
Application of Property-based Testing Tools for Metamorphic Testing

Nasser Alzahrani, Maria Spichkova and James Harland
School of Computing Technologies, RMIT University, Melbourne, Australia

Keywords: Software Testing, Metamorphic Testing, Property-based Testing, Formal Specification.

Abstract: Metamorphic testing (MT) is a general approach for the testing of a specific kind of software systems –
so-called “non-testable”, where the “classical” testing approaches are difficult to apply. MT is an effective
approach for addressing the test oracle problem and test case generation problem. The test oracle problem is
when it is difficult to determine the correct expected output of a particular test case or to determine whether
the actual outputs agree with the expected outcomes. The core concept in MT is metamorphic relations (MRs)
which provide formal specification of the system under test. One of the challenges in MT is effective test
generation. Property-based testing (PBT) is a testing methodology in which test cases are generated according
to desired properties of the software. In some sense, MT can be seen as a very specific kind of PBT.
In this paper, we show how to use PBT tools to automate test generation and verification of MT. In addition to
automation benefit, the proposed method shows how to combine general PBT with MT under the same testing
framework.

1 INTRODUCTION

Formal specification is an essential tool for managing
the complexity of specifying and verifying the design
and the development of critical software systems. The
formal approach removes ambiguity, improves preci-
sion, and used to verify that the requirements are ful-
filled. Appel et al. summarised a number of desired
qualities that the specification should have in order
to be effective, see (Appel et al., 2017). Firstly, the
specification has to be formal, where the specifica-
tion should be mathematically precise. It should be
rich, i.e. precisely expressing the intended behaviour
of the system (we could reformulate this quality as
completeness). The specification has to be two-sided
where the specification is exercised by both imple-
mentations and clients. Finally, the specification has
to be live where it is automatically checked against
actual code rather than some abstract model.

Formal languages like TLA+ (Lamport, 2002), or
Alloy (Jackson, 2012) are generally concerned with
specifying systems against some models rather than
the actual code under development. On the other
hand, property-based testing (PBT) facilitates the use
of formal specifications on actual code which help in
finding subtle faults on live running systems (Hughes
et al., 2016). One of the main attributes of PBT is that
it can automatically generate tests to cover edge cases
that are not so obvious to identify manually. Two

main elements of PBT approach make this possible:
(1) a random test generator, responsible for generat-
ing random values in a controlled way, and (2) a so-
called shrinker, minimizing the number of the gener-
ated tests cases to allow for easier debugging.

Metamorphic Testing (MT) is a special PBT tech-
nique elaborated for the cases where it’s complicated
to specify “classical” test cases having input and out-
put data flows - in some cases, it’s difficult to identify
what could be the correct output for each particular
input. For “classical” testing we need to have a so-
called an oracle that can determine whether or not the
output is correct wrt. the provided input and this deci-
sion should be taken in a reasonable amount of time,
see (Weyuker, 1982). In the case an oracle cannot be
created, the system are typically called non-testable
(or untestable), but MT can provide an effective so-
lution to the oracle problem using Metamorphic Re-
lations (MR), see e.g., (Segura et al., 2020). MT was
initially introduced in (Chan et al., 1998) in the do-
main of numerical analysis. Since then, it has devel-
oped and been applied in many application areas, such
as compilers, medical systems, embedded applica-
tions, search engines, service computing, simulation
software, image processing systems, machine learn-
ing software and optimizing software (Chen, 2015).

PBT tools for testing functional programs were
first introduced in the Haskell programming language

Alzahrani, N., Spichkova, M. and Harland, J.
Application of Property-based Testing Tools for Metamorphic Testing.
DOI: 10.5220/0011101700003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 553-560
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

553



by (Claessen and Hughes, 2000), where QuickCheck,
a library for random testing of program properties,
was implemented. Since then, many libraries have
been developed following this approach for different
programming languages. The main components of
QuickCheck are the generator of random values, the
shrinker, and the checker which runs these random
values with pre-selected functions. In our work, we
extend the generator and the shrinker in order to auto-
mate MT test generation and verification.

The idea of generating random tests is not new, see
for example (Chen et al., 2010). However, using PBT
tools such QuickCheck has many advantages. First of
all, PBT has many tools for automating and control-
ling the generation of random test cases. Secondly,
these tools allow controlled strategies for generating
random data of complicated data types, i.e., it is pos-
sible to configure how the random values distribute
over the input domain. Although (Chen et al., 2018)
argues that one of MT’s main advantages is the ease
of test case automation, the MT automation is a com-
plex task, when using PBT tools such as QuickCheck
as a tool to test MR relations.

Contributions: The main contribution of this pa-
per is a systematic approach in which we utilize the
random generation of test cases and automatic test-
ing capabilities of PBT tools to automate some steps
of metamorphic testing: More precisely, we auto-
mate test case generation and test case verification by
extending QuickCheck’s shrinker and generator with
our customized shrinker and generator. These variants
are simpler and more amendable to customization in
the context of MT.

2 BACKGROUND:
PROPERTY-BASED TESTING

Property-based testing (PBT) is an approach to test-
ing software by defining general specifications and
properties that must hold for all the executions of ran-
domly generated test cases. The inputs to these test
cases are random. If these properties do not hold,
a minimized failing tests are reported. In PBT, test
cases are generated randomly according to universally
quantified properties. Examples of quantified proper-
ties include; validity checks, postconditions, model-
based properties, inductive properties, and metamor-
phic testing.

In validity checks, one writes functions to check
some invariants of the system under test or the
datatypes used in the system. This process also in-
cludes writing properties to check test-case generator
and test-case shrinker both produce valid results. The

last step is to write property for the functions under
test which performs a single random call and checks
that the return value is valid. For instance, when test-
ing the functionality of inserting a value into a tree
datatype, we demand that all the keys in a left subtree
must be less than the key in the node, and all the keys
in the right subtree must be greater.

A postcondition is a property that should be true
after a call. One can come up with such property by
asking what would be the expected state of the system
after calling some function. A postcondition usually
tests one function after calling this function with some
random argument and then checking an expected re-
lationship between the result and its argument. For
Instance, after calling insert (which inserts a value in
some tree datatype), we should be able to find the key
inserted without changing previously inserted keys.

A model-based property is used to test some func-
tion by making a single call and comparing its result
with the result of some abstract operation. The model
refers to the abstraction functions which map the real
arguments and results to abstract values.

Inductive properties are the properties that one can
use induction to assert that the only function that can
pass the tests is the correct one. This is usually done
by relating a call of the function under test to calls
with smaller arguments. The set of inductive prop-
erties covering all possible cases allows the testing
of the base case and induction steps of an inductive
proof-of-correctness.

The canonical example in the literature to explain
property based testing is the reversing a list. One
property that should hold for all lists is that reversing
a list x twice returns the original list:

reverse (reverse x) = x

In the case of functional oracle-based testing, we
would need to identify the equivalence partitions (the
sets of inputs that have to be handled equivalently as
they have to provide the same type of output but with
possibly different values), and then specify at least
one test case for each partition, or use boundary val-
ues in partitions that are ranges. Thus, for reverse
function this could be an empty list [] and some non-
empty list, e.g, [1,2,3], i.e., our test cases would be

reverse (reverse []) = []
reverse (reverse [1,2,3]) = [1,2,3]

In contrast to this approach, in PBT the checks take
place on the return value of the function under test,
instead of checking values “hard-coded” in the test
cases such as [] and [1,2,3]. That is, the input to
the function under test would be automatically gener-
ated and the library chooses random values for testing
rather than the tester specifying particular values. For

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

554



example, for the reverse function, one could call the
reverse function twice and expect the original list to
be returned. The library generates many random test
cases and reports a failure if it finds a counterexample.

In the case of QuickCheck, the property to be
passed to the library is reverse (reverse x) = x, the
library will generate the random values for x, and will
report a failure if it finds a counterexample.

It is worth noting that there are some anti-patterns
that could emerge while writing property-based tests.
Because it is sometimes difficult to think about a
property, practitioners usually fall into the trap of du-
plicating the implementation of the code in tests. The
literature on PBT has many other examples of such
anti-patterns and how to avoid them. One solution to
avoid this problem is MT.

MT is a successful method in solving the oracle
problem in software testing. The core idea is this: in
the cases when it’s hard to specify in advance what
exactly should be the output of a function, we may be
able to observe the change to the output when chang-
ing the input. That is, valuable information about the
function would be whether and how its input changes
when we change its input. For instance, even if the
expected result of a function such as inserting a key
into a tree is difficult to predict, we may still be able
to express an expected relationship between this re-
sult and the result of some other call. In this case, if
we insert an additional key into t before calling insert
k v, then we expect the additional key to appear in the
result also.

Figure 1: Testing compilers using Metamorphic testing.

Metamorphic Relations (MRs) are a central ele-
ment of MT. The MRs are properties of the func-
tion under test. An important (and usually missed)
attribute of MR is that they relate multiple inputs to
their expected outputs. When implementing MT, we
first generate source test cases. Then use the MR to
generate new input. This new input is then used to
compare the output from the first set of the tests with
the last ones.

In our proposed method, we show how to auto-

mate the test case generation and verification of MT
using QuickCheck. Our method can be generalized to
work with other PBT tools other than QuickCheck as
our method extends features of QuickCheck that are
common in other PBT tools.

Figure 1 illustrates MT in the context of testing
a compiler. There are two paths that are expected to
lead to the same output:

(1) We start with Program 1, it is compiled to obtain
the corresponding executable code Executable 1.
Then, we run Executable 1 with some input data
x to get an output.

(2) We modify Program 1 to a semantically equiv-
alent but syntactically different Program 2 (e.g.,
by unrolling a loop or removing a comment etc.),
then apply the same compilation method to get the
corresponding executable code Executable 2. Af-
ter that, we run Executable 2 with the same input
data x to get an output.

When both outputs are obtained, we compare them: if
they are not exactly the same, the compiler is faulty.

One of the benefits of using PBT for MT is the
rich sets of tools available. For instance, PBT tools
allow the creation of strategies for generating random
data for complicated data types with minimal setup.
In MT, the operations and data types are usually more
complicated than simple data types such as integers
or lists. Existing approaches for creating these data
types are ad-hoc (Chen et al., 2015). In these other
approaches, one has to do almost the same setup work
for every kind of data type in order to generate the ran-
dom values. PBT tools, on the other hand, are more
general and cover more data types without the need
to duplicate the code for every kind of data type or
model. In addition, PBT requires less code than these
other approaches with more control over the distribu-
tion of the test cases space. These approaches evenly
distribute the test cases over the input space.

Creating a random BST using any PBT library re-
quires less setup work. One only required to define
the data type and pass it to the library. However, since
we are using these PBT tools for MT, some more
setup and customization are required.

3 RELATED WORK

The effectiveness of MT in alleviating the oracle
problem has allowed it to appear in many different
application domains. However, many of these appli-
cations do not provide a systematic way to automate
some parts MT.

The automation of MT was first introduced in

Application of Property-based Testing Tools for Metamorphic Testing

555



(Gotlieb and Botella, 2003) where they proposed a
framework that utilizes Constraint Logic Program-
ming techniques to find test data that violate a
given metamorphic relation. However, they require
the usage of special metamorphic-relations, such as
permutation-based relations, to speed up the search
among the possible test data.

There are few other efforts to automate MT steps.
For instance, Zhu created a tool for automating meta-
morphic testing for Java unit tests, see (Zhu, 2015).
This method is specific to Java unit tests. Our method
is more general and can be applied in any program-
ming language which has library support for PBT.

An automatic MT framework for compilers is pro-
posed in (Tao et al., 2010). Their approach in generat-
ing the test cases is similar to the approach presented
in this paper. However, their approach is tailored to
the domain of testing compilers, where we propose a
generally applicable solution.

In (Liu et al., 2012), the authors propose a method
that allows the composition of new metamorphic re-
lations based on previously defined ones, their case
study showed that new metamorphic relations can be
constructed by compositing some existing metamor-
phic relations. They assert that the new derived meta-
morphic relation delivers better metamorphic testing
than the original metamorphic relation as well as re-
duces the number of test cases.

Work related to verifying authenticated data struc-
tures (ADS) is presented in (Miller et al., 2014).
The approach of Miller provides a semantics for a
programming language LambdaAuth, which supports
ADS. This approach provides many benefits, how-
ever, it might be hard to convince practitioners to use
it which is less likely to be widely spread among en-
gineers and is difficult to have an impact. In (Brun
and Traytel, 2019), the authors used Isabelle proof
assistant to formally verify LambdaAuth. They also
assert that they found several mistakes in the seman-
tics of lambdaAuth. In our work, we use a mainstream
programming language (Haskell) to design such ADS
and verify our implementation of these ADS using
PBT and MT.

4 PROPOSED APPROACH

In this section, we present a systemic method to
use PBT tools to test MRs. We specifically choose
QuickCheck to illustrate the proposed approach. Our
method is general and can be implemented using
other PBT libraries as well. Our proposed method
consists of three aspects. First, we develop a new gen-
erator for generating test cases for MT. Second, we

develop a new test case shrinker. Finally, we use the
newly designed generator and the shrinker instead of
QuickCheck’s default generator and shrinker. In the
rest of the section, we present the core features and
steps of our approach, and then discuss the advantages
of this approach.

4.1 Core Features and Steps

QuickCheck is a library for random testing of pro-
gram properties. The programmer provides a spec-
ification of the program, in the form of properties
that functions should satisfy. The library then gener-
ates a large number of random test cases and checks
that the property holds. Specifications are expressed
in Haskell. The Haskell programming language also
provides functions to define properties, observe the
distribution of test data, and define test data genera-
tors, which is an important advantage for system spec-
ification.

When using PBT tools such as QuickCheck there
is some expected setup that needs to be done before
defining the properties. One such setup is shrinking.
The main objective of shrinking is to produce a mini-
mum failing test cases which facilitate the debugging
of the program. Another required setup is the random
values generator which can be configured depending
on the scenario. More importantly, the generator and
shrinker need to be designed to work together when
testing MRs. Otherwise, if we use the default test
case generator and shrinker, the checkers might miss
some test cases or generate invalid tests. The pro-
posed method ensures that does not happen.

The steps needed to systematically test MR rela-
tions using PBT tools are as follows:

(1) Specify an MR property

(2) Customize the test case generator

(3) Customize the test case shrinker

(4) Run the checker

Our main contributions are in Steps 2 and 3. Let us
now discuss these steps and our solution in more de-
tail.

Step 1: Specify an MR Property. Specifying
suitable MRs is key in MT. Although identifying MRs
is not a difficult task, this is typically a manual proce-
dure, see (Mayer and Guderlei, 2006), and we don’t
intend to automate it within our approach. However,
there have been some approaches intending to auto-
mate this step (Chen et al., 2016), and in our future
work, we consider combining our method with these
approaches.

Step 2: Customize the Test Case Generator.
The first thing that all PBT libraries do is to gener-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

556



ate random inputs for the functions under test. In the
PBT literature, this is known as generation. For every
type, there is an associated random test generator.

For example, to generate a list of values, one has
to use the generator together with two parameters.
The first parameter is the number of elements in the
list. The second parameter is the size which depends
on the type of values being generated and the con-
text. For example, the size can be the maximum value
of Integer type, the maximum length of a list, or the
depth of a binary search tree.

For MT, the generator has to be customized to pro-
duce valid test cases. In Section 5 we will present an
example of BST, where the values should not be gen-
erated uniformly.

Step 3: Customize the Test Case Shrinker. Al-
most all PBT libraries and frameworks have a mech-
anism to reduce the set of generated test cases that
fails a property to a minimum number of failing test
cases that is necessary for the debugging process, as
an unnecessary large number of the failed tests cases
(where many cases might refer to the same error) will
make debugging process more complicated and time-
consuming. This mechanism is known in the litera-
ture as shrinking.

Step 4: Run the Checker. In this step, we pass
the MR property, which was specified in Step 1 to the
checker. If the function under test does not satisfy the
MR, the PBT library will report the failing test case
that violated the MR property.

4.2 Advantages of the Approach

As mentioned in Step 3, we cannot use the de-
fault QuickCheck’s shrinker for testing MR proper-
ties. Thus, we modify QuickCheck generator with our
designed generator. The default QuickCheck’s gener-
ator is based on (Claessen and Pałka, 2013) which is
found to require some efforts to use in MT. On this
basis, we design a modified generator and instruct
QuickCheck to use it instead of its default one. The
advantage of the proposed approach is that the testing
of MT can together with other properties under the
same testing framework. Thus, the same shrinker and
verifier can be used for both MT and general proper-
ties to test.

Our version of shrinker has the following features:
• The values are enumerated by depth instead of

size and for this reason, the number of values
tends to grow quickly as our shrinker explores fur-
ther test cases.

• The modified shrinker exploits laziness (Hudak
et al., 2007). That is it uses partially defined test
values. If a property returns a Boolean result for a

partially defined value, the shrinker does not enu-
merate more versions of this value. The benefit
is that the checker will stop as soon it encounters
the first failing test which improves the speed of
the checker.

One of the differences between QuickCheck
shrinker and our shrinker is that our method of shrink-
ing is integrated into generation. It is worth noting
that almost all PBT tools in many different program-
ming languages use a similar shrinking methodology
as the one used in QuickCheck. The main problem
with this approach is that shrinking is defined based
on datatypes. This constraints the ways in which val-
ues are shrinked. That is, there is only one way to de-
fine shrinking for the same data type without taking
into consideration the way it was generated. On the
other hand, our shrinker is composed with the gener-
ator and the generator controls how the values it pro-
duces shrinks.

Our approach to shrinking has many benefits. For
example, shrinking happens even if there is no defined
shrinker on the datatype. This allows the shrinker
to share the same variants as the generator and, at
the same time, reduce the effort needed to write a
separate shrinker for each datatype involved in the
test. Another benefit of our shrinker is that failure
reported is more revealing than the shrinker defined
as datatype. For instance, in QuickCheck, errors are
sometimes shrinked to different errors, which is un-
desirable since the error we expect is being reduced
to another error we do not care about. To mitigate
this problem, one has to duplicate the constraint logic
both in the generator and in the shrinker. In our im-
plemented shrinker, the main idea is that we shrink the
outputs by shrinking the inputs. This help in finding
possible more shrinks based on that representation.

Our designed shrinker covers the range between
the smallest value of some type and increases the
value until the test fails. It repeats this process until
the test passes. In this case, it reports the largest value
from the previous step as the smallest test case that
fails the property, i.e., the boundary values. For exam-
ple, suppose that we are testing whether the value of
variable x of type Integer is less than 77 (x< 77). Sup-
pose that the first random value that is generated (by
the generator) is 90 which will cause the test to fail.
Then, the shrinker will generate new random values
and in random steps ranging from zero to 89. Now,
maybe the new failing value is 89. The shrinker will
repeat the same process again for the values between
zero and 88. The shrinking repeats until the random
value is 78 after which the smallest failing test value
is 77. After which the shrinker stops.

The way we ensure the validity of the generated

Application of Property-based Testing Tools for Metamorphic Testing

557



(then shrinked) test cases is by adding a precondition.
The main objective of a precondition is to inform the
generator not to generate invalid test cases using the
valid function that we have to implement. The valid
function checks the property before passing it to the
generator. The generator will still generate random
test cases but they will not be executed. The valid
function depends on the context. For instance, in the
context of Binary Search Trees, the valid function
checks that the keys in the left subtree are less than
the key at the root node and all the keys on the right
subtree is greater than the key at the root node.

5 EXAMPLE: BINARY SEARCH
TREE

As a running example to explain the proposed method
of applying the PBT tool QuickCheck for MT, we
consider the operations of inserting into and deleting
from a binary search tree (BST). This example not
trivial but is simple enough to explain the proposed
method. Another reason for choosing BST is that the
same approach can be used for testing more elaborate
kinds of trees such as Merkle trees (Merkle, 1987), see
also our discussion future works in Section 6. To eval-
uate the proposed approach, we also introduce faulty
variants of the operations under test, insert and delete.

A BST is a type of data structure for storing val-
ues such as integers in an organized way. The internal
nodes of BST store a key greater than all the keys in
the node’s left subtree and less than those in its right
subtree. BST are usually used for fast lookup, in-
sert and delete of value items. Testing insert function
which inserts a key and value in a binary search tree
is difficult. Using MT approach, we can change the
input using a new key and value and then observe the
relationship to the original call to insert function. MT
allows more numbers of properties to be tested. Us-
ing the example of trees, we can use insert with delete
and test the output. Inversely, we can use delete with
insert and test the output. This is true for any combi-
nation of the operations under test.

One possible mistake when testing properties of
the insertion and deletion of BST, is that the test code
is the same as the implementation. Therefore, if there
is a bug in the implementation, it will also be in the
tests which renders the tests useless. One solution to
this problem is to get an appropriate metamorphic re-
lation to test the intended behaviour. This way we can
verify the correctness of the implementation without
a expecting concrete output.

Figure 2 shows the MT of inserting keys and val-
ues into a BST. Starting with the Tree at the top, we

insert some key k1 and some value v1 to get some
modified tree. Then, another key k2 and value v2 is
inserted into the modified tree to get the out put tree
(whatever it is). We repeat the same operation to the
original tree but we change the inputs to insert. That
is, we insert k2 and v2 followed by inserting k1 and v1
to get the out put tree. The metamorphic relation as-
serts that the two out put trees should be the same oth-
erwise insert is faulty. The notion of quality between
two trees depends on the operations under test. For
insert, we can just assert that if the keys and values
in both trees are the same the trees are semantically
equivalent.

Figure 2: MR property: Tree 1 and Tree 2 are semantically
equivalent.

To test the effectiveness of the proposed method,
we intentionally introduce faulty variants of insert
and delete and test them in a similar way. The faulty
variants are:

Fault 1. insert removes the original tree and re-
turns just the newly inserted value in a single
node.

Fault 2. delete does not build the tree above the
key being deleted. That is, it only returns the rest
of the tree instead.

Starting with the declaration of the data type, a BST
for some key k and value v, is either a Lea f or a
Branch containing left subtree, key k, value v and the
right subtree, respectively.

Step 1: Specify an MR Property. This is the
property that we wish the PBT tool to check. Before
we can choose the MR, we need to pick the functions
that we want to test. For this example we choose in-
sert and delete. insert takes key k, value v and the tree
and returns the modified tree after the insertion. The
delete function takes key k and value v and returns the
modified tree after the deletion.

Since we want to test two distinct functions (in-
sert and delete), there are, at least, two MRs that we
identify. The MRs that we want to check are the fol-
lowing:
• MR 1: Inserting into the tree after modifying it

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

558



with a delete operation should be the same as do-
ing the deleting before inserting

• MR 2: Deleting from the tree after modifying it
with inserting, should be the same as doing the
inserting before deleting

Table 1 shows the precise Metamorphic Relations
(properties) for inserting and deleting in the context
of a binary search tree. The first set shows the inser-
tion of key k and value v into the tree modified by the
deletion of key k′ from the original tree. The MR as-
serts this should be equivalent to deleting k from the
tree modified by insertion key k and value v into the
same tree. The second is set of operations shows the
deletion of key k into the tree t modified by the inser-
tion of key k′ and value v′. Again, the MR asserts this
should be equivalent to doing the deletion of k first,
then, inserting k′ and v′.

This demonstrates how effective MT can be for
generating properties. That is, if the number of opera-
tions is n, the number of derived operations is O(n2),
see also (Liu et al., 2013).

Step 2: Customize the Test Case Generator. We
use the generator defined in section 4 which generate
random trees by creating a random list of keys and
a random list of values and inserting them into the
empty tree using insert function. We also have to de-
fine valid function which ensures the following:

• All the keys in the left subtree is less than the key
at the root node

• All the keys in the right subtree is greater than the
key at the root node

Step 3: Customize the Test Case Shrinker. Us-
ing the default shrink function, shrink might include
invalid trees. The library may shrink the test case
before reporting it. Or It may produce a valid tree
with an invalid shrinking. Therefore, we must add the
precondition discussed in 4 to ensure only valid trees
participates the shrinking process. This precondition
holds for any randomly generated test. The precondi-
tion is just the valid function defined in Step 2.

Step 4: Run the Checker. The checker is just a
function that takes any property and returns a Boolean
value. We pass the MRs relations to the checker func-
tion then the library will generate many test cases.
The number can be set when configuring the checker.

For the correct variants of insert and delete, the
PBT library reports a 100 passing tests. The number
of the generated test case can also be configured to
increase the assurance of the test. For the faulty vari-
ants, the tests report failing of tests after 100 test cases
and generate the minimum failing examples for both
of the introduced faults. However, one interesting ob-
servation is that fault 1 is missed by the checker when

we don’t check both MR at the same time. There-
fore, it is recommended to include as many MRs as
necessary in a single test to specify properties of the
function under test.

One misconception of MT is that any property can
be considered as an MR, see (Chen et al., 2018). It
is true that MR is a property but the inverse is not
true. Therefore, when using PBT tools to test MR
properties, we almost always use two operations, at
least, in a single metamorphic test. More precisely,
when using PBT tools to test metamorphic relations,
we should either change the input to same function as
shown in Figure 2 or use two distinct operations as
shown in Table 1.

6 CONCLUSIONS

In this paper, we presented a systemic method for
using PBT tools to automate the test generation and
verification of metamorphic relations. Many existing
efforts for automating MT are domain-specific, i.e.
the automation of the MT steps is elaborated to work
only for specific application domains such as web ser-
vices and specific programming languages. The work
presented in this paper is more general and can be
used in many different scenarios where MT is needed.
Its advantage is in using authenticated data structures
(ADS) to solve the issue.

PBT tools are generally used for testing univer-
sal properties other than MR such as postconditions,
inductive properties, and model-based properties. In
this paper, we have shown a method to created a spe-
cialized test-case generator and test-case shrinker to
automate some parts of MT steps. We showed that
The default shrinker is not ideal for testing some kinds
of MR as it is difficult to compose previously de-
fined MR to create new MRs. In addition, the default
shrinker may report confusing failure cases since it is
based on defining shrinking on datatypes which forces
the user to add additional duplicated code. However,
this workaround is not needed with our shrinker since
it does not have to be defined on the datatypes and
there would no need to encode the invariants into the
shrinkers, which requires more effort and could be
difficult if the scenario is more complicated. We have
implemented our method using one particular PBT
tool QuickCheck. However, our method is general and
can be implemented using any other PBT tool.

We presented our method using the Binary search
tree example. The two operations we selected were
insert and delete and we introduced faulty versions of
these two operations. We showed it is recommended
to use as many MRs as necessary to specify the oper-

Application of Property-based Testing Tools for Metamorphic Testing

559



Table 1: Some MR properties for a BST insert and delete.

op 1 op 2 Metamorphic properties
insert delete insert k v (delete k’ t)= delete k’ (insert k v t)
delete insert delete k (insert k’ v’ t) = insert k’ v’ (delete k t)

ations under test otherwise the test might miss some
subtle faults.

For future work, we plan to combine the proposed
approach to our earlier work presented in (Alzahrani
et al., 2017), where we used PBT tools to test mod-
els generated by formal methods tools such as TLA+
(Lamport, 1994).

REFERENCES
Alzahrani, N., Spichkova, M., and Blech, J. O. (2017).

From temporal models to property-based testing. In
Evaluation of Novel Approaches to Software Engi-
neering, pages 241–246. SciTePress.

Appel, A. W., Beringer, L., Chlipala, A., Pierce, B. C.,
Shao, Z., Weirich, S., and Zdancewic, S. (2017). Po-
sition paper: the science of deep specification. Philos.
Trans. R. Soc. A., 375(2104).

Brun, M. and Traytel, D. (2019). Generic authenticated data
structures, formally. In Interactive Theorem Proving.

Chan, F., Chen, T., Cheung, S. C., Lau, M., and Yiu, S.
(1998). Application of metamorphic testing in numer-
ical analysis. In Int. Conf. on Software Engineering.

Chen, T. Y. (2015). Metamorphic testing: A simple method
for alleviating the test oracle problem. In Automation
of Software Test, pages 53–54. IEEE.

Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D.,
Tse, T. H., and Zhou, Z. Q. (2018). Metamorphic Test-
ing: A Review of Challenges and Opportunities. ACM
Computing Surveys, 51(1):1–27.

Chen, T. Y., Kuo, F.-C., Merkel, R. G., and Tse, T. (2010).
Adaptive random testing: The art of test case diversity.
Journal of Systems and Software, 83(1):60–66.

Chen, T. Y., Kuo, F.-C., Towey, D., and Zhou, Z. Q. (2015).
A revisit of three studies related to random testing.
Science China Information Sciences, 58(5):1–9.

Chen, T. Y., Poon, P.-L., and Xie, X. (2016). Metric: Meta-
morphic relation identification based on the category-
choice framework. Journal of Systems and Software,
116:177–190.

Claessen, K. and Hughes, J. (2000). QuickCheck: A
lightweight tool for random testing of Haskell pro-
grams. In Functional Programming, pages 268–279.

Claessen, K. and Pałka, M. H. (2013). Splittable pseudoran-
dom number generators using cryptographic hashing.
ACM SIGPLAN Notices, 48(12):47–58.

Gotlieb, A. and Botella, B. (2003). Automated metamor-
phic testing. In Computer Software and Applications
Conference, pages 34–40. IEEE.

Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P.
(2007). A history of haskell: being lazy with class.
In History of programming languages, pages 12–1.

Hughes, J., Pierce, B. C., Arts, T., and Norell, U. (2016).
Mysteries of dropbox: property-based testing of a dis-
tributed synchronization service. In Software Testing,
Verification and Validation, pages 135–145. IEEE.

Jackson, D. (2012). Software Abstractions: logic, language,
and analysis. MIT press.

Lamport, L. (1994). The temporal logic of actions.
ACM Tran. on Programming Languages and Systems,
16(3):872–923.

Lamport, L. (2002). Specifying systems, volume 388.
Addison-Wesley Boston.

Liu, H., Kuo, F.-C., Towey, D., and Chen, T. Y. (2013). How
effectively does metamorphic testing alleviate the or-
acle problem? IEEE Transactions on Software Engi-
neering, 40(1):4–22.

Liu, H., Liu, X., and Chen, T. Y. (2012). A new method for
constructing metamorphic relations. In Quality Soft-
ware, pages 59–68. IEEE.

Mayer, J. and Guderlei, R. (2006). An empirical study
on the selection of good metamorphic relations. In
Computer Software and Applications Conference, vol-
ume 1, pages 475–484. IEEE.

Merkle, R. C. (1987). A digital signature based on a con-
ventional encryption function. In Theory and appli-
cation of cryptographic techniques, pages 369–378.
Springer.

Miller, A., Hicks, M., Katz, J., and Shi, E. (2014). Authen-
ticated data structures, generically. ACM SIGPLAN
Notices, 49(1):411–423.

Segura, S., Towey, D., Zhou, Z. Q., and Chen, T. Y. (2020).
Metamorphic testing: Testing the untestable. IEEE
Software, 37(3):46–53.

Tao, Q., Wu, W., Zhao, C., and Shen, W. (2010). An au-
tomatic testing approach for compiler based on meta-
morphic testing technique. In Asia Pacific Software
Engineering Conference, pages 270–279. IEEE.

Weyuker, E. J. (1982). On testing non-testable programs.
The Computer Journal, 25(4):465–470.

Zhu, H. (2015). Jfuzz: A tool for automated java unit test-
ing based on data mutation and metamorphic testing
methods. In Trustworthy Systems and Their Applica-
tions, pages 8–15. IEEE.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

560


