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Abstract: Within motorsports less experienced drivers lack pace and performance compared to their peers. Training 
these drivers requires time, which, due to the regulations and resources, teams often do not have. Less 
experienced drivers are expected to perform at the same level as experienced drivers. This paper has the aim 
of analyzing the abilities and performances of both drivers within a Formula One team to redesign the driver 
training method. The focus is to provide drivers with real-time insights and feedback on their performance 
during a simulator training session. By using a combination of the principles of process mining and statistical 
analysis, data markers are created on the track. Based on the differences in telemetry, visual feedback is 
provided to the driver. Throughout the research, this manner of training has proven to be promising. Drivers 
showed an increase in their overall performance and an increase in car control and confidence. Despite these 
promising results more experiments need to be done to guarantee a consistent outcome and to prove the 
effectiveness of this training program. To continue developments, further research can be conducted on the 
topic of visualization and communication. 

1 INTRODUCTION 

The current paper poses a novel method for drivers to 
improve their performance using a team-based 
learning approach that is applied within a race 
simulation environment. According to de Winter, van 
Leeuwen, and Happee (2012), driving simulators 
offer various advantages, compared to the 
implementation of the training within the real 
environment. As de Winter et al. (2012) mentioned, 
the first, and most important advantage of using 
simulators is the possibility of encountering 
dangerous driving conditions without being 
physically at risk. This offers the learning driver to 
explore the positive or negative consequences of 
actions without leaving the driver vulnerable to 
potential harm (Slob, 2008). Secondly, the 
controllability of conditions, the reproducibility of 
scenarios, and the standardization of ground rules are 
built upon tests for the next line of advantages of 
using driving and motion simulators. Combining 
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these parameters in a dynamic scenario provides 
opportunities for controlling potential real-life 
scenarios that may happen during a race (Wassink et 
al. 2006). Adjusting the parameters of the virtual 
scenario can, according to Wassink et al (2006), 
enhance the reaction of the learning driver by 
standardizing procedures, aiming at minimizing the 
impact of the change within the environment. These 
changes can differ per configuration. In research 
conducted by Slob (2008), the effects and differences 
in the various configurations are discussed 
concerning their degree of freedom (DoF), the visual 
element, and the feedback element. 

Within this background research, the conclusion 
defined a set of criteria that need to be taken into 
consideration when building the simulator. Within 
chapter 3, these differences and effects of each 
configuration are discussed. Thirdly, de Winter et al. 
(2012) described the accuracy and ease of data 
collection as another advantage, contributing to the 
reliability of the provided feedback, and offering 
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better opportunities for providing better feedback and 
instructions. Based on all the aforementioned 
advantages, Slob (2008) mentioned one other 
advantage, describing the potential reduction of costs 
compared to the alternative (real) training solution. 

1.1 Feedback 

Within the context of driver training receiving proper 
and relevant feedback on performance contributes to 
the abilities and overall performance of the driver. 
The customization of feedback according to the needs 
of the driver amplifies the strengths of this specific 
driver within certain situations. According to Feng 
and Donmez (2013), driver characteristics are good 
predictors of the type and severity of exhibited risky 
driving behavior when constructing systems to give 
proper corrective feedback. Not only are the driver 
characteristics important when constructing 
personalized feedback, but taking into account the 
acceptance and the preferred type of feedback plays 
an important role. The visualization and presentation 
of the corresponding feedback determine whether or 
not the driver is going to open up to accept and 
embrace the feedback (Anseel, & Lievens, 2009). 

While it is recommended to use acoustic 
feedback only to provide basic feedback to prevent 
distracted driving, visual feedback can be used in 
many forms to simplify the data as much as possible 
while remaining the message clear and 
understandable. According to two independent 
studies on the detailed effect of visual feedback 
conducted by Adams, Gopher, and Lintern (1977) and 
Hoppe, Sadakata, and Desain (2006), visual feedback 
contributes to the general development of motor 
learning, leading to a better understanding of the 
situation and hence increasing the likelihood of 
interpreting the circumstance faster as well as with 
more reliability. When kept simple and 
understandable, providing visual feedback on a 
driver’s performance can effectively improve the 
driver’s learning curve. A better understanding of the 
situation can be ensured due to interactivity and hence 
the judgment in handling situations is refined for the 
better.  

1.2 Feedback as a Base for Social 
Learning 

Social learning is the general term of training based 
upon data from various drivers while aiming to keep 
the contents of the training personalized for the 
current driver. Within this research, social learning 
and team-based learning are applied to remove 
redundancies, to improve the quality of the overall set 
of data, wherein quality standards are defined by the 

amount of “high” classified data sets as defined in 
section 4.2, and to inform both drivers about the 
habits of the other driver to show them an alternative 
route through the processes.  

1.3 Research Questions 

The research questions addressed in this paper 
therefore are: 

• how can we harvest and preprocess data from 
a race simulation environment to retrieve 
individual performance metrics. 

• how can we assess individual and team 
performance 

• How can we provide visual feedback to the 
driver for performance improvement 
purposes?  

2 METHODOLOGY 

Exploiting the training of athletes within this level of 
expertise requires accurate data and reliable 
background information. Without a proper 
background of what the athlete requires, the training 
might miss the major point of improvement and hence 
lead to poor, unexpected results. This paper is 
inspired by the CRISP-DM research methodology as 
introduced and defined by Azevedo and Santos 
(2008). CRISP-DM is a development approach used 
as a framework for data-related research. Within this 
section, the different possibilities for mimicking the 
environment, data harvesting, data analysis, and 
visualization are explored to create the backbone of 
this project and therefore the backbone of the training. 

2.1 Simulator Configuration 

The experiments require an environment that 
attempts to mimic the real environment of the drivers 
within a race.  For this purpose, a racing simulator is 
built to recreate the direct environment. The simulator 
configuration consists of a combination of the 
following hardware elements: 

• Wheel Base: Podium Wheel Base DD2 - 
Direct Driven 

• Steering Wheel: Clubsport Steering Wheel 
Formula V2.5 X + Quick Release 

• Pedal set: Clubsport Pedals V3 Inverted 
• Damper: Clubsport Pedals V3 Hydraulic 

Damper Kit + Brake Performance kit 
• Cockpit: RennSport Cockpit V2 
• Seat: Sparco Pro 2000 QRT Seat for 

RennSport Cockpit 
• Visual: Triple Monitor setup 
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The software environment used for the simulation 
is the F1 2020 game developed by Codemasters. The 
game is publicly available on Steam and offers 
various configurations for data transmission over 
UDP. 

 
Figure 1: The Simulator Setup. 

2.2 Data Preparations 

Following the CRISP-DM Methodology, the next 
step is the collection and preparation of data. The 
Codemasters F1 2020 game is supported by an API 
that provides the possibilities for extracting game data 
from a racing session. This list of data that can be 
obtained is structured in a set of packets that each 
correlate to one section of the total dataset available. 
Within the F1 2020 game, it is possible to limit the 
frequency of updates to 10Hz, 20Hz, 40Hz, and 
60Hz. The data packets, however, do not come in 
simultaneously and therefore data might be 
overwritten. Hence the upload rate of the database 
must be higher. For the matter of limiting the amount 
of data and reducing the overall redundancy of the 
data, the frequency of updates is set to 10[Hz] and a 
threshold on the relevancy parameter of the data 
packet is introduced. Whenever the relevance of the 
data packet is below 50% and the data packet does not 
contain crucial data, this packet is ignored in the UDP 
queue, and hence is not sent to, nor received by, the 
application. Therefore, the packets that are sent and 
received are the following: 

• Header Packet 
• Session Packet 
• Lap Data Packet 
• Car Telemetry Packet 
• Car Status Packet 

In essence, the crucial factors that are required for the 
implementation of this training method include the 
orientation of the car (Car Status Data), the current 
track distance (Lap Data), the current lap time (Lap 
Data), the best lap/sector times [Session Data] and the 
telemetry (Car Telemetry). These elements can be 
traced back to the various packets mentioned above. 

3 SYSTEM DESIGN 

The CRISP-DM methodology includes three steps as 
part of the processing of data: Data Understanding, 
Data Preparation, and Modeling. The realization has 
been divided into these same three realms. Each realm 
corresponds to the research sub-questions defined in 
chapter 1. 

3.1 Harvesting & Preprocessing 

The first step before it is possible to start the CRISP-
DM Data Understanding, is the collection and 
preparation of data. To mimic a real-life situation, the 
racing simulator, as described in 3.1, is used for 
running the F1 2020 game. Within this game, the 
option for sharing telemetry is turned on. The 
harvesting of data has three steps. The first step is the 
sending of data. As the API provides this 
functionality, there is little control over the formatting 
of the data sent. The F12020 game handles the correct 
sending over a UDP connection to an available client 
on the same network. For ensuring that the 
connectivity is over the same network, a mobile 
hotspot is set up on the client-side and the racing 
simulator is connected to this mobile hotspot. The 
second step is to retrieve the data on the client-side 
and process this into readable data. This client-side is 
specifically built and designed for this project and 
therefore we do have control over the data and its 
corresponding formatting. The third step is to filter 
the relevant information and parse this to a database. 
The scheme of how the ATS system and its 
components interact is displayed in figure 2. 

When data is retrieved from the API, the client 
decodes the data stream and processes the data into 
information objects. As denoted in section 2.2, the 
different data packets arrive asynchronously. To merge 
arriving packets into one data object, an object buffer 
is created with a 7-millisecond lifespan. Throughout 
the lifespan of this buffer, all retrieved data is 
combined into the same object and redundant data is 
overwritten. These objects are then formatted into a C# 
directory to later be formatted into a JSON object.  

 
Figure 2: The ATS configuration. 
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A connection is made between the client and the 
Firebase database. Once the end of the lifespan of a 
data buffer is reached, the JSON object gets parsed to 
the Firebase FireStore database. Accordingly, 
Firestore responds with an approval message or an 
error. The error contains information and instructions 
on how to proceed. The approval message validates 
the arrival of data into the database.  

The database is divided into three collections. The 
first collection (“Collection 1”) contains all the 
gathered Test data based on the collection 
construction extracted from the packets as denoted in 
section 2.2. On the contrary, the third collection 
(“Collection 3”) contains all the gathered Training 
data. The second collection (“Collection 2”) contains 
real-time telemetry updates and therefore is updated 
every 0.5 milliseconds based on the incoming stream 
of data from the Racing Simulator. 

Considering that the goal of this first realm is to 
gather and process data from the game into a data 
collection, the desired result is a database filled with 
telemetry data, session data, and test data. Looking at 
the implementation of this section, this goal has been 
achieved, and by the end of the developments of this 
section, a database was available to continue to the 
next step within the overall  

3.2 Understanding & Learning 

The second step within the CRISP-DM methodology 
is the understanding of the obtained data. In essence, 
the goal of the system is to provide the driver with 
information about what to do best at specific parts and 
segments of the track. It is important that the driver 
must intuitively learn to act in a certain way, for 
which the boundaries must be defined by this 
algorithm. Therefore, when constructing the model 
for understanding the gathered data, a breakdown of 
tasks is required. For the implementation of the 
“Understanding & Learning” part within this 
research, a division of task categories has been made, 
this division is displayed in table 1. 

This part of the realization requires a strong 
object-oriented structure and hence the Java 
Programming Language is the language of use. 
Starting at the first set of categories, the first step is to 
retrieve data from the database. Consulting the 
Firebase integration documentation, reading data is 
done by obtaining the collections and retrieving the 
corresponding documents per collection. Within the 
experiments, it is expected from the participants to 
first perform 8 laps under training circumstances. 
This data is stored under the Training data collection.  

The next step in the process is to simplify the 
retrieved data and group the data together. The 
parameters for simplifying data are the current 
timestamp  in  seconds  on  the  track  and the  distance  

Table 1: Task division. 

1) Retrieval of Data Read Firebase 

2) Simplification of 
Data

Create data markers per 
condition X/Y* 

3) Grouping of Data Group on conditions 
X/Y 

4) Construction of 
Summaries 

Calculate summary** 
and averages Marker 
group 

5) Classify Marker 
Groups (MG) 

Within each group, 
classify value on 
Normal Distribution

6) Recreation of 
Trackline 

Create ideal trackline 
from highest 
classification per MG

* X is defined as the distance ration, Y is defined as the time in lap 
** The summary correlates to the Five number summary altogether 

with the standard deviation and mean 

ratio in percentages. The level of significance is in 
milliseconds for the timestamp and one decimal after 
the comma for the distance.  

The next step within the process of understanding 
& learning is to create the corresponding summaries 
for defining the ideal telemetry set per marker. This 
is done only for the marker with the distance ratio, as 
this marker defines the leading track line correlated to 
the telemetry. The summary consists of the distance 
ratio, the mean wheel angle at this distance ratio, the 
mean throttle/brake ratio at this distance ratio, and the 
modus of the gear at this distance ratio.  

After the mathematical summary has been 
created, the markers get labeled with a classification. 
This classification is built upon the Normal 
Distribution where the critical values are defined by 
the Z-Values derived from a distribution with a level 
of significance of 0.05. Accordingly, the obtained Z-
Value for a 𝞪total = 0.05 is equal to 𝞪upperTail = 0.025 ⇒  𝜇 +  2𝜎 𝞪lowerTail = 0.025 ⇒  𝜇 −  2𝜎 

Yielding the following criteria for the 
classification: 

For
mula 

𝜇− 2𝜎 
𝜇 − 𝜎 𝜇 𝜇 +  𝜎 𝜇+ 2𝜎 

Clas
sifier  

Lo
w 

Mi
dLow 

Mi
d 

Mid
High 

Hi
gh 
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For which 𝜇 is the calculated marker average per 
parameter of the marker and 𝜎 is the corresponding 
standard deviation from this average. 

After the dimensions of the classification have 
been defined and the markers have been classified, 
the entire dataset, as retrieved from Firebase, gets 
classified on the basis of the aforementioned 
classification criteria. Subsequently, the lower 
classified data markers get removed from the dataset, 
ensuring only “Mid”, “MidHigh” or “High” classified 
markers and data points within the dataset. The next 
step is therefore constructing a new trackline based on 
the highest classified data points. This recreated ideal 
trackline is defined as the “Advised Trackline for 
maximum performance”. Throughout the entire 
session, this process is repeated, improving the ideal 
trackline per newly created or updated marker. 

Throughout the research and the experiments, the 
driver will face a certain learning curve that might 
influence the research results. To overcome this 
learning curve and therefore to minimize the effect of 
this learning curve, the participant is asked to drive 8 
laps before the test. Throughout these laps, the 
participant will expose the learning curve by means 
of increasing marker classifications. Once the system 
recognizes a stabilization within the graphical 
representation of the participant’s output, the learning 
curve gets identified as all the output before the 
stabilization. Accordingly, the data gets removed 
from the training dataset, and the participant’s 
learning curve is eliminated. However, the markers 
classified as Mid, MidHigh, and High will remain in 
memory for the improvement of the ideal trackline. 

3.3 Communication & Visualisation 

The third step in the CRISP-DM methodology is the 
modeling of data. Displaying feedback is done 
through a visualization dashboard. As mentioned 
within section 3.2, the aim of the visualization is to 
inform the driver about his current positioning on the 
track, his current performance compared to the 
advised line, and the improvements the driver has to 
take to improve his performance without causing too 
much distraction. Hence the visualization must be 
simple and easy to understand from out of the corners 
of the driver's eyes. The criteria for the visualizations 
are that the colors must be distinguishable and the 
information must be recognizable. For the steering 
angle, a two-sided horizontal histogram is used to 
denote the rate of change that needs to be applied to 
the current steering angle. The Brake and Throttle 
work according to a vertical bar chart that turns green 
when too little pressure is applied and turns red when 
too much pressure is applied. The visualization tool is 
developed using the Processing 4.0 Beta 5 Library 

within a Java Application. A snapshot of the 
application is provided in Figure 3. 

 
Figure 3: A snapshot of the visualization tool. 

4 SYSTEM VALIDATION & 
RESULTS 

Within this section, the analysis of the results is 
conducted. Before this analysis can take place, an 
experiment is set up with a certain number of 
participants. A single experiment consists of two 
drivers, a potentially good driver, and a potentially 
worse driver. The better driver is asked to participate 
in the experiment first. Subsequently, the worst driver 
is asked to participate in the experiment as the second. 
Although not desired, it is important to anticipate a 
situation wherein not all participants have an equal 
amount of knowledge of racing simulators. 
Therefore, to reduce the effects of this knowledge 
gap, the experiments are divided into 5 sections: 

1) Participant Briefing & installation 
2) Training Session 
3) Test Session 
4) Survey 
5) Open Discussion 

The experiment starts with a brief introduction to the 
project and a brief introduction to the experiment. 
Once these introductory briefings are done, the 
participants start a training session wherein he/she has 
to drive 8 full laps on Circuit Zandvoort. There will 
be no feedback given to the participant. The data is 
collected and used for preparing the predictions that 
will be shown to the participants in the test session. 
During the Test session, the driver is once again asked 
to drive 8 full laps, this time with visualizations and 
feedback. Due to GDPR regulations, details about 
participants will not be shared. 

4.1 Results 

For this research there was room to conduct three 
experiments. The analysis of the experiments has 
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been divided into four parts. The first part is on the 
harvesting of data and the reliability of the created, 
ideal, trackline. Secondly, an analysis of the overall 
performance of drivers is done by depicting the R-
Squared values of the Test sessions against the R-
Squared values of the Training Sessions for every 
participant. Thirdly, the performance based on the 
brake ratio, the throttle ratio, and the steering angle is 
analyzed based on the initial training dataset and the 
test dataset. Lastly, a brief analysis of the feedback 
system is done. This is done based on the responses 
to the survey. 

To visualize the power of big data and process 
mining, the effect of a high data acquisition rate is 
denoted against the reliability of the created advised 
trackline. By displaying the number of timestamp 
markers created per lap, it is easily seen when and 
where the data packets have dropped. To overcome 
the amount of dropped data, more data must be 
gathered. As depicted in figure 4, once the total 
number of laps driven increases, the total coverage of 
the timestamps increases, leading to a higher 
accuracy per marker. From this dataset, a generalized 
model can be constructed wherein each required 
timestamp is covered by the total data set. From this 
generalization, a reconstruction of the trackline can 
be created. 

 
Figure 4: The data markers coverage per timed lap, 
depicting the packet drops. 

4.2 Driving Performance 

When the goal of training is to improve multiple 
drivers, along the same progress line, the variation in 
data is the most important factor. More variation 
means a larger difference in performance and 
therefore a larger difference in abilities, confidence, 
and skills. The analysis is based on the R Linear 
Regression model wherein the severity of variation 
within the dataset is denoted in R-Squared. R-
Squared is in the context of this research defined as 
the statistical measure of how close the data fit the 
generated regression line. The datasets recorded per 
driver showed decreasing classification levels the 
longer the session took. From this can be concluded 
that due to the effects of fatigue and exhaustion, 
drivers did perform less at the end of a session 
compared to the beginning of the session. For the 
reliability of the analysis, only laps 3 and laps 5 are 
taken into account.  

The R-Squared is defined as the depiction of the 
distance ratio against the amount of time on track. 
The regression line, therefore, is the ideal line 
wherein the 100% distance ratio is reached in the 
most average amount of seconds. The R-Squared 
value is calculated using the formula: 

𝑅ଶ  ൌ  1 − 𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  

 
Figure 5: The R-Squared value as a rate of variation on  
Lap 3. 

 
Figure 6: The R-Squared value as a rate of variation on  
Lap 5. 

When analyzing Figure 5, the most visible 
difference between the training and test data is that 
there are fewer peaks and therefore fewer outliers 
within the datasets during the test session compared 
to the training session. Moreover, the values seem 
closer to each other. This same phenomenon seems to 
be present in Figure 6, where the analysis on lap 5 is 
depicted. This formula yields the following table of 
R-Squared values against the corresponding lap and 
session type:  
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Table 2: R2 values for lap 3 and lap 5 for both session types. 

 Lap 3 Lap 5 

Training Session R2 = 0.977665 R2 = 0.979416 

Test Session R2 = 0.992191 R2 = 0.988712 

From this table it can be deduced that in any case, 
the training session had less variety within the data 
samples, although there is only the slightest 
difference. Nonetheless, This yields that the testing 
session had an additional factor in play that caused 
this slight increase in overall performance. 

4.3 Car Handling 

The second performance analysis method is based on 
the telemetry data retrieved from the real-time 
database and the ideal telemetry calculated by the 
learning system. Before the experiments started, the 
drivers were grouped based on their experiences with 
driving and racing simulators. According to these 
groupings, driver duos were created. Each duo 
consisted of a presumed experienced driver and a 
presumed inexperienced driver. The aim of this 
division between the participants opened options for 
amplifying the effects of the training to gain the 
maximum insights as possible during the analysis 
phase.  

When looking at the overall race pace of the 
drivers in figure 7, it is seen that almost all drivers 
improve upon their average speed. Within this 
context, a higher average speed yields lower lap times 
and hence a more efficient drive. 

Table 3: The difference is race pace denoted in percentages 
[%]. 

Driver 
name 

Avg Pace 
during 
Training 
Session 
[km/h] 

Avg Pace 
during 
Test 
Session 
[km/h] 

Difference 
rate in 
percentages 
[%] 

Player 1 199.14  197.59 -0.808

Player 4 174.58 178.43 +2.203

Player 2 199.80 200.79 +0.469

Player 5 179.71 186.79 +3.938

Player 3 197.78 205.01 +3.659

Player 6 178.70 189.73 +6.174

From table 3, it can be deduced that the rate of 
change of the inexperienced driver correlates to the 
rate of change of the experienced driver. Meaning that 
if the experienced driver barely increases, the rate of 
change for the inexperienced driver will be low due 
to the low quality of the data. If the experienced driver 
improves a lot, the quality of the data is high and 
hence the inexperienced driver can benefit from this 
set of highly classified data, meaning that the 
feedback would become more accurate and reliable. 

 
Figure 7: The difference in race pace with and without 
feedback. 

4.4 Brake Throttle Differences 

Given the large difference in overall pace and driver 
performance of duo 3; red, analyzing the data of this 
duo returns the best visible effect of the duo training 
program. In figure 8, the difference in brake and 
throttle performance of player 6 has been depicted, 
wherein the distinction has been made between the 
session type (training, test). During the training 
session, it is seen that there is much fluctuation in the 
throttle. This leads to less time on the maximum 
throttle and therefore less overall speed. These 
fluctuations can be explained by the level of 
confidence of the driver.  

This same principle counts for the brake. 
Comparing the results of the training session to the 
test session, it is seen that within the test session, the 
driver has much more confidence as there are fewer 
fluctuations in the driver’s brake and throttle 
handlings. This implies that the driver has more 
understanding of the situation and hence can better 
control the car to operate at maximum performance. 

Moreover, it is seen that the driver is making less 
use of the brakes and therefore makes more use of the 
friction of the engine to slow down, implying that 
more speed and more pace is carried throughout the 
track, leading to more efficient handling of the car. 
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Figure 8: The brake and throttle performance during the 
training and test sessions. 

4.5 Steering Efficiency 

During the training session, the player has a lot of 
fluctuation in the steering wheel throughout the lap. 
Within the context of the steering angle, fluctuations 
mean the rate of corrections required to operate the 
car. Hence, more fluctuations imply more corrections 
and therefore less control of the car and the situation. 
Comparing the results from the training session and 
the test session, it is evident that the number of 
fluctuations has decreased, implying that the driver 
had more control over the car. Moreover, it is seen 
that the steering angles remain more consistent over 
the track segments, meaning that the cornering gets 
longer, yielding more pace at the end of the corner, 
yielding improved exits. 

 
Figure 9: The steering angle during the training and test 
session. 

5 DISCUSSION 

When willing to validate the results obtained during 
the experiments, it is of high importance to be 
realistic about the effectiveness, accuracy, and 
reliability of the system and the tests. Therefore a 
disclaimer must be made. While the results, as 
introduced in chapter 4, seem promising and 
effective, more statistical testing needs to be done.  

5.1 Recreation of Ideal Trackline 

The corresponding research subquestion that belongs 
to this topic of the research is, as denoted in section 
1.3: “To what extent is it possible to recreate an 
artificial trackline built upon the basis of the highest 
performances throughout the track?”. When trying to 
answer this research question, the results that section 
4.1 yielded showed that approximately 8 laps were 
required to fully cover every second and every driver 
meter of the track. From the data collected through 
the racing simulator, it is possible to reconstruct the 
events, with regard to every parameter of the car as 
provided by the Codemasters API, that occurred 
during the moment on the track. In this way, a data 
collection can be created to artificially regenerate the 
track and the position of the car on the track while 
having every parameter required or not required in 
mind. Therefore, the extent to which it is possible to 
recreate the trackline is endless as long as the 
database allows data to be captured.  

5.2 Translation of Data into Feedback 

The second question that needs to be answered before 
reliable feedback can be provided to the driver, is the 
question on the translation of data into advice based 
on the current telemetry. The corresponding research 
question to be answered is “How can this artificial 
trackline be translated into terms of required 
telemetry changes to guide towards this trackline?”. 
The translation needs to happen for three parameters 
only, as denoted by section 3.3. While these three 
parameters are based on a series of calculations to 
determine which values of the parameters are actually 
the value to display, these parameters are easily 
interpreted as single, rational values. These values 
can then be translated into advice per marker, as 
created by the learning system, and automatically be 
bound to represent the marker in terms of the 
telemetry settings.  

5.3 Projection of Feedback to Driver 

Evaluating the current visualization of the data, it is 
important to take into consideration the parameters 
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that need to be available to the driver. When looking 
at the corresponding research question, the question 
yields: “How can these telemetry changes be 
communicated to the driver in the most effective 
manner?”. Throughout the research, it was concluded 
that not all types of feedback were ideal within the 
context of this application, e.g., acoustic feedback 
was labeled as useful for quick updates but not for 
continuous feedback. As opposed to this statement, 
the participants did agree that for continuous 
feedback, visual feedback would be better, provided 
that the manner of presenting this feedback was more 
subtle. A potential implementation of this feedback 
system would be integration within the F12020 game 
or a virtual reality overlay. In this end, this project 
remains a work-in-project and hence further research 
is required before practical implementation 

5.4 Limitations 

Having in mind the scope of this research, up until the 
current standing, the project seems promising and 
yields great results. Considering that simulators are 
already widely used for training professional drivers, 
an additional layer of training and, eventually, 
protection is seeming to be the way to conquer the 
checkered flag.  

Considering the minimal requirements for setting 
up this research, many limitations have come to play 
during the project. These limitations cover a broad list 
of items that need to be discussed when willing to 
redo or expand this project. The actual research 
limitations will be discussed in the next section. The 
items that this section will cover include: 

• The availability of materials 
• The budget cap 
• Domain Experts 
• The reliability of the UDP protocol 
• The database limitations in contrast to the data 

collection size 
• The limited research on the Formula One Topic 
• Limited availability of drivers 

6 CONCLUSION 

The aim of this paper is to find an optimal way of 
enhancing driver performances by adjusting the 
training according to gathered data on earlier 
achieved performances. This was done in a process of 
three steps. The first step was to harvest data on the 
performances of drivers within a team or cluster. This 
was done using the Racing Simulator and principles 
of process mining. The data was stored in a database 
for later analysis. The second step was to analyze the 

gathered data with the main purpose of learning the 
track boundaries, the telemetry boundaries, and 
understanding the abilities of the driver. This was 
done using conformance checking, basic principles of 
statistics, and linear regression. Lastly, the analysis of 
the data retrieved from the learning model was 
translated into valuable feedback and displayed to the 
driver through a feedback system. 

When analyzing the data gathered by the ATS 
system, several factors play a role to determine 
whether a created marker is of high value. After this 
classification of data markers has been made, a 
training set is created from the currently stored data 
with which the system trains itself to recognize 
patterns. According to these created patterns, the 
system builds advice per second and per distance ratio 
on the track and bundles this with the corresponding 
telemetry information. Moreover, the system reads 
out the real-time telemetry database to link the current 
behavior of the driver to a previously occurring event 
or a generated marker to optimize the action, and 
eventually the performance, of the driver. 

The results of the experiments conducted with 
three duo’s drivers were promising. Almost all 
drivers showed an increase in performance and a rise 
in confidence. Fewer fluctuations were observed at 
the steering wheel, implying more control over the car 
and a higher understanding of the abilities of the car 
and above all, the abilities of the driver. Additionally, 
more peaks in the use of the throttle were observed 
while the use of the brakes decreased, resulting in 
more overall pace and performance. 

Nevertheless, while these results do imply an 
effective training concept, the statistical backbone of 
the project is weak. More experiments must be 
conducted with a larger sample size to guarantee the 
effectiveness of the training.  

In conclusion, it is not yet possible to guarantee 
that this manner of training works. The initial concept 
of the training method appeared to be effective and 
pervasive, however, the system lacks statistical 
coverage to prove that this way of training athletes 
guarantees an improvement in performance. 

6.1 Practical Recommendations 

It can be said that this training method shows 
potential as the results obtained look promising. 
However, to improve the system to make it 
waterproof, some recommendations must be made. 
The main recommendation to be made is the system 
that all participants seemed to have difficulties with; 
the feedback system. As this feedback system is the 
main interface for the drivers to interact with, this 
system must be either optimized in a way that it does 
not form a distraction or the feedback system must be 
implemented according to the feedback received from 
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the participants. In further research, I would 
recommend redesigning the feedback system in a way 
that is more visible to the driver with less effort. 
Furthermore, it is of high importance to keep the 
information even simpler so that the driver can see or 
feel in a blink of an eye what is expected. Another 
recommendation that I deem important is the speed of 
the database. While the database showed an 
impressive amount of speed and functionality, the 
system lacked a bit behind due to the congestion 
errors that were present by default. The internet 
connection  and the database configuration seemed to 
be a bottleneck throughout the entire process. Perhaps 
in future studies, a local database could be 
implemented to overcome these issues. 

Additionally, the learning and analysis method is 
currently based on the normal distribution. While this 
classification method seems to work for this context, 
it is not always reliable. If a car crashes along the way, 
the entire lap gets classified as a low marker. 
Neglecting the time that a car is lacking in this 
situation, the driver might still recover and increase 
his pace. This increase in pace is currently not 
counted towards the final classification and hence the 
data is discarded. Having too many of these data 
points might corrupt the data. To overcome this, a 
fully functioning deep learning algorithm can be 
implemented to recognize events like crashes. 

6.2 Future Work 

To exploit the effectiveness of this training method, 
these recommendations must be taken into account. 
Improvements must be made to increase the 
reliability and accuracy of the system. Moreover, by 
conducting more user tests, a statistical and scientific 
backbone can be created for the training method. 

Additionally, although the initial concept relied 
on machine learning and deep learning principles, the 
final concept within the scope of this research barely 
made use of these concepts. For future development 
of this project, machine learning and/or deep learning 
could be exploited to better understand the obtained 
data and perhaps give suggestions beforehand instead 
of in real-time.  

Lastly, the method of displaying information must 
be changed. As denoted in the recommendation 
section, another manner of providing feedback must 
be implemented to gain the maximum result while 
keeping the level of distraction low.  

REFERENCES 

Adams, J.A., Gopher, D., Lintern, G. (1977). Effects of 
visual and proprioceptive feedback on motor learning. 

Journal of Motor Behavior, 9(1),11-22. 
http://dx.doi.org/10.1177/154193127501900204 

Anseel, F., & Lievens, F. (2009). The Mediating Role of 
Feedback Acceptance in the Relationship between 
Feedback and Attitudinal and Performance Outcomes. 
International Journal of Selection and Assessment, 17, 
362-376. https://doi.org/10.1111/j.1468-2389.2009.00 
479.x 

Azevedo, A., & Santos, M. F. (2008). KDD, SEMMA and 
CRISP-DM: a parallel overview. IADS-D. 

Balcerzak, T., Kostur, K. (2018). Flight Simulation in Civil 
Aviation. Revista Europa de Derecho de la Navegación 
Marítima y Aeronáutica, 35(3), 35-68. Retrieved from 
https://dialnet.unirioja.es/servlet/articulo?codigo=6953
721  

Crespo, L. M., & Reinkensmeyer, D. J. (2010). Haptic 
Guidance Can Enhance Motor Learning of a Steering 
Task. Journal of Motor Behavior, 40(6), 545-557. 
https://doi.org/10.3200/JMBR.40.6.545-557  

De Winter, J.C.F., van Leeuwen, P.M., Happee, R. (2012). 
Advantages and Disadvantages of Driving Simulators: 
A Discussion. Retrieved from Delft, University of 
Technology, Department of BioMechanical 
Engineering. doi 10.1.1.388.1603 

Espié, S., Gauriat, P., Duraz, M. (2005).  Driving 
Simulators Validation: The Issue of Transferability of 
Results Acquired on Simulator. Retrieved from The 
Université Gustave Eiffel. 

Feng, J., & Donmez, B. (2013). Design of Effective 
Feedback: Understanding Driver, Feedback, and Their 
Interaction. Proceedings of the Seventh International 
Driving Symposium on Human Factors in Driver 
Assessment Training and Vehicle Design, 404-410. 
http://dx.doi.org/10.17077/drivingassessment.1519  

Hattie, J., Timperley, H. (2007). The Power of Feedback. 
Review of Educational Research, 77(1). 81-112. 
https://doi.org/10.3102%2F003465430298487  

Hoppe, D., Sadakata, P., Desain, P. (2006). Development 
of real-time visual feedback assistance in singing 
training: a review. Journal of Computer Assisted 
Learning, 22(4), 308-316. https://doi.org/10.1111/ 
j.1365-2729.2006.00178.x  

Nelson, M.M., & Schunn, C.D. (2009). The nature of 
feedback: how different types of peer feedback affects 
writing performance, Instructional Science, 37, 375-
401.  https://doi.org/10.1007/s11251-008-9053-x  

Pakkanen, T., Raisamo, R., & Surakka, V. (2014) Audio-
Haptic Car Navigation Interface with Rhythmic 
Tactons. In: Auvray M., Duriez C. (eds) Haptics: 
Neuroscience, Devices, Modeling, and Applications. 
EuroHaptics 2014. Lecture Notes in Computer  
Science, vol 8618. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-662-44193-0_27  

Slob, J. (2008). State-of-the-Art Driving Simulators, a 
Literature Survey. Retrieved from The University of 
Eindhoven, Department of Mechanical Engineering, 
Control Systems Technology Group. Website: 
http://www.mate.tue.nl/mate/pdfs/9611.pdf  

Voelkel, S., & Mello, L.V. (2014). Audio Feedback - Better 
Feedback? Bioscience Education, 22(1), 16-30.  
 

Performance Enhancement of Formula One Drivers with the Use of Group Driven Learning

269



 

https://doi.org/10.11120/beej.2014.00022  
Wassink, L., Van Dijk, B., Zwiers, J., Nijholt, A., Kuipers, 

J., Brugman, A. (2006). In the truman show: Generating 
dynamic scenarios in a driving simulator. IEEE 
Intelligent Systems, 21(5), 28-32, doi: 10.1109/MIS.20 
06.97 

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

270


