
Active Data Collection of Health Data in Mobile Devices

Ana Rita Bamansá Siles Machado1, Heitor Cardoso2, Plinio Moreno2 and Alexandre Bernardino2

1Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa,

Torre Norte Piso 7, 1049-001 Lisboa, Portugal

Keywords: mHealth, Notifications, Machine Learning, Personalization, Reinforcement Learning, Receptivity.

Abstract: This paper aims to develop an intelligent notification system to help sustain user engagement in mHealth
applications, specifically those that support self-management. We rely on Reinforcement Learning (RL), an
approach where agent learns by exploration the most opportune time to perform a questionnaire, throughout
their day, only from easily obtainable non-sensitive data and usage history. This history allows the agent to
remember how the user reacts or has reacted in the past to its actions. We consider several options on algorithm,
state representation and reward function under the RL umbrella (Upper Confidence Bound, Tabular Q-learning
and Deep Q-learning). In addition, a simulator was developed to mimic the behavior of a typical user and
utilized to test all possible combinations with users experiencing distinct lifestyles. We obtain promising
promising results, which still requiring further testing to be fully validated. We demonstrate that an efficient
and well-balanced notification system can be built with simple formulations of an RL problem and algorithm.
Furthermore, our approach does not require to have access to sensitive user data. This approach diminishes
privacy issues that might concern the user and limits sensor and hardware concerns, such as lapses in collected
data or battery drainage.

1 INTRODUCTION

Mobile health, or mHealth, is defined as “medical and
public health practice supported by mobile devices”
such as phones, wearables or other patient monitor-
ing devices (WHO Global Observatory for eHealth,
2011) and is a great vehicle for the support of self-
management in Noncommunicable diseases (NCDs).

NCDs, also known as chronic conditions
(Fukazawa et al., 2020), such as cancer, diabetes,
stroke, and other chronic respiratory or cardiovas-
cular diseases, are the leading causes of death and
disability worldwide. These represent more than
70% of all deaths and create devastating health
consequences. This epidemic threatens to overwhelm
health systems across the world, making it essential
for governments to prioritize health promotion and
disease management (Geneva: WHO, 2020). The
ability for patients to employ self-management is now
more vital than ever and many studies have already
shown promise for its application in helping manage
these chronic conditions (Cornet and Holden, 2018).
However, some key factors still restrict the adoption
of mHealth, for instance, the lack of standards and
regulations, privacy concerns, or the limited guidance

and acceptance from traditional healthcare providers.
Impact of such self-management approaches re-
quires widespread user adoption and engagement
(Vishwanath et al., 2012).

Phone notifications are widely employed to
achieve user engagement, having been proven to sig-
nificantly increase verified compliance when com-
pared with identical trials that did not employ this
technique (Fiordelli et al., 2013). Nonetheless, the
risk of intrusiveness into daily life is imminent. Fur-
thermore, consumers are known to highly dislike ex-
cessive or inopportune notifications, primarily when
originated by machines (Mehrotra et al., 2015). For
these reasons, mHealth applications must function
and communicate without burdening the consumer.
Hence, this paper focuses on developing an intelli-
gent notification system that intends to increase con-
tinued engagement by helping applications communi-
cate with users when they are receptive, not bothering
them on inconvenient occasions. The purpose of this
paper is to develop a mechanism that is able to iden-
tify opportune moments for notifications. This goal
entails challenging cross-disciplinary subjects such as
information technology, medicine, and psychology,

160
Machado, A., Cardoso, H., Moreno, P. and Bernardino, A.
Active Data Collection of Health Data in Mobile Devices.
DOI: 10.5220/0011300700003277
In Proceedings of the 3rd International Conference on Deep Learning Theory and Applications (DeLTA 2022), pages 160-167
ISBN: 978-989-758-584-5; ISSN: 2184-9277
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

which plays a big part in understanding human be-
havior. Throughout an average day, users can get
over 50 notifications on their phones. Hence, feeling
overwhelmed or experiencing growing negative sen-
timents towards individual notifications or apps is ex-
pected (Mehrotra et al., 2015). Receptivity is defined
as the degree to which a user considers that a notifica-
tion is received at an opportune time. Currently, there
is yet no systematic way to infer user availability and
receptivity. Identifying ideal moments for interaction
with a permanently high level of accuracy is a com-
plex problem due to its dependency on many aspects
of a user’s context (Mehrotra et al., 2015), such as
location, movement, time or psychological state.

Most of current applications employ a basic in-
teraction model, which assumes the availability of
the user at any time for engagement with the device.
The potentially disruptive impact of these applica-
tions should be compensated with the customization
of notifications’ characteristics (such as presentation
or alert type) (Mehrotra et al., 2016), content (Mehro-
tra et al., 2015), and an intelligent approach to deliver
them (Mehrotra and Musolesi, 2017). Therefore, sys-
tems that attempt to handle such notifications intelli-
gently are increasingly relevant. Although many stud-
ies have been published on this kind of system, most
of the existing prior work can be divided into (Ho
et al., 2018): detecting transitions between activities,
assuming these represent the most opportune timings
in a user’s routine, or inferring receptivity from the
user’s context.

Systems such as these have resorted primarily to
machine learning (ML) techniques due to their capa-
bility of discovering patterns in data (Mehrotra et al.,
2015). ML techniques can be divided into five: Su-
pervised (SL), Unsupervised, Semi-Supervised, Ac-
tive and Reinforcement learning (RL). SL is the most
common approach, presumably due to the tendency
of seeing the problem at hand as the need to classify
users, their preferences, or even labelling moments
as opportune or inconvenient. Albeit its known ca-
pacity for swift adaptation to dynamic, complex en-
vironments, RL is more complicated to apply than
SL, leaving it with few implementation attempts in
the mHealth field (Rachad and Idri, 2020).

2 METHODOLOGY

Through the application of RL, our system aims to
learn user preferences, routines, and habits merely
from notification interaction data. Hence, the main
aim is to discover one moment throughout the day
when the users are available and willing to answer a

notification that leads to the required action. This ac-
tion could be any self-management task required by
any mHealth application. When this goal is achieved,
no more notifications should be sent. The RL agent
considers an answered notification as the terminal
state, meaning that the episode (in our context, a day),
has ended and that the agent only starts working again
when the next day begins. The only other terminal
state is at the end of the day (24h). Tasks such as this
are called episodic tasks (Richard S. Sutton, 2018).

The agent’s main objective is to decide whether to
send a notification or stay silent, by observing the user
and the environment’s state. Then, if a notification is
sent, the agent observes the user’s reaction and con-
tinually learns from it. In our case, accepted notifica-
tions denote positive signals, while dismissed or ig-
nored ones are seen as negative reinforcement signals
that penalize the agent. The agent’s behavior changes
accordingly, always intending to increase the long-run
sum of rewards (reinforcement signals).

The best combination of algorithm, rewards and
state definitions must be found to discover the most
efficient solution for this learning problem. For that
reason, this work reviews, selects, and tests several
combinations.

2.1 RL Algorithms

In order to perform experiments that are as varied
as possible, several consensually recommended algo-
rithms were implemented.
Upper Confidence Bound (UCB) - UCB emerges
as a widely accepted nonassociative bandit1, as it
considers the problem as only a single state. UCB
achieves exploration by subtly favoring the selec-
tion of actions that have the potential to be optimal
and have been employed the less (Richard S. Sutton,
2018). To do so, it applies the selection rule:

At
.
= argmax

a

[
Qt(a)+ c

√
ln(t)
Nt(a)

]
(1)

where A and a represent actions, t represents the cur-
rent timestep, Q is the action-value function and c,
the confidence level that controls the degree of explo-
ration. Finally, Nt(a) represents the number of times
action a has been selected prior to time t.

In (1), the term inside the square root represents
the uncertainty of the estimates of action values, mak-
ing At an upper bound of the probable value of each
action. Given a large enough time, UCB executes all

1Bandit problems are RL problems where the agent
learns to act in a single state setting, not requiring an as-
sociation between actions and states (nonassociative).

Active Data Collection of Health Data in Mobile Devices

161

the available actions, guaranteeing that the agent ex-
plores the action space properly. As time goes on and
different actions are performed, to each, the sum of
received rewards and the number of selections are as-
sociated. With these values, the action-value function
Q is updated at each timestep.

Since UCB is a single state algorithm, it learns
what is better suited for that state only, which in this
paper’s context would be very restrictive. To mitigate
this, we consider several instances of UCB running at
every possible states, on two versions. On the UCB
Day version, a different UCB instance is applied to
each hour of the day. Thus, the agent learns what ac-
tion is better suited for each decision point, which in
our case is hourly. UCB Week is the second, more
personalized approach, where a separate instance is
applied to each hour of each day, during a week. Con-
sidering that the week has 7 days, and 24 instances
are created for each day, UCB Week combines 168
instances, learning what is the most beneficial action
for each decision point, according to the weekly rou-
tine of a user.
Tabular Q-learning (TQ) - Q-learning was initially
defined by (Watkins,, 1992) as follows:

Q(St ,At)← Q(St ,At)+α[Rt+1+

γ max
a

(Q(St+1,a))−Q(St ,At)],
(2)

where A and a represent actions, S represents the state
and R the reward. Additionally, t represents the cur-
rent timestep, Q is the action-value function for each
state-action pair, α is the learning rate and, lastly, γ

is the discount factor. The learning rate, α, deter-
mines when Q-values are updated, overriding older
information. The discount factor, γ, models the rele-
vance of future rewards by causing them to lose their
value over time so that more immediate ones are val-
ued more highly. In (2), the policy is greedy because
Q is updated using the value of the following state and
the value of the greedy action a, instead of the value
of the real action taken. However, different policies
can be applied to actually choose the desired action.
This choice should take into consideration the context
and particularities of the problem in question. In our
work, the ε-greedy policy, where the agent behaves
mostly in a greedy way but occasionally, and with
a small probability (ε > 0), selects a random action,
showed promising results and was henceforth applied.
Deep Q-Learning (DQN) with Experience Replay

- Developed by (Mnih et al., 2015), the Deep Q-
learning agent, combines the previously described Q-
learning algorithm with a Neural Network(NN). This
network is usually a deep convolutional NN due to
its many layers and fully connected network. Here,

the agent’s brain is the NN instead of a table or array.
It receives an observation and outputs the estimated
values for each of the available actions. It is updated
through the mean square error loss function, where
the difference between the current predicted Q-values
(Qθ) and the true value (Qtarget) is computed accord-
ing to:

Qtarget(t) =

rt ,

for terminal φt+1
rt + γmax

a′
(Qθ(φt+1,a′)),

for non-terminal φt+1

(3a)

Loss(θ) = ∑(Qtarget(t)−Qθ(φt ,at))
2 (3b)

where a represents an action, φ represents the state
and R the reward. Additionally, t represents the cur-
rent timestep, Q is the action-value function for each
state-action pair, and θ represent the network weights.

While this type of NN allows for more flexibil-
ity, it sometimes comes at the cost of stability. For
that reason, many extensions of this algorithm have
already been designed and tested. One, in particular,
is called Experience Replay (Lin, 1993), where the
agent memorizes the state, action, and effect of that
same action in the environment for every timestep.
After completing an episode, it replays the gathered
experiences by randomly selecting a batch of a par-
ticular size and training the network with it. This
replay helps reduce instability produced by training
on highly correlated sequential data and increases the
learning speed.

2.2 State Representation

We consider four representations: S1 and S3 have
similar formats, both containing the time of the day
in minutes, the number of notifications already sent
and answered that day, and the last user reaction. The
difference between these states is that S1 also con-
tains the day of the week, depicted by values from 0
to 6, allowing for a representation of a weekly routine
instead of a simple daily routine such as S1 permits.
S2 and S4 were born from a similar approach, both
containing an array of 24 elements where all positions
start as 0 and then, throughout the day, each element
may change depending on the outcome of the action
chosen at every hour (below, the numbers used to ex-
press each user reaction are described). S2 has an ad-
ditional element which, again and with the same aim
as before, represents the day of the week.

The developed states resort to easily obtainable in-
formation, focusing primarily on knowing how far the
agent is from its objective and how the user reacts

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

162

to its actions. Furthermore, since the generic goal
is to learn the most opportune timings, time and, in
some cases, even the day of the observation are also
tracked. With the purpose of recording users’ reac-
tions to the actions of the agent, 3 options were de-
fined and associated with a value: 0, meaning that in
the last timestep, a notification was sent and ignored
or dismissed; 1,a notification was sent and positively
addressed ; 3, a notification was not sent.

2.3 Reward Definition

The various types rewards of our experiments are
structured in the following manner: when a notifica-
tion is sent and the user does not answer, the agent
receives reward a. However, if the user responds then
the received reward value is b. Contrarily, if a no-
tification is not sent the agent receives c. Lastly, if
the episode, in this context a day, ends without hav-
ing achieved the goal of one answer then d is re-
ceived. Thus, the rewards assume values in the set
R = {a,b,c,d}. We define the following alternatives
for the values of {a,b,c,d}: R1 = {−1,2,−1,−2}
; R3 = {−2,2,−1,−3}; R5 = {−2,2,0,−3} ; R6 =
{−3,2,0,−3}.

The general idea we wish to transmit to the agent
with these structures is that the goal is to get the user
to answer one notification without bothering them by
sending notifications that go unanswered.

2.4 Environment Model

We assume that no difference exists between ignoring
a message or explicitly dismissing it, considering both
as “No Answer”. In this initial approach, we do not
wish to understand why a moment is less opportune
but simply that it is. In this way, the users’ answers or
lack of it are registered, and their motivations disre-
garded. Furthermore, the user’s answer is considered
to be either immediate or non-existent.

2.4.1 Behavior Model

This model reflects a users’ routine, for example, the
activities performed, their duration, and the user’s lo-
cation. It mirrors the ExtraSensory dataset (Vaiz-
man et al., 2017), which aggregates daily traces of
60 participants. Measurements from smartphones and
smartwatches were collected, along with self-reported
labels. Since this data was collected in the wild, its re-
liability is not perfect; after processed and cleaned,
it considers 51 possible tags, shown in Appendix
A (15 locations, 8 primary activities, 28 secondary
ones). These include primary activities, which de-

scribe movement or posture and are mutually exclu-
sive, and secondary activities, which represent a more
specific context. For the latter, such as for locations,
the user could apply several tags to a single instance
in time. In this simulator, the users’ state is repre-
sented as the combination of one primary activity and
a set of up to 43 possible secondary tags, composed
by secondary activities and locations.

From the available data, three user traces were
chosen. These were selected according to two main
concerns: providing lifestyles as distinct as possible
while ensuring the availability of enough data to rep-
resent a week in these users’ lives.

2.4.2 Response Model

The response model simulates how a user responds
to a notification in any given context, originating the
observations that our agent receives. In the literature,
a set of behaviors that researchers consensually agree
users tend to show were considered when implement-
ing this model (Mehrotra et al., 2015; Mehrotra et al.,
2016; Mehrotra and Musolesi, 2017).

Firstly, when the behavior model presents labels
such as sleeping, which ensure an inability to answer,
the simulator does not respond to notifications. In the
case of tasks such as driving or being in a meeting, for
which usually a low probability of answering is asso-
ciated, the simulator tends not to respond. Secondly,
a randomness level is always associated with every
decision the simulator makes, except when the user
is sleeping. This level intends to express the same
randomness a human would show in their daily life.
Thirdly, a component (β), defined as the exponential
decay in (4), is used to convey the diminishing desire
to use the app that most users would experience as the
number of daily notifications rises.

β(nt) = P(Answer | nt) = e−λnt (4)

Here, nt represents the number of messages already
sent during the current day. λ equals 0.3, chosen to
guarantee reasonable values are obtained.

Each user has a predefined prior probability of an-
swering P(A) and not answering P(A). This value
represents a person’s predisposition to be on their
phone and regularly use a mHealth application. We
assume a fixed value for each simulated user.

Assuming statistical independence between labels
and following the Naive Bayes probability model (5),
the probability of the user answering or not is as fol-
lows:

Active Data Collection of Health Data in Mobile Devices

163

P(C | L0, ...,Li,Li+1, ...,Llt)

∝ P(C,L0, ...,Li,Li+1, ...,Llt)

∝ P(C)P(L0 |C)...P(Li |C)P(Li+1 |C)...P(Llt |C)

∝ P(C)
i

∏
j=0

[
P(L j |C)

] lt

∏
k=i+1

[
P(Lk |C)

] (5)

A set of Lt labels, provided by the behavior model
represents this context. For every instant in time, there
are i labels that describe the moment (L) and (lt − i)
that were not chosen and indicate activities the user is
not currently doing (L). Considering our two possible
classes (C), Answer(A) and NoAnswer(A), the model
is formulated as presented in (5).

The values of P(L |C) and P(L |C) are unknown.
To compute them, we use the Bayes’ theorem, P(L |
C)=P(C |L)P(L)/P(C). Considering the conditional
probability formula, P(C | L) = P(C,L)/P(L), and
P(C,L)+P(C,L) = P(C), we compute P(L | C) us-
ing only P(L | C). Leaving now only the values of
P(C | L) and P(L) as unknown. Hence, these were
transformed into either obtainable components from
the behavior’s model dataset or reasonably estimated.
Estimation of Conditional Probability Values: For
each label provided by the behaviour model, reason-
able values were defined for the probability of an-
swering given that label (P(A | L)) and not answering
given that same label (P(A | L)).
Probability of each Label: The labels, which are
considered mutually independent, conditional only to
C, are supplied by the dataset. From the latter, the
probability of each label can be calculated according
to the formula presented in (6).

P(Lk) =
NLk

NL
(6)

The result is user-dependent since NLk represents the
number of times Lk occurs in their routine, and NL
defines the total number of labels in that same routine.
Final Response Probability Model: Now with the
values of P(A | L), P(A | L) and P(L) known for each
label, the before unknown values of P(L | C) and
P(L |C) are easily obtained. We add the parameter β

that represents user discontentment with notification
volume, in (7) and (8), finalizing our expressions as

P(A | L0, ...,Li,Li+1, ...,Llt) ∝

β

[
P(A)

i

∏
j=0

[P(L j | A)]∗
lt

∏
k=i+1

[
P(Lk | A)

]] (7)

P(A | L0, ...,Li,Li+1, ...,Llt) ∝

(1−β)

[
P(A)

i

∏
j=0

[
P(L j | A)

]
∗

lt

∏
k=i+1

[
P(Lk | A)

]] (8)

For each instance, the above presented factors are
estimated, normalized, and, resorting to a simple sam-
pling method, the simulator’s response is determined.

X ∼U(0,1)

ĉ ∈
{

A,A
}
∼
∥∥P(C | L0, ...,Li,Li+1, ...,Llt)

∥∥
C∈{A,A}

6 X (9)

We believe this sampling technique allows us to re-
flect the ambiguity of users more accurately. ĉ repre-
sents the class that defines the simulator’s response.
Depending on the simulator’s reaction and the state
of the environment, the algorithm then obtains the re-
spective reward and adjusts the strategy accordingly.

3 EXPERIMENTS

3.1 Model Initialization Methods

One of the main objectives of this paper is to ana-
lyze the efficiency levels that algorithms can obtain
when models are initialized in different manners. No
Previous Knowledge Models (Online Learning) -
The models start with no prior knowledge, learning
only from interaction with a specific user. We ex-
pect that this model adapts better to the user, tak-
ing longer to reach the better customization. Pre-
viously trained models (Offline Learning) - Here,
models are trained with two different users before
being tested with a third one, where they only ap-
ply what they have learned from previous experience.
This approach should reach acceptable results right
away. However, the method will not adapt to user
input. Previously trained adaptive models (Com-
bination of Offline and Online Learning) - In this
case, models are likewise trained before being de-
ployed. However, they continue learning, which al-
lows them to start more efficiently than models with
no previous knowledge while also growing to be cus-
tomizable. Assuming the chosen users’ routines are
varied enough to provide generalized knowledge that
could then be applied to any user, this model, which
combines the two previous ones, is expected to offer
the best and most stable results.

3.2 Daily vs. Weekly Routine

By applying the different state representations of Q-
learning and DQN and the different formulations of

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

164

UCB, this work intends to test if higher levels of ef-
ficiency can be obtained when letting the agent learn
what a typical week is for the user instead of a typi-
cal day. It is expected that when modeling opportune
timings throughout a week, the agent takes longer to
learn, but if enough time is provided, better results
can be obtained.

3.3 Performance Metrics

As performance metrics of our algorithms, we se-
lected two: Goal Achievement Rate (Gr) and Noti-
fication Volume (Nv).

Gr =
NA

NDays
(10)

Nv =
NSent

NDays
=

∑
Days
i=0 (NAi +NAi

)

NDays
(11)

Gr, in (10), is the fraction of accepted notifica-
tions (NA) over the number of episodes being tested
(NDays, each episode representing a day). High Gr
values show that our agent was able to identify when
users are open to receiving and answering notifica-
tions throughout the day. However, an agent may in-
crease the Gr by simply increasing interaction with
users. Thus, the volume of sent notifications in (11) is
also tracked to balance this effect. A well-behaved
agent should have a high response rate (Gr) while
maintaining a low notification volume (Nv), ensuring
in this way that our system gets a response without
bothering the user when he is not receptive.

4 RESULTS & DISCUSSION

Experiments were performed for all combinations
of the described initialization methods, algorithms,
states, and rewards. For each, 3 tests were executed
by applying the leave-one-out technique for a set of
3 simulated users. The respective median was then
determined as a measure of central tendency to di-
minish the influence of outliers. All graphs presented
show the average result among tested users, employ-
ing the Nv and Gr metrics. The standard deviation was
also analyzed and is likewise depicted in the displayed
graphs. Furthermore, in the tables shown throughout
this section, the average Gr and Nv values obtained
over 300 days of training are presented.

The overview of our results is shown in Table 1.
We compute the average values over all simulations
of the combinations of initialization methods, states,
and rewards in each algorithm are likewise shown.

Table 1: Average values over all combinations of each ini-
tialization method and algorithm.

—- Gr Nv

No Previous Knowledge 0.887±0.017 3.049±0.785
Prev. Trained 0.888±0.069 3.351±1.338

Prev. Trained Adaptive 0.963±0.041 2.877±0.881
UCB 0.905±0.049 2.082±0.399
TQ 0.975±0.015 2.983±0.837

DQN 0.854±0.067 3.706±1.467

4.1 Previously Trained Model

Table 1 shows that the non-adaptive model tends to
be less accurate. Compared with the other two ini-
tialization methods, this model displays, on average,
a higher standard deviation. Nonetheless, it obtains
satisfactory results when resorting to the right combi-
nation of algorithm, state, and reward, which in this
case is: DQN, using state S1 and S3, and rewards R5
and R6, shown in Table 2.

Table 2: Previously Trained - DQN.

DQN Gr Nv

S1 with R5 0.996±0.005 1.926±0.095
S1 with R6 0.983±0.012 1.813±0.123
S3 with R5 0.996±0.004 1.931±0.082
S3 with R6 0.992±0.003 1.864±0.121

DQN leverages less complex state representations
throughout the training phase and learn generic user
preferences better than any other combination. This
shows that, if the purpose is to learn generic prefer-
ences, it should be done in the less detailed manner
possible, which in this context is represented by mod-
eling a nonspecific daily routine (S3). Although not
adaptable to new users’ routines, a consistently pleas-
ant user experience can still be offered. However, if
applied to a user that has atypical habits, this model
would not prove satisfactory since, at its core, it is
not learning specific user preferences and adapting to
their schedule, but simply applying previous knowl-
edge, similar to supvervised learning algorithms.

4.2 Previously Trained Adaptive Model

Table 1 shows that this method provides the overall
best performing average results amongst all three ini-
tialization techniques since it can be refined as the fi-
nal user is actively using the application.

Both UCB and TQ present a good balance be-
tween our metrics, as shown in Table 3.

Active Data Collection of Health Data in Mobile Devices

165

Table 3: Previously Trained Adaptive - UCB and TQ.

Algorithm State/Reward Gr Nv
with R3 0.987±0.014 1.721±0.127UCB Day with R5 0.987±0.009 1.716±0.009

S1 with R5 0.982±0.013 1.907±0.289
S1 with R6 0.981±0.009 1.949±0.237
S2 with R5 0.985±0.004 1.945±0.285TQ
S2 with R6 0.981±0.011 1.922±0.298

Figure 1 shows that Nv converges early on, but Gr
takes longer. Thus, the agent is still exploring and at-
tempting to learn the user’s most opportune timings.
While doing so, and due to the consequent inconsis-
tency in the provided notification service, this behav-
ior may put at risk user engagement.

4.3 No Previous Knowledge Model

For this case, simple combinations of both UCB Day
and the TQ algorithm, with state representation S1,
provide the best results, shown in Table 4. Further-
more, it should be noted that the lower average devia-
tion values are obtained with this implementation, as
visible in Table 1.

Table 4: No Previous Knowledge - UCB and TQ.

Algorithm State/Reward Gr Nv

with R5 0.979±2.8e−17 1.714±2.8e−17
UCB Day with R6 0.973±0.004 1.529±0.092

S1 with R5 0.999±0 2.699±0.633
TQ S1 with R6 0.999±0 Gr 2.684±0.660

4.4 Overall Results

(a) Goal Achievement Rate

(b) Notification Volume

Figure 1: ComboA: Previously Trained Adaptive, UCB Day
- average result over users and across 300 days of training.

Best Combination - The best performing combina-
tion is shown in ComboA - Figure 1. It implements
UCB Day, for which a state representation is not re-
quired, with reward R5. UCB Day applies an up-

per confidence bound algorithm for each hour of the
day, helping the model to learn what action is better
for each decision moment. The initialization method
(Previously Trained Adaptive) provides a high Gr rate
from the model’s deployment, while being able to
adapt over time to the user’s specific routine, achiev-
ing a lower Nv as time goes on. This same combo
but with reward R3 provides similar results. In con-
trast, R6 produced a worse user experience due to
the higher penalization value for unanswered notifi-
cations, leading to lower Nv and lower Gr.

Similar results, visible in ComboB - Figure 2,
were achieved in the best combination of the No Pre-
vious Knowledge method, also resorting to UCB Day
and reward R5. However, ComboB’s initialization
method implies starting with no previous knowledge
of generic user preferences, leading to initially lower
Gr and slightly higher early Nv values. It takes ap-
proximately two months to achieve Gr values equiv-
alent to the ones obtained with the initially discussed
combination.

Note that although not providing the best perfor-
mance, the combination that offered acceptable re-
sults consistently throughout all initialization options
was implemented with TQ, state S1, and rewards R5
and R6. This affirmation is supported by Table 1. Ad-
ditionally, DQN presented the most unstable and in-
consistent effects, which is also reflected in Table 1,
providing an overall less pleasant user experience.

(a) Goal Achievement Rate

(b) Notification Volume

Figure 2: ComboB: No Previous Knowledge, UCB Day -
average result among tested users over 300 days of training.

Best State Representation - S1 and S3 tend to per-
form better throughout all combinations, revealing
that more complex, detailed states are not necessar-
ily always more efficient. However, it is not clear if
S3 (average day) is better than S1 (average week).
Best Reward Structure - The reward which gener-

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

166

ated a better overall performance in the tackled prob-
lem was R5. These values provided the best bal-
ance between achieving one daily answered notifica-
tion and not bothering the user.

5 CONCLUSIONS & FUTURE
WORK

This work aims to build an intelligent notification sys-
tem that could adequately manage interruptions, cre-
ated in a mHealth self-management application, by
learning what moments were the most opportune for
each user throughout their day. We studied a set of
RL algorithms, to determine the most desirable com-
bination of initialization method, algorithm, state, and
reward definition. This work demonstrates that a bal-
anced and efficient intelligent notification system can
be built for the purpose of being applied to a mHealth
application without requiring access to any private
user information or device sensor.

Future work should consider more detailed user
reactions that may not be instantaneous, but could
arrive within a predefined interval. These responses
could be further elaborated by, for example, introduc-
ing oblivious dismissal (notification goes unnoticed)
and intentional dismissal (people decide not to ad-
dress it). Lastly, this study relies on a simulator of
the user responses, which requires actual testing on
mobile devices utilized by real users with different
lifestyles, diseases, contexts, and demographics.

ACKNOWLEDGEMENTS

This work has been partially funded by the project
LARSyS - FCT Project UIDB/50009/2020 and the
project and by the project IntelligentCare – Intel-
ligent Multimorbidity Managment System (Refer-
ence LISBOA-01-0247-FEDER-045948), which is
co-financed by the ERDF – European Regional De-
velpment Fund through the Lisbon Portugal Regional
Operational Program – LISBOA 2020 and by the Por-
tuguese Foundation for Science and Technology –
FCT under CMU Portugal.

REFERENCES

Cornet, V. P. and Holden, R. J. (2018). Systematic review of
smartphone-based passive sensing for health and well-
being. Journal of Biomedical Informatics, 77:120–
132.

Fiordelli, M., Diviani, N., and Schulz, P. J. (2013). Map-
ping mhealth research: A decade of evolution. JMIR,
15(5):1–14.

Fukazawa, Y., Yamamoto, N., Hamatani, T., Ochiai, K.,
Uchiyama, A., and Ohta, K. (2020). Smartphone-
based mental state estimation: A survey from a ma-
chine learning perspective. JIP, 28:16–30.

Geneva: WHO (2020). Noncommunicable diseases
progress monitor 2020.

Ho, B. J., Balaji, B., Koseoglu, M., and Srivastava, M.
(2018). Nurture: Notifying users at the right time us-
ing reinforcement learning. UBICOMP, pages 1194–
1201.

Lin, L.-j. (1993). Reinforcement Learning for Robots Using
Neural Networks. PhD thesis.

Mehrotra, A. and Musolesi, M. (2017). Intelligent Noti-
fication Systems: A Survey of the State of Art and
Research Challenges. 1(1):1–26.

Mehrotra, A., Musolesi, M., Hendley, R., and Pejovic, V.
(2015). Designing content-driven intelligent notifica-
tion mechanisms for mobile applications. UBICOMP,
pages 813–824.

Mehrotra, A., Pejovic, V., Vermeulen, J., and Hendley, R.
(2016). My phone and me: Understanding people’s
receptivity to mobile notifications. CHI, pages 1021–
1032.

Mnih, V., Kavukcuoglu, K., and Silver (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533.

Rachad, T. and Idri, A. (2020). Intelligent Mobile Applica-
tions: A Systematic Mapping Study. Mobile Informa-
tion Systems, 2020.

Richard S. Sutton, A. G. B. (2018). Reinforcement learning
: an introduction. MIT Press, 2o edition.

Vaizman, Y., Ellis, K., and Lanckriet, G. (2017). Recogniz-
ing Detailed Human Context in the Wild from Smart-
phones and Smartwatches. IEEE Pervasive Comput-
ing, 16(4):62–74.

Vishwanath, S., Vaidya, K., and Nawal, R. (2012). Touch-
ing lives through mobile health-Assessment of the
global market opportunity. PwC.

Watkins,, P. (1992). Q-learning. Machine Learning, 8(3-
4):279–292.

WHO Global Observatory for eHealth (2011). mHealth:
new horizons for health through mobile technologies:
second global survey on eHealth.

Active Data Collection of Health Data in Mobile Devices

167

