
Empirical Evaluation of Reusability Models

Andreea Cristina Lung, Simona Motogna a and Vladiela Petraşcu b

Babes-Bolyai University, Department of Computer Science, M. Kogalniceanu Street, Cluj-Napoca, Romania

Keywords: Software Quality, Reusability, Empirical Study.

Abstract: Many research efforts have been directed into ways to quantify the degree to which a software component can
be reused in other systems. As such, a number of different reusability assessment models have been proposed
in the literature, taking into account several metrics that can affect reusability and different approaches to
measuring it. In this paper, we conduct a longitudinal reusability assessment by applying three reusability
models to a number of different projects (libraries and frameworks) with the goal of studying the long-term
evolution of reusability in open-source software. The exploratory part of the study consists of reproducing and
applying the chosen models on three different-sized projects for several released versions of the software and
studying the transformations of reusability over time and how these relate to certain changes in quality factors
or size of the software. Results show a more intense variation of reusability in earlier versions and more stable
values towards later versions in applications, and a clear influence of complexity, modularity and cohesion on
reusability scores.

1 INTRODUCTION

In software development, reusability established itself
as a vital aspect seeked by many organizations or in-
dividual developers in order to speed up their devel-
opment times, increase productivity and boost perfor-
mance of their teams. Reusability also has a positive
impact on maintainability and overall quality of the
final products. Regardless if the used code is an ex-
ternal library or a dependency for the project or a sim-
ply inserted third party component into a project, it is
clear that software reuse is heavily used in one form
or another.

Open-source code sharing platforms include li-
braries, frameworks and other assets easy to be
reused. Finding the right component to integrate in
a software system, on one hand, and preserving the
reuse potential of developed code, on the other hand,
might be challenging tasks. As a result, measuring the
reusability level and monitoring it becomes an impor-
tant aspect of such software systems.

In order to correctly quantify reusability, it is im-
portant to differentiate it from reuse. Literature de-
fines reuse as the use of existing artifacts or knowl-
edge to create new software (Frakes and Terry, 1996),
and reusability as the extent to which a program can

a https://orcid.org/0000-0002-8208-6949
b https://orcid.org/0000-0002-7878-4349

be reused in other applications (McCall et al., 1977)
or, more generally, the degree to which an asset can
be used in more than one system, or in building other
assets (ISO/IEC 25010, 2011). While reuse has es-
tablished itself as an activity that brings many sav-
ings to software development, reusability metrics aim
to identify the assets that will facilitate those savings
(Poulin, 1994).

Especially for software systems that are specif-
ically created for reuse purposes, keeping a track
record of how reusability evolves across the develop-
ment of the project can become a very tedious, but
significant task, as any moment of low consideration
towards software quality could lead to a decrease in
the reusability level, hence decreasing the re-use po-
tential of the library or framework altogether and af-
fecting how people who use it interact with it or driv-
ing away new potential users of that library. For this
reason, factors affecting reusability should also be
tracked during development.

Therefore, keeping the reusability level under con-
trol should be a goal that any such system should
strive to achieve, and we aim to facilitate this process
and provide a starting guideline through the current
empirical study. We aim to investigate how reusabil-
ity evolves in large software systems over significant
periods of time, how it is influenced by characteristics
of the code and which is the relation with the main-

Lung, A., Motogna, S. and Petraşcu, V.
Empirical Evaluation of Reusability Models.
DOI: 10.5220/0011143100003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 265-275
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

265



tainability of the system.
The core contribution of our work lays in the fact

that we study reusability in the context of software
evolution, namely by investigating several versions of
the software systems. The second contribution lies
in the analysis of several reusability estimation mod-
els across the whole release cycle of the case study
projects.

The rest of the paper is organized as follows. We
start with presenting related work, in order to state
the contribution brought by our investigation. In Sec-
tion 3, we explain how we design our exploratory case
study, formulating the research questions and describ-
ing the setup of the case study. Section 4 presents our
findings in form of responses to the research questions
and draw some lessons learned. Then, we identify the
main threats to validity and discuss how we mitigate
them. We end by drawing some conclusions and de-
signing future research directions.

2 RELATED WORK

Reusability has been a research topic since its intro-
duction in the first software quality model, proposed
by McCall in 1977 (McCall et al., 1977). Several
models for estimating the degree to which a software
asset can be reused have been proposed and a num-
ber of comparative studies address the differences be-
tween them.

In (Poulin, 1994), the author summarizes various
existing reusability estimation approaches and asso-
ciated metrics, based on a taxonomy distinguishing
between empirical and qualitative ones. While empir-
ical approaches use objective, quantifiable software
attributes as a basis for reusability metrics, qualita-
tive ones rely on offering guidelines and assigning
reusability estimators to components, based on com-
pliance to those guidelines. The paper emphasizes
the fact that, despite the considerable amount of ap-
proaches proposed in the literature - 11 empirical and
3 qualitative ones being considered in the study - work
remains to be done in the area of introducing domain
attributes and contextual information (along with in-
ternal attributes) as a basis for reusability metrics.

The authors of (Gui and Scott, 2009) propose new
coupling and cohesion metrics supporting the rank-
ing of software components extracted from the Inter-
net by a search engine, according to their reusabil-
ity level. Reusability is understood in terms of the
adaptation effort (NLOC added/deleted/modified) re-
quired to integrate a component into a larger system.
The novelty of their proposal lies in the fact that they
take into account both the transitive nature of cou-

pling/cohesion (indirect coupling/cohesion) and the
functional complexity of software components. The
performance of the newly proposed metrics in pre-
dicting reusability is evaluated using both linear re-
gression and Spearman rank correlation approaches,
on three software systems, each consisting of 20-25
components. In all cases, each of the new metrics
performs better than the existing four it is compared
against, showing the feasibility of the proposal.

In (Mijač and Stapic, 2015), the goal is to conduct
a systematic literature survey in order to discover rel-
evant reusability metrics for software components. A
total of 39 papers have been investigated and summa-
rized, leading to the identification of 36 quality factors
influencing reusability and 37 reusability metrics (12
for black box components and 25 for white/glass box
components).

The authors of (Ampatzoglou and Stamatia, 2018)
propose a new reusability predictor for software as-
sets, called Reusability Index (REI), that aggregates
various metrics corresponding to both structural and
external quality factors. REI is derived using back-
ward regression, taking into account 7 such factors
and associated metrics. The new measure is validated
against two existing proposals for assesing reusabil-
ity, using a dataset consisting of 15 projects extracted
from the Maven repository, both libraries and frame-
works. The ground-truth value is represented by the
number of times a given asset has been reused, as re-
ported by the Maven statistics.

Our study brings new elements to the body of
knowledge in this domain by: (i) conducting an in-
spection of reusability evolution in software systems,
by analysing how it changes in consecutive versions
of these systems; (ii) comparing different reusability
models by means of empirical investigation, namely
exploratory case study.

3 CASE STUDY DESIGN

3.1 Research Goals

Applying a Goal-Question-Metric approach (Basili
et al., 1994), the purpose of our study can be stated
as follows:
Analyze long term evolution of reusability
using three reusability computation models
for the purpose of evaluating them and their depen-
dencies to software metrics
from the source code point of view
in the context of several versions of large Java appli-
cations.

ICSOFT 2022 - 17th International Conference on Software Technologies

266



This general objective was then formulated into
research questions:
RQ1: How does reusability evolve over long term?
We investigate if and how the reusability indexes vary
during the evolution of the project, starting from early
versions of the applications.
RQ2: Which factors have an impact on reusability?
Different models use several metrics associated with
quality factors. We inquire which of these factors
makes a bigger impact on reusability. We call these
factors internal, since they are involved in the ana-
lyzed computational models of reusability.
RQ3: Which is the relation between reusability
and maintainability? Maintenance being one of the
most time consuming activities in software lifecycle,
the relation between reusability and maintainability
has been intensively studied (Lee and Chang, 2000;
Henry and Lattanzi, 1994). Even more, the cur-
rent software quality standard ISO 25010 (ISO/IEC
25010, 2011) considers reusability as a subcharacter-
istic of maintainability. As a consequence, we are in-
terested in how this relation is reflected in reusability
models.

The investigation has been designed as an ex-
ploratory case study, since our intention is to evaluate
the hypothesis formulated in the research questions
and has been developed using adopted standard in the
domain (Ralph, Paul (ed.), 2021) and similar prac-
tices described in literature (Kitchenham et al., 1995;
Runeson and Höst, 2008).

3.2 Case study setup

To investigate the dependencies and differences be-
tween reusability models, we designed an exploratory
case study in which three such models were applied
to a set of three projects.
Selection of Reusability Estimation Models: We
have considered the following criteria when selecting
a model as part of our case study:

• provides a numerical assessment of reusability,
with clear calculation instructions;

• presents a solid proof of validity and has been
tested on a generous benchmark to confirm its re-
liability;

• the metrics used are easily available and com-
putable by existing tools.

The candidate models, means of computation and
excluding criteria are presented in Table 1.

The final selection contains: the model pro-
posed by the authors of (Papamichail et al., 2019) -
acronymed by us as PDS, the Taibi model introduced
in (Taibi, 2014), and QMOOD (Quality Model for

Object-Oriented Design) - presented in (Bansiya and
Davis, 2002).

The PDS model estimates reusability by aggre-
gating six quality factors (cohesion, coupling, com-
plexity, size, inheritance and documentation) and as-
sociated metrics, as shown in Table 2. For each of
the metrics, a polynomial regression model is trained,
translating its value into a reusability score. The
ground-truth value is taken as the number of occur-
rences within the import statements of a chosen set
of 3000 GitHub projects, extracted using an in-house
tool called Agora. Below, are the steps we followed in
implementing the PDS model, following the general
method proposed by the authors:
1. Setup Agora locally, then download the set of 100

projects used as benchmark and the 3000 projects used
for the ground-truth value;

2. For each of the 100 benchmark projects, compute all
static analysis metrics considered, at class level, using
SourceMeter;

3. For each class within each of the 100 benchmark
projects, retrieve its reuse rate, as the number of times
its name appears in the import statements of the 3000
projects dataset;

4. Eliminate the classes with 0 reuse rate (they are mostly
private and cannot provide relevant information);

5. Extract a general distribution for each metric, using a
binning strategy (a number of bins of fixed size is cho-
sen, each containing all the classes having the value of
the metric within the bin boundaries);

6. Assign a reusability score to each bin, by summing up
the reuse rates of all classes belonging to the bin;

7. Normalize the scores from the previous step between 0
and 1;

8. Create the polynomial regression model corresponding
to each metric (that translates its value into a reusability
score), using pairs of data of the shape [BinCenter, As-
sociatedReusabilityScore]. The optimal degree for the
polynomial is obtained by using the elbow method on
the Root-Mean-Square-Error (RMSE);

9. Compute the reusability score corresponding to each
of the six quality factors, by aggregating the scores of
its associated metrics, using the formula (Papamichail
et al., 2019)

Score f actor =
∑

N
i=1 wi ∗Scoremetrici

∑
N
i=1 wi

.

Above, N is the number of metrics used for the quality
factor considered, Scoremetrici is the reusability score
predicted by the regression model for metrici, i = 1,N
and wi is the weight corresponding to metrici (com-
puted as the Pearson correlation between the values of
the metric and the associated reuse rates).

10. Compute the final reusability score of the component,
by aggregating the scores corresponding to all factors

Empirical Evaluation of Reusability Models

267



Table 1: Synthesis of Reusability Estimation Models.

Paper describing the model Computation Excluding criteria
Reusability Index: A Measure for Assessing Software
Assets Reusability (Ampatzoglou and Stamatia, 2018)

Backwards Linear Re-
gression

Calculation only at
component and asset
level

Measuring the Reusability of Software Components
using Static Analysis Metrics and Reuse Rate Infor-
mation (Papamichail et al., 2019)

Hierarchical approach,
polynomial regression

accepted

A Reusability Evaluation Model for OO-Based Soft-
ware Components (Sandhu and Singh, 2008)

Neuro-fuzzy inference
engine

Only structural quality
factors considered

Estimation of Software Reusability for Component
based System using Soft Computing Techniques
(Singh et al., 2014)

Neural Networks Requires implementa-
tion of neural network
in Matlab

Empirical Analysis of the Reusability of Object-
Oriented Program Code in Open-Source Software
(Taibi, 2014)

Based on three quality
factors

accepted

A hierarchical model for object-oriented design qual-
ity assessment (Bansiya and Davis, 2002)

Hierarchical, based on
empirical and anecdo-
tal info

accepted

Estimation of Software Reusability: An Engineering
Approach (Nair and Selvarani, 2010)

empirical, weighted
combination of poly-
nomials

only structural code
quality characteristics

considered in the model, using the formula

ReusabilityScore =
1
M

M

∑
i=1

Score f actori
.

The model proposed by Taibi (Taibi, 2014) is
based on three factors impacting the reusability of a
class: modularity (M), low complexity (LC) and un-
derstandability (U). As shown in Table 2, M is es-
timated based on the CBO and LCOM metrics, LC
based on ACC, DIT and NM, while U is computed by
aggregating the ROI and CIC metrics. The steps we
followed in order to estimate the reusability of a class
component are:
1. Run SourceMeter in order to obtain the values of

the five metrics quantifying M and LC for the
class (namely CBO/LCOM and ACC/DIT/NM,
respectively);

2. Apply a similarity-based comparison of class
names to code identifiers (for ROI) and comments
to identifiers (for CIC), using a pretrained NLP
model provided by the Gensim library (Gensim,
2021), in order to asses the values of the two met-
rics quantifying U;

3. Compute the reusability score F corresponding to
each of the three factors (see formula in (Taibi,
2014).

4. Compute the final reusability score corresponding
to the class, based on the formula

R =
n

∑
i=1

λi ∗Fi,

where Fi and λi, i = 1,n are the reusability scores
corresponding to the considered factors and the
tuning parameters, respectively.

Regarding the tuning parameters, a heuristic method
has been used, and extensive experiments have been
conducted, in order to determine the appropriate val-
ues. The best results have been reported for α j = 1.5
for CC, DIT and CBO, α j = 1 for NM and LCOM,
λi = 0.3 for U and λi = 0.35 for M and LC (more
details can be found in (Taibi, 2014)).

QMOOD is a model used to assess high-level
quality factors of object-oriented systems: reusability,
flexibility, understandability, functionality, extensibil-
ity and effectiveness. Each quality factor is mapped
to some design properties, whose quantification relies
on appropriate metrics. In case of reusability, the cor-
responding design properties are coupling, cohesion,
design size and messaging, the four associated met-
rics used to estimate them being listed in Table 2. The
reusability score associated to a component is com-
puted using the formula (Bansiya and Davis, 2002)

Reusability =−0.25∗Coupling+
0.25∗Cohesion
+0.5∗Messaging
+0.5∗DesignSize

Our own tool was developed implementing
the computational methods corresponding to these
models, while the metrics were computed using
SourceMeter (SourceMeter, 2022). All the charts
from next section have been generated with this tool.

ICSOFT 2022 - 17th International Conference on Software Technologies

268



Table 2: Overview of quality factors and metrics used in the analyzed models.

Factors Metrics Reusability models
Short
name Meaning PDS Taibi QMOOD

Complexity ACC Average Cyclomatic Complexity X
NL Nesting Level X
NLE Nesting Level Else-If X
WMC Weighted Methods per Class X

Coupling / Modularity CBO Coupling Between Objects X X X
CBOI Coupling Between Objects Inverse X
NII Number of Incoming Invocations X
NOI Number of Outgoing Invocations X
RFC Response set For Class X

Cohesion LCOM5 Lack of Cohesion in Methods 5 X X X

Understandability ROI Relevance of Identifiers X
CIC Correlation Identifiers Comments X

Documentation AD API Documentation X
CD Comment Density X
CLOC Comment Lines of Code X
DLOC Documentation Lines of Code X
PDA Public Documented API X

Inheritance DIT Depth of Inheritance Tree X X

Size/Messaging LOC Lines of Code X
LLOC Logical Lines of Code X
TNA Total Number of Attributes X
NOC Number of Children X
NM Number of Methods X
NPM Number of Public Methods X
NG Number of Getters X
TNOS Total Number of Statements X

Selection of Applications: The projects on which
we have applied the previously presented models are:
JUnit4 (JUnit4, 2021) - a widely adopted unit test-
ing framework for Java, based on annotations, Mock-
ito (Mockito, 2021) - a popular mocking framework
for unit tests in Java, and Atmosphere (Atmosphere,
2021) - a framework used for building asynchronous
Web applications. There are all mature systems, but
quite different in size, adoption and popularity lev-
els. Size and reputation indicators of these applica-
tions are summarized in Table 3.

Table 3: Details about size and reputation of applications.

Mockito JUnit4 Atmosph.
Lines of code 90,926 47,402 61,841
No of classes 1,970 1,505 899
Versions 605 28 219
Used by 107k 1.8m 134
GitHub stars 8.2k 12.1K 3.5

The research approach consisted in implementing
the three mentioned models of reusability applied to a

set of versions of the selected applications and inves-
tigating, on one hand, the differences in each applica-
tion, and on the other hand analyzing the differences
between the reusability estimation models. In order to
get a longitudinal view with respect to the evolution
of reusability throughout the lifetime of the selected
projects, we have applied the chosen reusability mod-
els on 23 versions of JUnit (out of 28), 45 versions of
Mockito (out of 605) and 30 versions of Atmosphere
(out of 219).

4 RESULTS

This section will offer answers to the formulated re-
search questions based on quantitative analysis of dif-
ferent computed metrics.
RQ1: How Does Reusability Evolve over Long Term?
In order to investigate the evolution of reusability
indexes throughout selected projects, we computed
the reusability indexes based on the three estimation
models, for the most significant versions of each se-

Empirical Evaluation of Reusability Models

269



lected application: PDS shown in Figure 1, Taibi
in Figure 2, respectively QMOOD in Figure 3. We
perform a side-by-side comparison of the plotted
reusability curves produced by each model across the
release version history of the analyzed projects.

Analyzing the reusability evolution graphs, we
can observe that there is indeed some correlation be-
tween the curves predicted by the 3 models. In partic-
ular, we notice a common evolution pattern between
the values obtained with the PDS model and the ones
obtained with Taibi, for the Atmosphere and Mockito
projects. For JUnit4, the two models seem to perform
proportionally inverse. PDS values are on an ascend-
ing curve, while reusability reported by Taibi seems
to decrease sharply at the same point PDS is picking
up in value and continues to maintain an almost con-
stant value, with a very slight increase between the
following versions. QMOOD seems to yield the most
different results out of the 3 models.

We find that there is very little correlation between
this model’s predicted values and the other two. For
the first project, we can observe that QMOOD av-
erage values seem to be increasing by each version,
whereas PDS and Taibi have classified its reusabil-
ity as decreasing. We can, however, observe a slight
correlation between QMOOD and PDS where the JU-
nit4 project is concerned. Both models categorize
the project’s reusability level overall to be increasing,
though in the case of QMOOD the angle of the curve
is much sharper.
Lesson Learned: There are two conclusions that
we can draw from this exploration: Firstly, we
can say that the variation tends to appear in earlier
versions, and the later versions of the applications
become somewhat constant in terms of reusability
scores. Secondly, we can conclude that the PDS and
Taibi models perform similarly in terms of average
reusability evolution tracking, with QMOOD display-
ing very slight similarity to the other two.
RQ2: Which Factors Have an Impact on Reusability?
Table 2 summarizes the quality factors and associated
metrics used by the three computation models. We
first remark the overwhelming number of metrics con-
sidered by PDS compared with the other two mod-
els. PDS also includes metrics associated with all
factors that have been proven to influence reusabil-
ity (Mehboob et al., 2021) (nominated in first column
of the table). The Taibi model considers complexity,
coupling, cohesion, inheritance and size in its compu-
tation, while QMOOD is using only four metrics (as-
sociated to coupling, cohesion and size/messaging),
and ignores complexity and inheritance.

Then, we perform an in depth analysis in order to
investigate the relationships between constituent fac-

tors and reusability for different models. The tool al-
lows the selection of reusability score corresponding
to a model, respectively the factors: cohesion, com-
plexity coupling, documentation, inheritance or size.
The strongest influences detected are:
PDS - Complexity - the complexity attribute seems to
have the biggest impact on the final reusability curves
observed for the PDS model. This is visible in Figure
4. We can observe a very strong correlation between
complexity and the final reusability values for each of
the projects. However, in the particular case of Atmo-
sphere, the relationship between reusability and com-
plexity is an inverse one, which does not align with
the other two projects, for which the relationship is a
direct one. Intuitively, however, it seems more natural
to have reusability decreasing along with increasing
complexity, although this is not the case for the first
project.
Taibi - Modularity - we observe a very strong direct
correlation between the evolution of modularity and
the one of reusability in the Taibi model (see Figure
5).
QMOOD - Messaging (quantified in the model as the
Number of Public Methods) - we distinguish a very
obvious inverse correlation between the average val-
ues of the Messaging attribute and the reusability ones
reported by the QMOOD model. Hence, we can say
that messaging seems to have a negative influence on
reusability (as also noted in Figure 6). We also find
Cohesion to have a meaningful impact on the final re-
sults obtained for QMOOD, but in a positive manner.
Lesson Learned: Our case studies confirmed previ-
ous results from literature, in terms of the impact that
complexity, cohesion, coupling, size, inheritance and
documentation have on reusability. However, the met-
rics associated with these characteristics present dis-
tinct correlations to reusability.
RQ3: Which Is the Relation between Reusability and
Maintainability?
We have used Maintainability Index - MI (Oman
and Hagemeister, 1992) as the measure associated to
maintainability. The results of our evaluation are de-
picted in Figures 7, 8, respectively 9. The most promi-
nent correlation to maintainability is displayed by the
QMOOD model, which succeeds in tracking main-
tainability evolution trends for 2 out of the 3 projects
analyzed. The relationship seems to be a strong one
and is backed up by the design of the model itself,
which uses a number of overlapping metrics for both
reusability and maintainability, so a good estimation
of maintainability should also translate into a good es-
timation of reusability.

As far as the other two models are concerned, PDS
does not seem to correlate very much to maintainabil-

ICSOFT 2022 - 17th International Conference on Software Technologies

270



Figure 1: PDS Reusability Evolution (tool view with PDS model selected).

Figure 2: Taibi Reusability Evolution (tool view
with Taibi model selected).

Figure 3: QMOOD Reusability Evolution (tool view with
QMOOD model selected).

Figure 4: PDS Complexity impact on Reusability.

ity, however Taibi succeeds in returning close values
to the ones calculated for maintainability, although
their evolution curves seem to have little resemblance.
Lesson Learned: Considering the strong interdepen-
dency between reusability and maintainability, the re-
sults obtained in this case study are not very convinc-

ing. From our point of view, they in fact represent
another argument why maintainability index is not a
good indicator for maintainability (Molnar and Mo-
togna, 2021), (Heitlager et al., 2007), as it is depre-
cated: it was defined in 1992, considering modular
and procedural programming languages, and ignor-

Empirical Evaluation of Reusability Models

271



Figure 5: Taibi Modularity impact on Reusability.

Figure 6: QMOOD Messaging impact on Reusability.

ing object oriented features that defined new relations
such as inheritance, coupling and cohesion. However,
considering that MI is still used as indicator for refac-
toring by practitioners, and it is implemented in sev-
eral metric tools, we considered the investigation be-
tween MI and reusability to be relevant.

5 THREATS TO VALIDITY

The case study was conducted according to the exist-
ing standard (Ralph, Paul (ed.), 2021) and practices
(Runeson and Höst, 2008). We started by formulating
the objective and research questions, then selecting
the reusability models and target applications. Data
collection and analysis was performed with the help
of the developed tool.

Internal threats were mitigated by using as much
as possible existing tools, already used in previous re-
search studies, and also by manually examining the
source code. However, the major threat is repre-
sented by the implementation of the reusability mod-
els, given the fact that the existing references have
not always been clear enough (such as Design Size
in QMOOD, Relevance of Identifiers and Correlation
Identifiers Comments in Taibi model). We address

this threat by looking for supplementary references
for these metrics in our implementation.

External threats are representing by the selection
of target applications, and we tried to address this
threat by considering open source projects, providing
access to source code and exposing a significant trust
due to their intense use by the development commu-
nity. Section 3.2 contains details about the selection
process. Another threat might be represented by a
small amount of analyzed projects. This is one as-
pect that we consider for future improvement, but at
this stage of the project, we give a closer attention to
having a significant number of versions for a project
rather than a large number of projects.

6 CONCLUSIONS AND FUTURE
WORK

We successfully implemented three different reusabil-
ity assessment models and applied them to a set of
open-source projects, that gave us the opportunity to
study reusability scores throughout significant ver-
sions of selected projects, so that long term evolu-
tion of reusability can be observed. We also inves-
tigated the long-term relationship of various source

ICSOFT 2022 - 17th International Conference on Software Technologies

272



Figure 7: Relationship between reusability and maintainability - Atmosphere.

Figure 8: Relationship between reusability and maintainability - Mockito.

Figure 9: Relationship between reusability and maintainability - JUnit4.

code quality factors to measured reusability and found
the ones that have the biggest influence on the evo-
lution of the reusability degree. Finally, relation be-
tween reusability and maintainability was subject of
exploration.

Our findings are useful for both research and
practitioners’ communities. From a research point
of view, we bring empirical evidence in comparing
reusability models defined in literature. For practi-
tioners, the developed tool can be integrated in or-

Empirical Evaluation of Reusability Models

273



der to track and control reusability scores, by setting
acceptable thresholds within projects. High quality
of code can be maintained in an automatic manner,
ensuring that no poorly written and low-reusability
components are introduced in the codebase – this is
especially useful for projects that serve as libraries
or frameworks, because the degree of reusability for
these must always be maintained high.

As future research directions, we consider this
study as a starting point that can be continued by:

• Adding more Reusability Assessment Models
to the performed analysis, including fuzzy, neu-
ral network-based ones and the whole spectrum of
machine learning models that has been proposed
in the literature as valid possible ways of assessing
reusability. This would be a great enhancement
to the current work and would definitely provide
promising results;

• Extending the Data Set of applications, in order
to increase the confidence of the evaluation;

• Performing a more in Depth Analysis of
Reusability at the level of components and
classes.

ACKNOWLEDGEMENTS

This study was partially funded by the 2022 Develop-
ment fund of UBB.

REFERENCES

Ampatzoglou, A. and Stamatia, B. a. (2018). Reusability in-
dex: A measure for assessing software assets reusabil-
ity. In Capilla, R., Gallina, B., and Cetina, C., editors,
New Opportunities for Software Reuse, pages 43–58,
Cham. Springer International Publishing.

Atmosphere (2021). https://github.com/Atmosphere/
atmosphere. Online, accessed 01-03-2022.

Bansiya, J. and Davis, C. (2002). A hierarchical model
for object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 28(1):4–17.

Basili, V., Caldiera, G., and Rombach, H. D. (1994). The
goal question metric approach. In Encyclopedia of
software engineering.

Frakes, W. and Terry, C. (1996). Software reuse: Metrics
and models. ACM Comput. Surv., 28:415–435.

Gensim (2021). https://radimrehurek.com/gensim/. Online,
accessed 01-03-2022.

Gui, G. and Scott, P. D. (2009). Measuring software com-
ponent reusability by coupling and cohesion metrics.
Journal of Computers, pages 797–805.

Heitlager, I., Kuipers, T., and Visser, J. (2007). A practi-
cal model for measuring maintainability. In Quality of
Information and Communications Technology, 6th In-
ternational Conference on the Quality of Information
and Communications Technology, QUATIC 2007, Lis-
bon, Portugal, September 12-14, 2007, Proceedings,
pages 30–39.

Henry, S. and Lattanzi, M. (1994). Measurement of soft-
ware maintainability and reusability in the object ori-
ented paradigm. http://hdl.handle.net/10919/19813.

ISO/IEC 25010 (2011). Systems and software engineering.
http://www.iso.org. Accessed: 2015.

JUnit4 (2021). https://junit.org/junit4/. Online, accessed
01-03-2022.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995).
Case studies for method and tool evaluation. IEEE
Softw., 12(4):52–62.

Lee, Y. and Chang, K. H. (2000). Reusability and main-
tainability metrics for object-oriented software. page
88–94. Association for Computing Machinery.

McCall, J., Richards, P., and Walters, G. (1977). Factors in
software quality. Nat Tech.Information Service, 1:0–0.

Mehboob, B., Chong, C. Y., Lee, S., and Lim, J. (2021).
Reusability affecting factors and software metrics for
reusability: A systematic literature review. Software:
Practice and Experience, 51.

Mijač, M. and Stapic, Z. (2015). Reusability metrics of
software components: Survey.

Mockito (2021). https://site.mockito.org/. Online, accessed
01-03-2022.

Molnar, A.-J. and Motogna, S. (2021). A study of main-
tainability in evolving open-source software. In Ali,
R., Kaindl, H., and Maciaszek, L. A., editors, Eval-
uation of Novel Approaches to Software Engineering,
pages 261–282. Springer International Publishing.

Nair, T. G. and Selvarani, R. (2010). Estimation of soft-
ware reusability: An engineering approach. SIGSOFT
Softw. Eng. Notes, 35(1):1–6.

Oman, P. and Hagemeister, J. (1992). Metrics for as-
sessing a software system’s maintainability. In Pro-
ceedings Conference on Software Maintenance 1992,
pages 337–344.

Papamichail, M. D., Diamantopoulos, T., and Symeonidis,
A. L. (2019). Measuring the reusability of software
components using static analysis metrics and reuse
rate information. Journal of Systems and Software,
158:110423.

Poulin, J. S. (1994). Measuring software reusability. In
Proceedings of the Third International Conference on
Software Reuse: Advances in Software Reusability,
pages 126–138. Society Press.

Ralph, Paul (ed.) (2021). ACM Sigsoft Empirical Standards
for Software Engineering Research, version 0.2.0.

Runeson, P. and Höst, M. (2008). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empirical Software Engineering, 14:131–
164.

Sandhu, P. and Singh, H. (2008). A reusability evalua-
tion model for oo-based software components. World

ICSOFT 2022 - 17th International Conference on Software Technologies

274



Academy of Science, Engineering and Technology, In-
ternational Journal of Computer, Electrical, Automa-
tion, Control and Information Engineering, 2:912–
917.

Singh, C., Pratap, A., and Singhal, A. (2014). Estimation
of software reusability for component based system
using soft computing techniques. In 2014 5th Interna-
tional Conference - Confluence The Next Generation
Information Technology Summit (Confluence), pages
788–794.

SourceMeter (2022). https://www.sourcemeter.com/. On-
line, accessed 01-03-2022.

Taibi, F. (2014). Empirical analysis of the reusability
of object-oriented program code in open-source soft-
ware. International Journal of Computer and Infor-
mation Engineering, 8(1):118 – 124.

Empirical Evaluation of Reusability Models

275


