
Continuous Procedural Network of Roads Generation using L-Systems
and Reinforcement Learning

Ciprian Paduraru, Miruna Paduraru and Stefan Iordache
University of Bucharest, Romania

Keywords: Networks, Roads, Deep Learning, Simulation Software, Video Games, L-systems, Reinforcement Learning.

Abstract: Procedural content generation methods are nowadays used in areas such as games, simulations or the movie
industry to generate large amounts of data with lower development costs. Our work attempts to fill a gap in this
area by focusing on methods capable of generating content representing network of roads, taking into account
real-world patterns or user-defined input structures. At the low- level of our generative processes, we use
L-systems and Reinforcement Learning based solutions that are employed to generate tiles of road structures
in environments that are partitioned as 2D grids. As the evaluation section shows, these methods are suitable
for runtime demanding applications since the computational cost is not significant.

1 INTRODUCTION

The environments used by computer games, simu-
lation applications, and movies have grown signifi-
cantly in recent years. Nowadays, most users demand
large open-space worlds with lots of content. Proce-
dural content generation is currently used to generate
textures (Dong et al., 2020), animations (Danny Al-
berto et al., 2019), and virtual worlds (Freiknecht
and Effelsberg, 2017). Open-world games such as
Minecraft 1, NoMansSky,2, the Far Cry series, or
movies such as The Mandalorian 3 use procedural
content generation to increase the size of environ-
ments and reduce production costs.

Our work addresses the problem of procedural
generation of road networks that bear a resemblance
to real cities. Our motivation stems firstly from the
set of applications that could use such a system, such
as simulators for self-driving cars, driving simulation
environments, and computer games. Second, after a
literature review, we find that there is a gap in this
area. The contribution of our current work can be
summarized from two points of view:

• From the authors’ knowledge, this is the first work
that builds generative models for networks of

1https://www.minecraft.net/en-us
2https://www.nomanssky.com/
3https://www.theverge.com/2020/2/20/21145671/mand

alorian-sets-stagecraft-epic-games-ilm-fortnite-baby-yod
a-digital

streets that mimic real-world cities. Our methods
are based on statistical learning of features, which
are then sampled by L-Systems (Curry, 2000) or
training Reinforcement Learning (RL) agents to
generate the networks.

• Provide an augmented dataset and operations
where the road network pictures from different
real cities are converted into a graph format suit-
able for further research in the community. We be-
lieve that the methods and code used for process-
ing can be easily adapted to other inputs such as
maps from Open Street Maps 4 or Google Maps.

The contributions are also made open source at https:
//github.com/AGAPIA/ProceduralContentGeneratio
n.

The rest of this paper is organized as follows. Sec-
tion 2 describes previous work on procedural content
generation, focusing on map generation. Section 3
presents the processing methods for converting top-
down pictures of cities into augmented graph struc-
tures. Our methods and procedural content generation
proccesses are described in Section 4. The evaluation
of our work is considered in Section 5. The final sec-
tion contains a conclusion and plans for future work.

4https://www.openstreetmap.org/

Paduraru, C., Paduraru, M. and Iordache, S.
Continuous Procedural Network of Roads Generation using L-Systems and Reinforcement Learning.
DOI: 10.5220/0011268300003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 425-432
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

425

2 RELATED WORK

Important content of the current top video games use
the so-called ’Procedural Content Generation’ (PCG)
to improve gameplay and make the game more inter-
esting and entertaining for players (Liu et al., 2020).
We will analyze some methods that have been used so
far in content generation, focusing primarily on map
generation. Dynamic map generation for video games
has been studied in many papers in the literature. In
this section we will try to describe the state of the art
in this field and compare it with our current work.

L-Systems where used in (Parish and Müller,
2001) to create procedural cities. Compared to our
method, their method is purely generative and re-
ceives as inputs goals and constraints and does not
learn a model from real data topologies. Tensor
fields were also used in (Chen et al., 2008), but with
the same drawbacks, since it is a purely generative
method based on constraints. In (Lara-Cabrera et al.,
2012), the authors use a genetic algorithm to gener-
ate and evolve balanced maps (i.e., maps that provide
equal advantages and disadvantages to all players) for
real-time strategy (RTS) games. Their method gener-
ates content offline using a generate-and-test schema.
The algorithm runs over a set number of generations
with a tunable population size, where each individ-
ual maps 84 different parameters. The selection pro-
cess is done in a tournament way and uses a mutation
rate of ∼ 70% and a crossover rate of 75%. To cal-
culate an individual’s score, a genotype-to-phenotype
transformation was used. Evaluating how balanced
a generated map is, it is a costly process where two
bots play the game until the end and evaluate the bal-
ance coefficient. In (de Araújo et al., 2020), Particle
Swarm Optimizations (PSO) techniques are used to
generate balanced maps that simultaneously satisfy a
set of soft user-specified requirements. Their method
assigns a particle to each tile of the map (which is
organized in a grid structure similar to our solution)
and penalizes each tile for deviating from the user-
suggested requirements. However, their generative
process uses random heuristics to some sense. Apply-
ing such methods to structures with constrained ge-
ometry, such as 2D graphs in our case, would lead to
poor results and lose the expressiveness of a real-life
example.

In (Snodgrass and Ontañón, 2017), a more sta-
tistical approach to content generation is presented
that uses multidimensional Markov Chains (MdMC)
to generate tiles of simple 2D levels in games. The
MdMC is trained using existing data and then sam-
pled to generate more content at runtime. Although
its approach is interesting for our purpose, it is lim-

ited to generating game levels where each tile could
define a piece in the world, which could not lead
to learning the structure of smooth roads in a city’s
road network. The same limitation is found in (Ping
and Dingli, 2020), which uses Conditional Generative
Adversarial Networks (cGAN) to generate 2D or 3D
maps based on a user-specified sketch. In addition,
this method needs the generation of a sketch of the
map first, and it is difficult to adapt it to a constantly
moving visualization perspective inside the environ-
ment.

An approach that uses reinforcement learning is
described in (Gisslén et al., 2021). Their method con-
sists of two RL agents: the generator and the solver,
which are interdependent. The generator creates an
environment, which is then tested by the solver. The
generator receives feedback (rewards and observa-
tions) from the solver, as well as some additional con-
tent specified by the developers. In this way, the gen-
erator learns to create different types of environments
of varying types, difficulty, and complexity. After the
generator creates a new environment, it challenges the
problem solver to produce the best possible result. As
a result, the problem solver becomes more robust and
is more likely to solve new, unprecedented tasks and
reduce the amount of hard coding required to solve
the task. However, we note that the method is not suit-
able for our purposes because the computational cost
of generating new tiles with connected roads would
not be suitable for runtime generation.

Given our goal of learning graphs of networks
and then training a model that creates similar look-
ing graphs, an approach such as NetGAN (Bojchevski
et al., 2018) that uses Generative Adversarial Net-
works (GANs) could also be used. However, the
problem with NetGan is that it only supports undi-
rected graphs and cannot generate continuous net-
works as we need in a procedurally generated road
network. Another approach is Misc-GAN (Zhou
et al., 2019), where graphs are fed into a GAN ar-
chitecture that tries to extract a distribution for the
given graph dataset at different levels of granular-
ity. The network learns this distribution and then
attempts to apply it to the patterns being generated.
Like the previous approach, this method is not suit-
able for generating continuous road networks, only
individual samples, which is not of great use for our
goal. The work presented in GraphGAN (Wang et al.,
2017) and VGAE (Kipf and Welling, 2016) is de-
signed for datasets where the user defines the set of
nodes and the model can then fill in the edges. How-
ever, our goal is to generate both nodes and edges,
which means that the approach they use is not suit-
able for our requirements. We try to overcome these

ICSOFT 2022 - 17th International Conference on Software Technologies

426

limitations with our proposed solutions based on re-
inforcement learning.

3 DATASET AND PROCESSING
ALGORITHMS

To model a generative method that learns from real
data, we will use the semantic representation of the
CITY-OSM dataset (Li et al., 2019). The dataset con-
sists of 1671 aerial images of the cities of Berlin,
Chicago, Paris, Potsdam, Tokyo, and Zurich, which
together comprise nearly 45 GB. The raw images
were segmented into a simpler representation consist-
ing of roads (marked with the color blue RGB(0, 0,
255)), buildings (marked with the color red RGB(255,
0, 0)), and the rest of the background (marked with
the color white RGB(0, 0, 0)). Note that similar input
content can be added by computer vision methods di-
rectly from Open Street Map or Google Maps. There-
fore, we believe that the methods described below are
also suitable for customized and new input maps.

3.1 Detecting Road Nodes and Edges

We apply a heuristic to detect the nodes (vertices) of
the graph G describing the roads in the scene. The
heuristic was built as needed on top of the ideas de-
fined in (Mena and Malpica, 2005) to fix some issues
with previous approaches and our dataset. We assume
that the nodes should be located at the elements of
interest: intersections, road ends, and turning points.
For this purpose, we take each white point P in the
given input image (representing a road) and draw a
centered circle in P with radius R (empirically, the
value was set to 5 pixels). If the number of intersect-
ing points (from different road segments) is at least
3, we mark P as an intersection point (Figure 1a, 1b).
If only a single point is intersected, it means that P
is an endpoint of the road (Figure 1c, 1d). To detect
nodes that are turning points, we require that a pair of
distinct nodes in the set of circle intersections form a
turning point of less than TA degrees (empirically, we
chose this value to 90 degrees), Figure 1e. Finally, we
discard points in G that are physically closer than T D
pixels in the input image (chosen as 30 pixels). The
pseudocode of these operations is shown in Listing 1,
while a visualization of a complete example is shown
in Figure 2.

To detect the edges of the graph, a Breadth-First
Search (BFS) is used starting from each node and fol-
lowing the white pixels in the image. Since the road
is larger than one pixel, it is possible to go beyond a
node when searching for connections. To avoid this,

we define a zone of influence R for a node so that the
search for a connection node stops when it is in this
area.

At this point, the graph constructed in G has the
network of nodes and road links between them. How-
ever, in order to learn efficiently from the data, we
needed some other features that are stored internally:

• The distances between nodes, D(Vi,Vj).

• The angles of pairs of nodes representing turning
points, Angle(Vi,Vj).

• How many branches each intersection node has,
Inter(Vi).

4 METHODS

Having a dataset of examples in a graph format like
the one described in Section 3, the goal is to continu-
ously generate similar graphs that adhere to the given
patterns and some constraints. In a computer game or
simulation environment, the environment is assumed
to be rendered at a given location (X ,Y). We assume
that the environment can be split into a grid structure
(Figure 3), the rendering effects appear on the current
tile (by default of size 1km in our environment) and
the other 8 tiles in the neighborhood, and each time
the visibility is moved to another tile, a new network
of roads must be generated for the new visible tiles,
while the older tiles that are no longer visible can be
destroyed.

As for the generation process for a single tile, intu-
itively, if one wants to generate a road network simi-
lar to the streets of Manhattan (New York), the streets
should be created primarily in a grid pattern, rather
than the streets of Paris, which have other patterns.
This intuition gave us the idea that the sample graphs
in the database could be grouped into clusters rep-
resenting different levels of granularity (e.g., cities,
neighbourhoods, etc.). A generative model could then
learn the patterns of each cluster and later be used to
create similar looking road networks. Formally, we
divide the database into NK clusters. In the continua-
tion of this section, we describe the clustering and the
two proposed methods for learning generative models
for road networks.

4.1 Clusterization Process

To statistically store the information from each graph
G, and considering that the size of a single physical
example is 512×512 pixels, we create the following
measures in order:

Continuous Procedural Network of Roads Generation using L-Systems and Reinforcement Learning

427

(a) Inter-
section
example.

(b) Inter-
section
example.

(c) Road
end point.

(d) Road
end point.

(e) Turn
point
nodes.

Figure 1: Examples of applying the heuristic to find different types of nodes in the roads graph.

Figure 2: An example of node detection in a processed image. The nodes at intersections are marked with green color, the
nodes at road ends are marked with red color and the nodes at road turning points are marked with magenta color.

Figure 3: The environment is divided into rectangular tiles
of equal size. If you change the position of the visualiza-
tion from one tile to another, as indicated by the red arrow,
new tiles - the dotted red ones - must be generated, while
unneeded tiles - the ones crossed in red - can be deleted
to save computational resources. The green lines represent
a possible road network within the current tile. The blue
points located at the intersection between the roads within
the tile and the boundary represent the boundary set B of
the current tile.

1. Group the distances between the nodes into 10
equal bins that are between 10−512×512×

√
2.

We further denote this as the set GD, i.e. GD [k]
indicates how many distances exist in the group k
in the graph.

2. Group angles representing turning points in 10
equal bins between 0-180. We refer to this as
the set GA, i.e. GA [k] indicates how many turn-
ing points with an angle in group k exist in the
graph.

3. Aggregate the different numbers of branches be-
tween 1 and 10 and group them in the set GI ,
i.e. GI [k] indicates how many intersections with k
branches exist in the given graph.

4. Count the number of intersection nodes, GNI , the
total number of end roads, GNE , the number of
nodes that are turning points, GNA, and the num-
ber of nodes that connect only straight nodes,

GND. The sum of all interesting nodes in G is then
GT = GNA ∔ GNE ∔ GNI ∔ GND

The next step is to use the KMeans (Hartigan and
Wong, 1979) algorithm to group the graphs into K
(user-specified) groups. In practice, we have con-
cluded that it is best to apply clustering to graphs
that are from the same city. Attempting to cluster
Chicago and Paris, for example, would result in an
interpolation of sparse input data that ultimately does
not represent either city. Instead, it is better for re-
sults to apply the clustering mechanism to each city
individually and then consider different clusters as
parts of the city. The use of standard statistical meth-
ods such as deviations computations are required in
practice to ensure that the data being aggregated and
clustered have the desired input structure. As a sim-
ilarity metric between two graphs G1 and G2, we
used the absolute difference between each pair of fea-
tures described in the four metric categories above.
The statistics for the graphs that are part of a clus-
ter K are then aggregated by summing the values for
GT ,GNA,GND,GNE ,GD,GA,GI (we continue to de-
note the aggregations per cluster by Ktype instead of
Gtype). The following measures and operations are
additionally added for each cluster K to be used later
in the generation process:

• Probability of a turning point: PKA = KNA
KT

.

• Probability of an intersection point: PKI =
KNI
KT

.

• Probability of an endpoint: PKE = KNE
KT

.

• Probability of a straight road continuation: PKD =
KND
KT

.

• A distribution probability for each of the sets KD,
KI , KA, representing the distribution of values for

ICSOFT 2022 - 17th International Conference on Software Technologies

428

Listing 1: Pseudocode for adding the road network nodes inside the graph G.

G = { }
f o r each w h i t e p i x e l P (x , y) :
Draw a c i r c l e o f r a d i u s R i n c e n t e r e d i n P
S = s e t o f p o i n t s (from d i s t i n c t segmen t s) i n t e r s e c t e d by t h e c i r c l e
i f | S | >= 3 : # i n t e r s e c t i o n c a s e
S e t P as i n t e r s e c t i o n node
G = G U {P }
e l i f | S | == 1 : # ro ad e n d p o i n t c a s e
S e t P as roa d e n d p o i n t
G = G U {P }

d e t e c t t u r n i n g p o i n t s
f o r each d i s t i n c t p a i r P1 , P2 of p o i n t s i n S :
i f a n g l e ((P1 −P) , (P2 −P)) < TA:
S e t P1 and P2 as t u r n i n g p o i n t s
G = G U {P }

E l i m i n a t e nodes from G c l o s e r t h a n TD d i s t a n c e from each o t h e r

the set of straight road distances between nodes,
the number of intersections, and the turning an-
gles. A Gaussian mixture model (Reynolds, 2009)
with a number of 3 components (empirically cho-
sen after plotting values from the dataset) is used
and trained using Expectation-Maximization al-
gorithm (Heskes et al., 2004). We further de-
note a sampling process from these as opera-
tions: SampleDist(K), SampleNumBranches(K),
and SampleTurnAngle(K), respectively.

4.2 Generating a Network of Roads for
a Single Tile

At each time the position of the visualization is moved
between tiles, new tiles must be generated as shown in
Figure 3. The proposed process of generating a road
network for a single tile at position (X ,Y) involve the
following steps:

1. If the boundary set of points of the tile, B ̸= /0

(see below for more details on its construction),
then choose a starting position (x,y) ∈ B .
Otherwise, start from a random position (x,y) in-
side the tile.

2. Set as initial road draw direction the vector from
(x,y) to the center of the tile.

3. Select (manually or randomly) a cluster K to serve
as the representative data sample for the tile.

4. Apply one of the methods defined in Section 4.3
or Section 4.4.

4.3 Generative Model using
Lindenmayer Systems

Parametric and likelihood-based variants of Linder-
mayer Systems (L-Systems) are used for the first gen-
erative model that can generate road networks. For
better understanding of this section, we briefly de-
scribe how L-systems are used in our specification.
More details for the interested reader about these sys-
tems and variants can be found in (Rozenberg and Sa-
lomaa, 1980), (Curry, 2000). The L-systems used in
our case consist of a start symbol, a set of rules, and a
set of end conditions. Each rule can optionally spec-
ify a probability for its application, and each symbol
(module) that is modified can have a set of parame-
ters. A concrete example: A(x,y) : P→A(h,z) means
that the rule is applied to a symbol (module) A with
initial parameters x and y, has a probability P of being
applied, and when applied, changes the values of the
two parameters to h and z, respectively.

In the following, we give the rules for building an
L-system using the statistical data defined in Section
4.1. The system is capable of drawing a complete
road network within a tile starting from given starting
points.

• Start symbol: X .

• Parameters: X (x,y,dir) , where (x,y) is the cur-
rent 2D coordinate in the tile to continue drawing
the road network. The initial position can be cho-
sen randomly or can start from the boundary of a
neighbouring tile (the set B defined below in the
stop condition). The current drawing direction is

Continuous Procedural Network of Roads Generation using L-Systems and Reinforcement Learning

429

parameterized by d, which is a 2D vector. The
number of operations on the same path is stored
internally in a variable age (not shown in the rules
below for simplicity), which is mainly used to
stop the process when possible infinite loops are
detected.

• Rules: Draw a sample from a uniform random
variable (0-1), then decide which item to generate
next based on the probabilities and using a roulette
wheel, in the following order:
– Draw a straight connection from a previous

point and keep the same direction:

X (x,y,d) : PKD → X ((x,y)∔d × r,d)
, wherer = SampleDist (K)

– Change the current direction with a new sam-
pled direction:

X (x,y,d) : PKA → X (x,y,newDir)
, wherenewDir = SampleTurnAngle(K)

– Create a road end:

X (x,y,d) : PKE → E (x,y)
, wherenewDir = SampleTurnAngle(K)

– At an end of road symbol we stop the process:

E (x,y)→ /0

– Create an intersection with a sampled number
of branches and split the drawing process into
several parallel directions:
X (x,y,d) : PKI → X (x,y,nd1) |...|X (x,y,ndnB)

, wherenB = SampleNumBranches(K)

, and ndi = SampleTurnAngle(K)with i ∈ 1 . . .nB

• Condition for a hard stop: the coordinate param-
eters (x,y) are outside the specified tile. In this
case, the algorithm stores the intersection point
between the previous coordinate set and (x,y) as
a boundary point and adds it to a group of points
B .
At each step defined above, the new position (x,y)

is added as a new node to the generated graph, with
the appropriate label and with an edge connecting the
previously generated point. To ensure the quality of
the results, we do not allow self-intersection during
generation, i.e., we rerun the sample if the new posi-
tion would lead to self-intersection.

4.4 Model using Reinforcement
Learning

For this task, we have currently chosen the Double
Q-Learning (DDQN) method (Hasselt, 2010).

The set of actions that the agent can perform at
each step is similar to our previous approach with
Lindenmayer Systems. At each step, the agent must
choose between creating a straight road segment of a
certain length, changing the drawing angle by a cer-
tain number of degrees, creating an intersection with
a certain number of branches, or creating an end of
road. The actions are thus encoded in this order with
indices between 0− 3. The specific values to be ap-
plied are sampled from the learned data distribution
as before.

The state of the environment seen by the agent at
each step is defined by a state composed of 10 input
parameters: the number of nodes of each type, the
length of the last segment, the direction of the current
drawing direction, the current and previous drawing
positions, the branches of the last intersection, and
the last action performed. These inputs are passed
through two fully connected neural layers with 32 and
8 neurons, respectively for further processed.

We do not explicitly describe the details of the
reward function, but instead explain the rules used
to achieve good RL agent results with the algorithm
used:

• We encourage segments of average value in the
detriment of very long or short segments.

• We gradually penalize very close angles (e.g., less
than 30 degrees).

• We penalize new segments if they go out of
bounds or self-intersect the existing road.

• We encourage road ends a little less than other el-
ements, so that the road does not end so quickly.

• We encourage the creation of a new segment after
a change in direction.

• We encourage the creation of a direction change
after a new intersection.

• We penalize the creation of a similar element in a
row.
Future work will also investigate whether the pol-

icy gradient class algorithms (Sutton and Barto, 2018)
could provide better results in certain cases. In ad-
dition, further research needs to evaluate whether
adding the image drawn at each time point can be ef-
ficiently used as input by convolutional layers. The
results of our current evaluation are inconclusive in
these cases.

5 EVALUATION

As mentioned in the Section 2, there was no similar
work in terms of requirements, i.e., mimicking the

ICSOFT 2022 - 17th International Conference on Software Technologies

430

real world or given user input with real-time usage)
that could be compared to our presented work. In-
stead, in the following text, we make an evaluation of
the proposed generative methods from different per-
spectives.

5.1 Qualitative Results Comparison

It is difficult to visually compare the results between
the L-systems and the RL-based systems. However,
from our observation, the RL-based method has a dif-
ferent degree of sampling for stochastic variables in
theory, which translates into a more diverse road net-
work in practice. However, the advantage of using
L-systems, is that the user can constrain and con-
trol the generation process in deeper details, which
could be an important decision in some fields, such as
game development. To test whether the patterns of a
given city can be reproduced and the models indeed
generate similar content, we selected a subset of two
cities, Paris (city center) and Chicago, from the orig-
inal dataset and applied our method to test whether
the inference leads to similar results. This overfitting
test showed that both low-level methods can produce
similar content to the original data without signifi-
cant visual differences, while still showing the orig-
inal roads patterns. However, for both methods, we
constrained the environment and methods to produce
self-overlapping results. Without this hard constraint,
we obtain results similar to those in Figure 4.

Figure 4: A typical result that might occur if you do not use
the self-intersecting hard constraint.

Figure 5 shows a final result for creating a 3× 3
grid structure from a portion of the Paris city map.

Note also that our generation process can work
with inputs learned from user-defined datasets, re-
gardless of the patterns they exhibit. Following the
tile selection cluster method we introduced in Section
4.1, the user can switch patterns for individual clus-
ters at runtime. In a computer game, for example, this
can be used to switch between different parts of the
worlds or to create custom mini-games. One limita-
tion of our method is that we do not learn anything
about the elevation of the ground at this point. This
has been left as future work.

Figure 5: Network of roads on a 3× 3 tiled environment
generated using our methods based on a some specific part
of Paris city map.

5.2 Runtime Performance

To find out if the method is suitable for real-time
evaluation, we compared the generation of a different
number of tiles at once (1 to 9) with both methods on
an Intel Core i7 11700k CPU. Since nowadays paral-
lelism is also heavily used in games or simulation en-
gines, we evaluated both sequential and parallel com-
puting time considering 8 worker threads, each as-
signed to a different CPU core (i.e., a parallel task for
each tile). The results shown in Table 1 indicate that
the method is suitable for real-time use, even when
the visualization perspective is heavily modified, i.e.
when many tiles need to be generated at once. Us-
ing L-Systems as the base method provides a slight
advantage, at the cost of a possible lower variety of
generated environments as noted above.

6 CONCLUSION AND FUTURE
WORK

This paper presented first methods for generating a
continuous road network in large environments that
mimics the patterns of real-world cities. The evalu-
ation section has shown that our proposed methods
are generally suitable for use at runtime in applica-
tions such as computer games or simulation environ-
ments. Second, we presented a set of scripts that can
transform a dataset of top-down pictures of real-world
cities into graph augumented structures that the com-
munity can experiment with further, and made them
available as open source. We plan to continue our
work on procedural content generation, particularly in
creating models capable of generating content around
these roads. Possible examples could include vegeta-
tion, buildings, etc. We are also looking forward to
expanding the augmented data structures used and in-

Continuous Procedural Network of Roads Generation using L-Systems and Reinforcement Learning

431

Table 1: Comparative runtime evaluation (milliseconds) between methods using reinforcement learning, L-Systems, both
sequential and parallel with 8 worker threads.

Number of tiles 1 2 3 4 5 6 7 8 9
Sequential RL 2.03 4.43 7.88 10.4 12.81 15.79 18.21 21.41 23.42

Parallel RL 2.14 3.61 6.33 8.21 9.89 11.83 12.98 13.99 14.61
Sequential LS 1.76 3.98 7.72 10.29 10.63 13.73 18.02 20.33 22.48

Parallel LS 1.99 2.92 5.12 7.71 8.60 11.59 12.33 13.29 14.46

clude terrain elevation. In terms of methodology, we
plan to explore other methods for generating similar
or combined content.

REFERENCES

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann, S.
(2018). Netgan: Generating graphs via random walks.

Chen, G., Esch, G., Wonka, P., Mueller, P., and Zhang, E.
(2008). Interactive procedural street modeling. ACM
Trans. Graph., 27(3):Article 103: 1–10.

Curry, R. (2000). On the evolution of parametric l-systems.
Danny Alberto, E. C., Luo, X., Navarro Newball, A. A.,

Zúñiga, C., and Lozano-Garzón, C. (2019). Realis-
tic behavior of virtual citizens through procedural an-
imation. In 2019 International Conference on Virtual
Reality and Visualization (ICVRV), pages 243–247.

de Araújo, L. J. P., Grichshenko, A., Pinheiro, R. L.,
Saraiva, R. D., and Gimaeva, S. (2020). Map gen-
eration and balance in the terra mystica board game
using particle swarm and local search. In Tan, Y., Shi,
Y., and Tuba, M., editors, Advances in Swarm Intelli-
gence, pages 163–175, Cham. Springer International
Publishing.

Dong, J., Liu, J., Yao, K., Chantler, M., Qi, L., Yu, H., and
Jian, M. (2020). Survey of procedural methods for
two-dimensional texture generation. Sensors, 20(4).

Freiknecht, J. and Effelsberg, W. (2017). A survey on the
procedural generation of virtual worlds. Multimodal
Technologies and Interaction, 1(4).

Gisslén, L., Eakins, A., Gordillo, C., Bergdahl, J., and Toll-
mar, K. (2021). Adversarial reinforcement learning
for procedural content generation.

Hartigan, J. A. and Wong, M. A. (1979). A k-means cluster-
ing algorithm. JSTOR: Applied Statistics, 28(1):100–
108.

Hasselt, H. (2010). Double q-learning. In Lafferty, J.,
Williams, C., Shawe-Taylor, J., Zemel, R., and Cu-
lotta, A., editors, Advances in Neural Information
Processing Systems, volume 23. Curran Associates,
Inc.

Heskes, T., Zoeter, O., and Wiegerinck, W. (2004). Approx-
imate expectation maximization. In Thrun, S., Saul,
L., and Schölkopf, B., editors, Advances in Neural In-
formation Processing Systems, volume 16. MIT Press.

Kipf, T. N. and Welling, M. (2016). Variational graph auto-
encoders.

Lara-Cabrera, R., Cotta, C., and Fernández-Leiva, A.
(2012). Procedural map generation for a rts game.

Li, Z., Wegner, J. D., and Lucchi, A. (2019). Topological
map extraction from overhead images. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV).

Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis,
G. N., and Togelius, J. (2020). Deep learning for pro-
cedural content generation. Neural Computing and
Applications, 33(1):19–37.

Mena, J. and Malpica, J. (2005). An automatic method for
road extraction in rural and semi-urban areas starting
from high resolution satellite imagery. Pattern Recog-
nition Letters, 26(9):1201–1220.

Parish, Y. I. H. and Müller, P. (2001). Procedural model-
ing of cities. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’01, page 301–308, New York,
NY, USA. Association for Computing Machinery.

Ping, K. and Dingli, L. (2020). Conditional convolutional
generative adversarial networks based interactive pro-
cedural game map generation. In Arai, K., Kapoor,
S., and Bhatia, R., editors, Advances in Information
and Communication, pages 400–419, Cham. Springer
International Publishing.

Reynolds, D. (2009). Gaussian Mixture Models, pages 659–
663. Springer US, Boston, MA.

Rozenberg, G. and Salomaa, A. (1980). Mathematical The-
ory of L Systems. Academic Press, Inc., USA.

Snodgrass, S. and Ontañón, S. (2017). Learning to gen-
erate video game maps using markov models. IEEE
Transactions on Computational Intelligence and AI in
Games, 9(4):410–422.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. A Bradford Book, Cambridge,
MA, USA.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W.,
Zhang, F., Xie, X., and Guo, M. (2017). Graphgan:
Graph representation learning with generative adver-
sarial nets.

Zhou, D., Zheng, L., Xu, J., and He, J. (2019). Misc-gan:
A multi-scale generative model for graphs. Frontiers
in Big Data, 2:3.

ICSOFT 2022 - 17th International Conference on Software Technologies

432

