potentially capture more situations. However, if the simulation is too abstract,
it may model the reality inappropriately. In this paper, we explore whether or not an evenemential simula-
tion (toggle count) is faithful with respect to a low-level simulation (at SPICE level). Our results show that
both abstraction levels match qualitatively for unprotected implementations. However, abstract toggle count
simulations are no longer connected to real SPICE simulations in masked implementations. The reason is
that the effect of the random mask is to mix evenemential simulations (which only reflect “approximately”
the SPICE reality) together, in such a way that the useful information is lost. Therefore, masked logic netlist
implementations shall be analysed only at SPICE level.

1 INTRODUCTION

Electronic circuits which manipulate sensitive infor-
mation must implement cryptographic algorithms.
Typically, such algorithms are block ciphers, whose
security relies on a secret key. Embedded de-
vices, like IoTs, resort to lightweight cryptography,
such as PRESENT. The most realistic threat against
PRESENT is the side-channel analysis (such as power
or electromagnetic analysis). Such attack exploits the
activity which leaks information about (sensitive) in-
ternal signals. Many works attest of the practical fea-
sibility of such attacks (Heuser et al., 2016).

In order to protect the implementation of cryp-
tographic algorithms against Side-Channel Analysis
(SCA), protections are deployed. Random masking
(or simply “masking”) is a protection against such at-

tacks; it consists in mixing the sensitive information
with unpredictable random numbers, also referred to
as “masks”, in a view to decorrelate the observable
side-channel activity from the data handled internally
of the device. There are several flavors of mask-
ing schemes, which differ by their security and cost.
Some schemes are more costly (in terms of gate count
and delay) because they address better the peculiar-
ity of hardware implementations. Indeed, software
masking schemes mainly focus on protecting vari-
ables, whereas hardware masking schemes also pro-
tect relevantly the combinational logic which lays be-
tween the sequential logic carrying the states.

Precisely, all masked logic can be implemented
correctly for registers, which are well identified and
controlled resources. This is positive as registers are
also the resources which are the most prone to leak-

Bahrami, J., Ebrahimabadi, M., Takarabt, S., Danger, J., Guilley, S. and Karimi, N.
On the Practicality of Relying on Simulations in Different Abstraction Levels for Pre-silicon Side-Channel Analysis.
DOI: 10.5220/0011307600003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 661-668
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

661

age. But so, when none of the registers are leak-
ing, the second source of leakage is the combinational
logic. This part of the circuit is less predictable, as:

• before tapeout, it is mapped, most probably re-
structured, and potentially even simplified, and

• upon execution, it features races which might dif-
fer on the PVTA (Process, Voltage, Temperature,
and Transistor Aging) environmental conditions.

There is therefore the need for tools and methods to
evaluate masked netlists. Obviously, preventing is
better than curing. Therefore, in this paper, we study
pre-silicon techniques. The central question is to de-
termine which pre-silicon technique is reasonable.

2 STATE OF THE ART

Predicting whether an implementation is vulnerable
to side-channel attacks when still at pre-silicon stage
has been addressed by many works. Software sim-
ulators can be beneficial in this respect, since soft-
ware leakage is complex. There are multiple points
of interest that can leak, hence checking those mitiga-
tions in a program which embeds countermeasures is
not trivial. Therefore, multiple simulators have been
designed to extract the power leakage. They can be
dedicated tools, or can consist in a post-processing of
execution traces dumped by a COTS tool.

Program Inferred Power Analysis Simulator (PIN-
PAS) is the first exclusive software for analyzing
side-channel power written in JAVA which is pri-
mary designed for testing smart-cards (Hartog et al.,
2003). This tool is able to simulate the execution
of a program (in assembly code) in its virtual envi-
ronment to subsequently analyze its estimated power.
Kirschbaum et al. (Kirschbaum, 2007) designed a
simulator based on the Cadence NCSim to generate
an accurate leakage tracing. The designed tool ex-
tracts power traces based on the gate level netlist,
cell information, and gates propagation time to count
the transitions. However, it requires a lot of infor-
mation of hardware implementation of devices which
is not always accessible. Debande et al. (Debande
et al., 2012) designed a profiled simulator based on
the stochastic models and the successive values of de-
vice’s registers. This tool is able to extract leakage
traces close to the real measurement. This simulator
does not need any specific information of the device,
however, profiling step should be performed for ev-
ery new device. SILK was the first fully open-source
simulator for side-channel analysis which is unveil in
(Veshchikov, 2014). The flexibility of SILK makes
users capable to use different model such as Ham-

ming Weight (HW), Hamming Distance (HD), and
even user-defined leakage models.

Most of simulations leverage a toggle count leak-
age model (namely, the Hamming Distance between
signals at each trace time sample). Indeed, it has
been acknowledged for long in the field of embedded
systems security, for instance, in the seminal paper
about Correlation Power Analyses (Brier et al., 2004,
§2). In this paper, the model focuses on flip-flops.
But it has also been extended to combinational logic
with fair correlation, e.g., to estimate glitching activ-
ity (Liu et al., 2011) (in unprotected circuits tough).

Compared to the aforementioned tools, SPICE1

simulations are more realistic. They can be consid-
ered as the most accurate possible simulations, and
are seen as references (Li et al., 2005). Notice that
the Synopsys VCS and HSPICE netlists we consider
are the same, except that Synopsys VCS reports only
an “impulse” for each gate when toggles, whereas
HSPICE produces a complete waveform (illustrations
will be given in Fig. 3 and Fig. 4).

To fill the gap, in this paper, we revisit the use of
toggle count vs SPICE simulations, applied to masked
netlists. More precisely, we address the relevance of
deploying toggle count in evaluating pre-silicon secu-
rity level:

• If there is a significant correlation between sensi-
tive variables and the toggle count, then there is
obviously a vulnerability, hence the netlist must
be patched. Notice that, in the past, the compro-
mise in the netlists has been identified based on
toggle count analyses. For example, the flaw in
(non-glitch resistant) masking of AND gates has
been detected by SPICE in (Mangard et al., 2005,
§4) and subsequently qualified based on a toggle
count in (Mangard et al., 2006, §2.2.). Recall
that “glitches” are races between signals, which
are likely to generate transient activity observable
through side-channels.

• However, assuming that the toggle count analysis
does not reveal signification biases (in terms of
correlation with the underlying sensitive variable
value), can it be claimed that the netlist is secure?
Actually, the absence of correlation can also arise
from the fact that the “toggle count may not be a
valid abstraction” in some cases. To the best of
our knowledge, this question has never been for-
mulated as such and consequently has never been
thoroughly studied. In this paper, we carry out
a meticulous analysis and conclude that, though
SPICE is always suitable a pre-silicon simula-

1For the sake of illustration, we use HSPICE from Syn-
opsys Inc. as an electrical simulation tool for SPICE netlists.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

662

tion tool, toggle count might not be indicated as
a definitive argument to claim the trustworthiness
of masked netlist.

3 PRESENT S-Box
IMPLEMENTATIONS

In this paper, we target PRESENT cipher and mainly
the hardware implementations of 2 unprotected and
5 masking-protected implementations of its S-box
module. Table 1 compares the targeted implementa-
tions regarding the number of gates, equivalent gates
(# gates normalized by the # of equivalent 2-input
NAND gates), random bits, and propagation delay.

PRESENT is a lightweight block cipher with 64-
bit blocks. It includes 31 rounds each consists of a
bitwise XOR operation, a non-linear substitution (S-
box) layer and a linear permutation layer. Being non-
linear and possessing a contrasted confusion coeffi-
cient (Fei et al., 2015), the S-box module is a highly
appealing target for adversaries to leak sensitive data.

3.1 Unprotected Implementations

Lookup Table (LUT): This baseline architecture can
be implemented using a 4-bit LUT with 16 different
addressable locations. It is a direct look-up in the
plain table: S-Box : [0xc, 0x5, 0x6, 0xb, 0x9, 0x0,
0xa, 0xd, 0x3, 0xe, 0xf, 0x8, 0x4, 0x7, 0x1, 0x2].
and is subsequently mapped to gates by the synthe-
sizer.
Optimized Implementation (LUT-OPT): This im-
plementation minimizes the number of non-linear
(AND/OR) gates by trying different implementations
using Boolean Satisfiability (SAT) solvers (Peralta et
al., 2022). It has a longer critical path compared to
LUT. Indeed LUT-OPT critical path includes more
XOR gates, while LUT has more AND/OR gates;
thus LUT-OPT has a longer propagation delay.

3.2 Protected Implementations

Global Lookup Table (GLUT): GLUT masking is
a function F 4

2 ×F 4
2 ×F 4

2 = F 12
2 → F 4

2 satisfying

Y = GLUT (A,MI,MO)

such that:

Y ⊕MO = S-Box(A⊕MI)

here A and Y are the masked input and output, respec-
tively and MI and MO are the input and output masks.

Rotating S-box Masking (RSM): In this first-order
secure implementation, even 2nd and 3rd order se-
cure based on (Carlet and Guilley, 2013), to minimize
the required randomness, 1) the masks set is a subset
of the full mask set; 2) the masks used at the S-box
output are deduced deterministically from that at the
input, by using the next one (in a circular manner)
within the mask set.

In our implementation, since there are only 16
masks in the 4-bit PRESENT S-box, we refrain from
using a strict subset of the masks. However, we gen-
erated output masks based on the available input ran-
domness (Nassar et al., 2012), thus the output mask
MO is generated as below:

MO = (MI +1) mod 16

where MI and MO are integers ∈ {0,1, . . . ,15}, com-
puted via M ∈ F 4

2 7→ ∑
3
i=0 Mi2i ∈ {0,1, . . . ,15} map-

ping. So, the relationship between RSM and GLUT
can be written as:

RSM(A,MI) = GLUT (A,MI,(MI +1) mod 16).

From an area perspective, RSM has a more compact
architecture compared to the GLUT. Note that the
genuine version of RSM does not have S-box input
on 8-bit, but solely on 4-bit (Guilley et al., 2017a)
(wherein randomness comes from S-box shuffling).
ROM-based RSM (RSM-ROM): A stronger imple-
mentation of RSM can be realized using a Read-Only
Memory (ROM). For this circuit we target logic de-
signs built only from the instantiation of gates in a
Boolean library (Giaconia et al., 2007). Here, ini-
tially, the datapath is synchronized for any input con-
figuration which makes input-related deviations of
leakage small. Then, the structure is designed with
a one-hot strategy, i.e., only the required logic is acti-
vated, which further contributes to reducing the side-
channel footprints.
Gate-Level Masking via Random Sharing (ISW):
Proposed by Ishai, Sahai, and Wagner (Ishai et al.,
2003), this implementation starts from the LUT-OPT
netlist, and gradually replaces the gates with their
gadgets, in order to deal with the non-linear gates. In
this architecture, the gadget for the AND gate requires
1-bit of randomness, i.e., R. Given a random sharing
(A0,A1) of bit A (where A = A0⊕A1), and a similar
sharing for bit B, the AND of A and B denoted as Y is
computed as below:

{
Y0 = ((A1∧B1)⊕R)⊕ (A0∧B0)
Y1 = ((A0∧B1)⊕R)⊕ (A1∧B0)

In the above equations, the order of operations
should be followed, thus the implementation must

On the Practicality of Relying on Simulations in Different Abstraction Levels for Pre-silicon Side-Channel Analysis

663

preserve the order of gates in the final netlist. In our
implementation, we implemented OR via benefiting
from De Morgan’s law OR(a,b) = ¬AND(¬a,¬b).
Since combinational gates evaluate their outputs
whenever their inputs change, preserving the order
can be challenging in ISW due to the race condition.
This can lead to a first-order leakage (Roy et al, 2018).
Threshold Implementation (TI): TI is an algorith-
mic countermeasure against power SCA, which bene-
fits from multi-party computation and secret sharing.
TI, alike ISW, divides input bits into d + 1 shares,
however, its underlying logic does not need to pre-
serve gate ordering. Moreover, thanks to its non-
completeness property, in TI any output share only
depends on d shares of each input. Thus, glitches can-
not lead to secret information disclosure in TI. In our
netlist, terms of order 3 are required, hence 4 shares
are needed; we synthesized a TI-compliant fully com-
binational netlist of PRESENT S-box.

Table 1: Gate-level specification of the targeted S-box im-
plementations.

LUT LUT-OPT GLUT RSM RSM-ROM ISW TI

INV 7 1 12 20 750 7 0
BUF 0 0 0 0 0 1 1
AND 23 2 580 209 40 10 800
NAND 0 0 0 0 0 0 0
OR 11 2 254 102 468 0 0
NOR 0 0 0 0 0 0 0
XOR 0 9 0 0 492 26 647
XNOR 0 0 0 0 0 0 2
Gates 41 14 846 331 1750 43 1448
Equ. Gates 36 18 846 317 1322 52 1871
Delay (ps) 160 210 400 330 1710 420 230
Random Bits 0 0 8 4 4 4 12

4 BACKGROUND ON
WALSH-HADAMARD
TRANSFORM

In practice, glitches may result in leaking sensi-
tive data. However, getting information about when
glitches happen, and what information they leak may
not be easy during the circuit runtime or even in
the SPICE level simulations. To investigate the ex-
ploitability of glitches Bahrami et al. use Fourier base
transformation (the so-called Walsh-Hadamard) to be
able to decompose the device’s power traces into the
unmasked input dependent basis, and in turn identify
different contribution of leakage from first-order un-
masked text t (Guilley et al., 2017b). The basis is
denoted as ψu, for all vector u of n-bits (n = 4 for
PRESENT). By definition, ψu function is t ∈ F n

2 7→
ψu(t) = 1

2n/2 (−1)u·t , where the operation u · t denotes

the canonical scalar product, i.e., u · t =
⊕n

i=1 ui ∧ ti.
This basis is orthonormal, in that 〈ψu | ψv〉 = 0 if
u 6= v and 1 otherwise. In sum, ψu shows the inter-
action between input bits corresponding to the 1 input
in u. Here, we ignore the zero-th component, which is
the waveform average shape, while extracting all the
nonzero components.

Based on (Bahrami et al., 2022), the leakage f :
t ∈ F n

2 7→ f (t) ∈ R corresponding to (unmasked) S-
Box input t ∈ F n

2 , can be calculated as

f (t) = ∑
u
〈 f | ψu〉ψu(t) =

1
2n/2 ∑

u
au(−1)t·u

where au (below) is the Walsh-Hadamard transform
of f .

au =
1

2n/2 ∑
t

f (t)(−1)t·u

Using (au)u∈(F n
2) coefficients we can character-

ize the leakage to find out which combination of bits
leaks more (if any). Typically, it can be due to a sin-
gle bit, when wH(u) = 1 (where wH denotes to Ham-
ming Weight) or otherwise to multiple bits leaking
together. The former case is reasonably attributed
to an unfortunate “demasking”, while the latter case
arises upon complex conditions on the unmasked in-
puts (connected to “glitch events“) (Bahrami et al.,
2022). For example in Fig. 3d, the combination of
bit 1 and bit 2 leaks more (shown in solid red).

Interpreting the origin of leakage is out of the
scope of this paper. We rather focus on comparing
the amount of leakage of various implementations.

5 RESULTS AND DISCUSSIONS

We implemented the add-round-key and S-box oper-
ations in the first round of the PRESENT cipher with
80-bit keys in the transistor level for the 7 types of S-
box (2 unmasked and 5 masked versions) using a 14-
nm Fin-FET – regular voltage threshold corner (rvt) –
commercial library, and deployed Synopsys HSPICE
for the transistor-level simulations at temperature of
125◦C and Vdd = 0.8 V .

The simulated traces contain two parts: the results
of key addition and S-box outputs for each initial n-
bit value as well as its following n-bit value. For the
analysis, we considered only the power samples of
the second part, i.e., when the cryptographic circuit
transitions from initial to final value. We sample the
power every 1ps after feeding the related final value
till each circuit gets stable. To have a fair comparison
among all implementations, the final values are gen-
erated randomly, yet such that we have equal number

SECRYPT 2022 - 19th International Conference on Security and Cryptography

664

of traces from each class, i.e., equal number of un-
masked inputs. The initial values generated randomly
such that initial unmasked value is ‘0’ (e.g., A initial
⊕ MI initial = 0 in GLUT). For ISW, TI, and GLUT,
totally, we generated 1024 input traces among all pos-
sible input combinations, while for RSM and RSM-
ROM the total input traces are 256 and for the LUT
and LUT-OPT there are 16 traces considering their
input sizes. We categorize the power traces into 16
classes based on the value of the unmasked inputs in
their final stage, and use the mean trace of each class
in our leakage assessments.

To assess the leakage from toggle counts occur-
ring during gate-level simulations, we performed our
simulations (using Synopsys VCS) and analysis after
back annotating the timing information (SDF file) ex-
tracted during the gate-level synthesis.

5.1 Experimental Results

Toggle Count vs. SPICE Power: The first set of re-
sults deals with the total power for each class of un-
masked plaintext. Recall that we randomly generated
input patterns such that in all traces the initial un-
masked value is “0000” (referring to class 0) while
the final unmasked value can belong to any class (be-
tween 0 and 15 in PRESENT). Moreover, to avoid bi-
ases the final input patterns were generated such that
we have similar number of power traces in each class.
Fig. 1 shows the total extracted power values catego-
rized based on the final value of the unmasked input.

Obviously, the unmasked circuitries do not re-
veal dynamic power consumption for class 0 input
as the values represent the dynamic power consump-
tion; thus class 0 for unmasked circuits relates to
the case where both initial and final value are 0, so,
no dynamic power is consumed. This is in contrast
of masking circuits where even we have power con-
sumption for class 0 since owing to the random masks
not necessarily initial and final values match.

Based on Fig. 1, the unprotected circuits depict
an intra-class match between the toggle count and
HSPICE powers, i.e., tentatively class i (0 ≤ i ≤ 15)
in both evaluations follow the same trend. However,
such trend is not observed in the masked circuits ow-
ing to the dependency of power on both input and out-
put masks. The takeaway from these observations is
that for unprotected circuits, the toggle counts carry
exploitable information and can be used as a source of
leakage. However, toggle counts are not exploitable
by the attacker in case of protected implementations.

The inter-class correlation between the HSPICE
and toggle count results are shown in Table 2. As de-
picted, this correlation is high for unmasked circuits

(a) LUT HSPICE (b) LUT Toggle Count

(c) LUT-OPT HSPICE (d) LUT-OPT Toggle Count

(e) GLUT HSPICE (f) GLUT Toggle Count

(g) ISW HSPICE (h) ISW Toggle Count

(i) RSM HSPICE (j) RSM Toggle Count

(k) RSM-ROM HSPICE (l) RSM-ROM Toggle Count

(m) TI HSPICE (n) TI Toggle Count

Figure 1: Intra-class powers of the targeted implementa-
tions.

while low for the masked counterparts. This informa-
tion shows the practicality of using toggle counts for
leaking sensitive data in unmasked circuits, yet not in
the masked implementations.

Table 2: Inter-class Pearson Correlation Between Toggle
Count and HSPICE powers for each implemented circuit.

LUT LUT-OPT GLUT RSM RSM-ROM ISW TI

ρ 0.78 0.78 -0.21 -0.23 -0.21 0.21 0.21

In order to validate that our simulations of mask-
ing schemes implementation is correct, we carry out
a sanity check on our simulated results. Namely, the
next set of results depicted in Fig. 2 illustrates the
variance of power values between 16 different classes
of all 7 implementations in a logarithmic scale for
each of HSPICE and toggle count results. Indeed,

On the Practicality of Relying on Simulations in Different Abstraction Levels for Pre-silicon Side-Channel Analysis

665

Figure 2: Toggle Count vs. HSpice variances between dif-
ferent input classes.

the results shown in this figure relate to the variances
of the bars shown in Fig. 1. The 7 points are almost
aligned, which confirms that toggle count is valid esti-
mation of the total HSPICE. This confirms that toggle
count is meaningful to summarize global activity but
it does not accurately capture data dependencies (as
pointed in Table 2) in masked implementations.

Walsh-Hadamard Leakage Analysis using Toggle
Count vs. SPICE Power: As described earlier, the
Walsh-Hadamrd transform is used to extract all vul-
nerabilities as a result of bit interactions (cross-talk)
inside implementations. Fig. 3 and Fig. 4 show the
post Walsh-Hadamard leakage analysis when using
HSPICE and toggle count results, respectively. Inter-
estingly, it is known that TI implementation features
glitches; nonetheless Fig. 4g shows that they do not
leak information (i.e., all the spectrum have the same
magnitude regardless of their polarity which itself
does not convey any relevant information). This is
expected since those glitches mix only at most d = 3
shares of each variable randomly split in d + 1 = 4
shares. As shown, the leakage sources are more dis-
tinguishable in HSPICE results depicted in Fig. 3
while the distinguishably is much less when using
toggle counts. This confirms that it is not always prac-
tical to assess the implementations based on their tog-
gle count data, and more precise simulations such as
HSPICE are required.

Another interesting observation here is the leak-
age of bit 3 (shown in dotted cyan) in most of the im-
plementations when using toggle counts as well as for
unprotected implementations when using HSPICE.
This is due to the fact that bit 3 in PRESENT S-box
has a higher algebraic complexity than other bits.

6 CONCLUSION

Side-channel leakage detection can benefit from fast
“toggle count” simulations when netlists are not im-
plementing a masking countermeasure. Otherwise,

(a) LUT HSPICE

(b) LUT-OPT HSPICE

(c) GLUT HSPICE

(d) ISW HSPICE

(e) RSM HSPICE

(f) RSM-ROM HSPICE

(g) TI HSPICE

Figure 3: Walsh-Hadamard coefficients extracted using
HSPICE.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

666

(a) LUT Toggle Count

(b) LUT OPT Toggle Count

(c) GLUT Toggle Count

(d) ISW Toggle Count

(e) RSM Toggle Count

(f) RSM ROM Toggle Count

(g) TI Toggle Count

Figure 4: Walsh-Hadamard coefficients extracted using
Toggle Counts.

we show on 5 different masked implementations that
toggle count is consistently not related to the ac-
tual netlist leakage, as estimated by SPICE simula-
tions. Therefore, leveraging “toggle count” to assess
a netlist should be used with caution. Should any bias
be found, then obviously the design features a side-
channel vulnerability. However, when leakage anal-
ysis with “toggle count” features no bias, a refined
analysis at SPICE level is required.

REFERENCES

Bahrami et al., J. (2022). Leakage Power Analysis in Dif-
ferent S-Box Masking Protection Schemes. In DATE.

Brier et al., É. (2004). Correlation power analysis with a
leakage model. In CHES, pages 16–29.

Carlet, C. and Guilley, S. (2013). Side-channel indistin-
guishability. In Hardware and Architectural Support
for Security and Privacy, pages 1–8.

Debande, N., Berthier, M., Bocktaels, Y., and Le, T.-H.
(2012). Profiled model based power simulator for side
channel evaluation. Cryptology ePrint Archive.

Fei et al., Y. (2015). A statistics-based success rate model
for DPA and CPA. J. Cryptographic Engineering,
5(4):227–243.

Giaconia et al., M. (2007). Area and power efficient synthe-
sis of DPA-resistant cryptographic S-boxes. In Int’l
Conf. on VLSI Design, pages 731–737.

Guilley et al., S. (2017a). Codes for Side-Channel Attacks
and Protections. In Codes, Cryptology and Informa-
tion Security (C2SI), pages 35–55.

Guilley et al., S. (2017b). Stochastic side-channel leakage
analysis via orthonormal decomposition. In Informa-
tion Technology and Communications, pages 12–27.

Hartog et al., J. d. (2003). Pinpas: a tool for power analy-
sis of smartcards. In IFIP International Information
Security Conference, pages 453–457. Springer.

Heuser et al., A. (2016). Side-Channel Analysis of
Lightweight Ciphers: Does Lightweight Equal Easy?
In Radio Frequency Identification and IoT Security,
pages 91–104.

Ishai, Y., Sahai, A., and Wagner, D. (2003). Private circuits:
Securing hardware against probing attacks. In Annual
Int’l Cryptology Conf., pages 463–481.

Kirschbaum, et al., M. (2007). Evaluation of power estima-
tion methods based on logic simulations. Citeseer.

Li et al., H. (2005). Security Evaluation Against Electro-
magnetic Analysis at Design Time. In CHES, volume
3659, pages 280–292.

Liu et al., H. (2011). The Switching Glitch Power Leakage
Model. Journal of Software (JSW), 6(9):1787–1794.
Academy Publisher.

Mangard et al., M. (2006). Pinpointing the Side-Channel
Leakage of Masked AES Hardware Implementations.
In CHES, volume 4249, pages 76–90.

On the Practicality of Relying on Simulations in Different Abstraction Levels for Pre-silicon Side-Channel Analysis

667

Mangard et al., S. (2005). Side-Channel Leakage of Masked
CMOS Gates. In Menezes, A., editor, CT-RSA, vol-
ume 3376, pages 351–365.

Nassar et al., M. (2012). RSM: A small and fast coun-
termeasure for AES, secure against 1st and 2nd-order
zero-offset SCAs. In DATE, pages 1173–1178.

Peralta et al., R. (2022). Circuit Complexity Project.
NIST, Computer Security Resource Center: https://
csrc.nist.gov/Projects/circuit-complexity. Created De-
cember 29, 2016 – Updated February 08, 2022.

Roy et al, D. B. (2018). CC meets FIPS: A hybrid test
methodology for first order side channel analysis.
IEEE Trans. on Computers, 68(3):347–361.

Veshchikov, N. (2014). Silk: high level of abstraction leak-
age simulator for side channel analysis. In Program
protection and reverse engineering workshop, pages
1–11.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

668

