
Assessment for Computer Programming Courses: A Short Guide for the
Undecided Teacher

João-Paulo Barros1,2 a

1Polytechnic Institute of Beja, Beja, Portugal
2Centre of Technology and Systems-UNINOVA, Caparica, Portugal

Keywords: Assessment, Grading, Computer Science Education, Programming, CS1, CS2.

Abstract: As the large number of articles on teaching introductory programming seem to attest, teaching and learning
computer programming is difficult. However, perhaps surprisingly, the assessment design for those courses
does not seem to be the most studied aspect. This short position paper provides a structured set of options and
alternatives to consider when choosing the assessment elements for a programming course. The objective is to
promote additional reflection on several alternatives for each assignment, exam, or other assessment elements.
Along with this presentation, we point to eventually valuable references. We believe the resulting information
should be helpful and applicable to many other disciplines, but the focus is on computer programming courses.

1 INTRODUCTION

Programming, including introductory programming,
is widely regarded as an essential topic in computer
science teaching, arguably the most important one.
The vast number of scientific articles attests to this,
probably due to the recognized difficulty in effec-
tively teaching novices how to program a computer,
e.g., (Bennedsen and Caspersen, 2007; Bennedsen
and Caspersen, 2019; Luxton-Reilly et al., 2018;
Medeiros et al., 2019; Salguero et al., 2021; Williams
et al., 2021).

It seems evident that the assessment and grad-
ing of programming assignments, exams, and other
assessment elements is an important related topic.
However, perhaps surprisingly, an extensive survey
of introductory programming articles found that as-
sessment — more specifically assessment tools, ap-
proaches to assessment, feedback on assessment, and
academic integrity — represents only 192 in a total of
1666 examined papers (Luxton-Reilly et al., 2018).
The remaining ones were focused on ”the student”
(489), ”teaching” (905), and the ”curriculum” (258).

Although teaching practices and assessment activ-
ities are essential (Salguero et al., 2020), here we fo-
cus on the characteristics of assessment elements. As-
sessment is, undoubtedly, a critical topic as it is a fun-
damental component of course design to which learn-

a https://orcid.org/0000-0002-0097-9883

ing and teaching activities should be aligned, e.g.,
(Biggs and Tang, 2011). Also, as there is no gen-
eral agreement on how to teach programming or even
the fundamental topics (Luxton-Reilly et al., 2018), it
should be of no surprise that assessment is also a sub-
ject not only of permanent discussion and research but
also of doubt and uncertainty. Additionally, the need
to move courses to online or blended learning made
assessment design even more complex by adding ad-
ditional concerns, most notably an increased worry
with plagiarism and authorship, e.g., (Garg and Goel,
2022). This paper proposes a short hierarchical guide
to aid the programming course designer in selecting
the desired properties for each assessment element in
a programming course. The guide is applicable to
many other courses; yet, all the presented possibili-
ties result from the author’s experience teaching pro-
gramming courses and are considered in that context.
We present the guide while pointing to some articles
with additional information about assessment options,
emphasizing computer programming courses, before
concluding.

2 A GUIDE FOR DECISION
MAKING

Assessment choices are vast. However, our objective
is to provide a relatively short guide that is complete

Barros, J.
Assessment for Computer Programming Courses: A Short Guide for the Undecided Teacher.
DOI: 10.5220/0011095800003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 2, pages 549-554
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

549



enough to provide a valuable basis for reflecting and
deciding on the course design, namely the assessment
and its alignment with teaching and learning activi-
ties. It is important to note that any learning activity
can be used as an assessment element, and any as-
sessment element can be used as a learning activity.
Nevertheless, our guide does not focus on a list of
assessment activities. Area agnostic lists are readily
available in book form, e.g., (Brown et al., 2004), as
well as programming specific proposals, e.g., (Malmi
and Korhonen, 2008; Nørmark et al., 2008). Instead,
we focus on a set of characteristics that can be used to
classify activities, namely those related to assessment
and grading. The guide can thus be seen as a reminder
about the main properties of any single activity the
teacher intends to use as an assessment. However,
the hypotheses are still huge as these properties can
easily be combined for each assessment element, and
a single course can easily include several assessment
elements.

We present a hierarchical representation for our
guide showing the relations between a significant set
of properties that we can assign to any assessment
element. Additional possible relations were left out
to provide better readability. The assessment element
can be any activity used as an assignment, e.g., writ-
ten exam, lab exams, clickers in the classroom, short
quizzes along the semester, or others.

The hierarchy is not a proper decision, or even a
classification, tree, as one path from the root node to a
leaf is not a complete hierarchical decision or classifi-
cation. Instead, one should follow several paths from
the root node to one leaf for each assessment element
we intend to characterize or classify. Each of these
top-down paths will provide one or more characteris-
tics for that assessment element. For example, a tra-
ditional paper-based coding exam can be classified by
the following set of paths:
1. location→ in-class;

2. question→ functional;

3. question→ written question;

4. question→ closed-book;

5. answer→ written→ code paper-based;

6. authorship→ individual;

7. assessment/grading→ analytic;

8. assessment/grading→ scale/n-ary;

9. assessment/grading→ teacher assessment;

10. assessment/grading→ quantitative;

11. assessment/grading→ additive;

12. assessment/grading→ weighted average;

13. assessment/grading→ minimal grade;

14. cardinality→ single.

Hence, the hierarchy allows the teacher to quickly
visualize all the known options. It has the additional
advantage of being easy for each teacher to enrich
based on their knowledge and experience regarding
assessment options. This can result in removing some
options the teacher does not favor or, most probably,
adding additional ones. An alternative graphical rep-
resentation, e.g., a mind map, was omitted due to the
resulting weak readability.

Next, we present the hierarchy by briefly dis-
cussing each of the five main branches: (1) author-
ship, (2) location, (3) question, (4) answer, (5) cardi-
nality, and (6) assessment/grading. Along the way, we
suggest some possibilities to enrich the hierarchy and
present some pointers to potentially valuable articles.
We use boldface for the first occurrence of each term
in the guide.

1. Authorship

(a) group
(b) individual

2. Location

(a) in-class
(b) mixed
(c) take-home (asynchronous)
(d) remote (synchronous)

3. Question

(a) Format
i. written question

ii. for multi-choice answer — (answer-written)
multi-choice

iii. oral question
(b) Type

i. functional — (answer-written) descriptive,
multi-choice, paper-based, computer-based

ii. non-functional — (answer-written) descrip-
tive

(c) Documentation
i. closed-book

ii. open-book
iii. partially open-book

4. Answer

(a) oral
(b) written

i. computer-based
ii. paper-based

iii. multi-choice
iv. descriptive

5. Cardinality

(a) single

CSEDU 2022 - 14th International Conference on Computer Supported Education

550



(b) multiple; see assessment/grading mandatory
(minimal grade), weighted average, improve
previous grade, remove some (e.g., best or
worst)

6. Assessment/grading

(a) Type of grading
i. norm-referenced (grading on the curve)

ii. criterion-referenced (learning objectives)
iii. analytic (or atomistic)
iv. holistic (or global)
A. relative order and feedback
B. rubrics

(b) Creditation
i. mandatory

ii. optional
A. for normal credit
B. for extra credit

iii. additive (e.g., for an weighted average)
iv. subtractive (penalization)

(c) Total grade
i. mandatory (minimal grade)

ii. weighted average
iii. improve previous grade
iv. remove some (e.g., best or worst)

(d) Human/Machine
i. machine-based assessment — (answer-

written) computer-based, multi-choice
ii. human-based assessment
A. peer-assessment
B. teacher-assessment

(e) Scale
i. n-ary (qualitative (rubrics) or quantitative)

ii. binary

2.1 Authorship: Individual or Group

Group assignments tend towards a climate of trust
environment as it becomes more difficult to assign in-
dividual grades. Yet, they also provide additional op-
portunities for improved learning and obvious advan-
tage to foster soft skills. Nevertheless, individual as-
sessment in a trusted environment, namely take-home
exercises, can provide a less stressful and productive
environment for some students, most notably the ones
in the autistic spectrum (Stuurman et al., 2019). In
summary, it seems easy to conclude that a mix of both
types of activities should be the preferred option.

2.2 Location: In-class, Home, Mixed, or
Remote

Traditional assessment activities, most notably ex-
ams, are conducted in-class under teacher surveil-
lance to reduce the opportunities for academic fraud.
However, it is a well-known fact that a trust climate,
sometimes named ”Theory Y,” is better for learning,
while a ”don’t trust” climate (”Theory X”) is better
for administration purposes (e.g., (Biggs and Tang,
2011)). Therefore, a better option is to tend towards a
trust climate, which should mean a significant part of
take-home activities to foster learning, which means
a mixed set of assessments.

A well-known way to fight plagiarism is to make
some low-control graded items dependent on a high-
control one. This was proposed at least as of 1982
(Hwang and Gibson, 1982).

We can also include remote assessments in the
mix of in-class and take-home activities. It is es-
pecially useful for oral discussions and presentations
when physical presence is not mandatory, possible, or
convenient.

2.3 Question

Each assessment activity will have the students an-
swer one or more questions (or requirements). Each
can be stated as oral questions or written ques-
tions. When in written form, they should be carefully
constructed accordingly to the answer type: code
computer-based, code paper-based, multi-choice
answer, or descriptive. It is not possible to overem-
phasize the importance of carefully formulating each
question for the intended purposes. Probably, the only
safe way to test it is to give it to other teachers or, if
possible and even better, to other students. However,
even a later double-check reading can be extremely
valuable to verify the questions’ correctness.

Two significant decisions should be made regard-
ing the type of questions: if the intended requirements
are functional (e.g., the code is required to do some-
thing) or non-functional (e.g., the program is sup-
posed to comply with something); if the assessment
is closed-book, open-book, or partially open-book
(a cheat-sheet is allowed (de Raadt, 2012) or some
other specific resources can be consulted).

Recently, due to the COVID-19 pandemic, the re-
mote open-book variants became much more popular.
Interestingly, this does not seem to imply increased
fraud: in one study, no statistically significant differ-
ences were reported comparing online open-book vs.
traditional closed-book exams (Quille et al., 2021).

Naturally, some question types are especially ade-

Assessment for Computer Programming Courses: A Short Guide for the Undecided Teacher

551



quate to some answers formats, and we briefly discuss
them in the following section.

2.4 Answer

Anecdotal evidence and at least one study (Bar-
ros, 2018), points to the students’ preference for
computer-based programming exams vs. paper-
based ones. The main reason seems to be the reassur-
ance given by the possibility to compile, run and test
the code. Even more important is the possibility to
automatically test computer code freeing the teacher
to evaluate the non-functional aspects, such as code
style, simplicity, and documentation. Also, it seems
clear that programming competencies are better as-
sessed by computer-based exams when compared to
paper-based ones (Kalogeropoulos et al., 2013) and
also better than programming assignments (Daly and
Waldron, 2004).

Multi-choice answers also allow automatic grad-
ing and are also helpful as formative assessment by
allowing each choice to explain being right or wrong.

Finally, the request for descriptive (theoretical)
answers is probably the least liked by students and
teachers. They are seen as nearly useless to check
coding ability and can take much more time and ef-
fort to assess and grade.

2.5 Cardinality: Single vs Multiple

It should seem obvious that multiple assessment in-
struments are better than a single one. The only ratio-
nale for a single assignment (including formative and
summative) would be to minimize teacher workload.
However, other solutions should be considered even
in those cases, e.g., automatic or semi-automatic as-
sessment of programming assignments. Furthermore,
a mix of different assessment activities should be per-
ceived as fairer as it becomes easier to assess all learn-
ing outcomes better. Nevertheless, an evaluation of
teacher and student workload must always be present.

Also, it has been argued that some examinations
assess many distinct and heterogeneous concepts re-
sulting in more complex tasks, which should be
avoided by the use of decomposition in more atomic
elements (Luxton-Reilly et al., 2017). Using multi-
ple activities to be assessed independently would be a
way to comply with that concern.

Finally, when several assessment activities are
used, one must decide on the relative weights and
types. The decisions for each activity assess-
ment/grading should also be considered for the set of
activities, as each activity can be seen as a part of one
unique large activity. In this sense, some activities

can be mandatory (minimal grade), an weighted
average can be used, some can improve previous
ones, or the grader can opt to remove some, e.g., the
highest-graded and the lowest-graded.

2.6 Assessment/grading

Grading can be based on the often wrong assumption
that students’ abilities are normally distributed. This
can motivate the use of a norm-referenced grading,
usually named ”grading on the curve”. A criterion-
referenced grading approach is a much better ap-
proach as it will measure if each student achieved
the intended learning outcomes. The guide by Nil-
son presents an excellent presentation of these two
approaches to grading (Nilson, 2003). Grading is tra-
ditionally made in an analytic way: the assessment
of the stated requirement is decomposed into several
parts, and each part is given a grade. Then each part
is assessed in a all or nothing / binary form or in a
scale/n-ary way, using scale. This scale can then cor-
respond to a quantitative or qualitative grade. Al-
though it is usually argued that an analytic approach
is more ”objective,” it only splits the subjectivity into
smaller additive pieces. In a human-based assess-
ment (be it a teacher assessment or a peer assess-
ment), each of these pieces will have to be accessed
subjectively. Differently, an holistic assessment looks
at the student answer in a global way (Thompson,
2007). It is especially adequate for a small number
of students when it is possible for the teacher to men-
tally order each answer by its perceived (and subjec-
tive!) quality. Ideally, this relative ordering should be
complemented by feedback to students. Interestingly,
and maybe unsurprisingly, the holistic approach can
be as effective and fair as the analytic one. One study
found a strong correlation between the results of the
two approaches, and the grader’s accumulated expe-
rience probably plays a significant role in this result
(Fitzgerald et al., 2013).

Rubrics can help the grader or graders maintain
consistency across many student submissions and can
be seen used as a support for a holistic approach to
assessment. However, multiple graders are always a
risk, so careful attention to each rubric interpretation
is needed to guarantee coherence in the applied crite-
ria (Cigas et al., 2018).

In every single assessment, some parts can be
mandatory in the sense that their completion is
needed for approval, or optional. The latter can be
counted for normal credit or for extra credit (as a
bonus). The extra credit is especially interesting to
promote initiative and creativity in larger home as-
signments. But, it can also be a way to reward more

CSEDU 2022 - 14th International Conference on Computer Supported Education

552



sophisticated or complete answers.
The extra credit contributes to the additive part

of grading. Although an additive weighted average is
probably the most used form for grading calculation,
it is also interesting to apply a subtractive part. This
allows a set of penalties for demanded ”minimal” re-
quirements for which there is no acceptable reason
not to fulfill them, e.g., style rules, submission date,
or the use of some specific library. The previously
mentioned bonus provides a complement for these ad-
ditive and subtractive parts.

A crucial aspect in large classes is the possibility
of machine-based assessment by automatic or semi-
automatic grading. Nevertheless, the tools, usually
test-driven based or inspired by contest tools, often
do not give feedback and are challenging to adapt to
specific needs (Keuning et al., 2016; Ahoniemi and
Reinikainen, 2006).

Besides the traditional teacher assessment (either
for the individual assessment of group assessment
of students) the possibility of peer assessment should
be considered (e.g, (Indriasari et al., 2020)).

Finally, although a n-ary scale is by far the more
commonly used, a binary scale, where each task is
graded as passed or failed, can provide a good basis
for repeated submissions of the same assignment, thus
fostering deeper learning. This is especially true if
adequate feedback is given for each submission.

3 CONCLUSIONS

Assessment choices are plenty, and programming
courses open even more possibilities due to the pos-
sibility of practical machine support. The presented
guide provides a basis for reflection and is easily
adapted to specific course needs and teachers’ pref-
erences. A vast body of knowledge on teaching and
learning computer programming should be taken into
account when designing courses. This paper and the
presented guide are contributions in that direction.

REFERENCES

Ahoniemi, T. and Reinikainen, T. (2006). Aloha - a grad-
ing tool for semi-automatic assessment of mass pro-
gramming courses. In Proceedings of the 6th Baltic
Sea Conference on Computing Education Research:
Koli Calling 2006, Baltic Sea ’06, page 139–140, New
York, NY, USA. Association for Computing Machin-
ery.

Barros, J. P. (2018). Students’ perceptions of paper-
based vs. computer-based testing in an introductory
programming course. In CSEDU 2018-Proceedings

of the 10th International Conference on Computer
Supported Education, volume 2, pages 303–308.
SciTePress.

Bennedsen, J. and Caspersen, M. E. (2007). Failure
rates in introductory programming. SIGCSE Bull.,
39(2):32–36.

Bennedsen, J. and Caspersen, M. E. (2019). Failure rates
in introductory programming: 12 years later. ACM
Inroads, 10(2):30–36.

Biggs, J. and Tang, C. (2011). Teaching for Quality Learn-
ing at University. Open University Press, 4 edition.

Brown, S., Race, P., and Smith, B. (2004). 500 Tips on
Assessment. Routledge, 2 edition.

Cigas, J., Decker, A., Furman, C., and Gallagher, T. (2018).
How am i going to grade all these assignments? think-
ing about rubrics in the large. In Proceedings of the
49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, page 543–544, New York,
NY, USA. Association for Computing Machinery.

Daly, C. and Waldron, J. (2004). Assessing the as-
sessment of programming ability. SIGCSE Bull.,
36(1):210–213.

de Raadt, M. (2012). Student created cheat-sheets in ex-
aminations: Impact on student outcomes. In Pro-
ceedings of the Fourteenth Australasian Computing
Education Conference - Volume 123, ACE ’12, page
71–76, AUS. Australian Computer Society, Inc.

Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., and
Murphy, L. (2013). What are we thinking when we
grade programs? In Proceeding of the 44th ACM
Technical Symposium on Computer Science Educa-
tion, SIGCSE ’13, page 471–476, New York, NY,
USA. Association for Computing Machinery.

Garg, M. and Goel, A. (2022). A systematic literature
review on online assessment security: Current chal-
lenges and integrity strategies. Computers & Security,
113:102544.

Hwang, C. J. and Gibson, D. E. (1982). Using an effective
grading method for preventing plagiarism of program-
ming assignments. SIGCSE Bull., 14(1):50–59.

Indriasari, T. D., Luxton-Reilly, A., and Denny, P. (2020). A
review of peer code review in higher education. ACM
Trans. Comput. Educ., 20(3).

Kalogeropoulos, N., Tzigounakis, I., Pavlatou, E. A., and
Boudouvis, A. G. (2013). Computer-based assess-
ment of student performance in programing courses.
Computer Applications in Engineering Education,
21(4):671–683.

Keuning, H., Jeuring, J., and Heeren, B. (2016). Towards
a systematic review of automated feedback genera-
tion for programming exercises. In Proceedings of
the 2016 ACM Conference on Innovation and Technol-
ogy in Computer Science Education, ITiCSE ’16, page
41–46, New York, NY, USA. Association for Comput-
ing Machinery.

Luxton-Reilly, A., Becker, B. A., Cao, Y., McDermott, R.,
Mirolo, C., Mühling, A. M., Petersen, A., Sanders, K.,
Simon, and Whalley, J. L. (2017). Developing assess-
ments to determine mastery of programming funda-

Assessment for Computer Programming Courses: A Short Guide for the Undecided Teacher

553



mentals. Proceedings of the 2017 ITiCSE Conference
on Working Group Reports.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Gian-
nakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott,
M. J., Sheard, J., and Szabo, C. (2018). Introductory
programming: A systematic literature review. In Pro-
ceedings Companion of the 23rd Annual ACM Con-
ference on Innovation and Technology in Computer
Science Education, ITiCSE 2018 Companion, page
55–106, New York, NY, USA. Association for Com-
puting Machinery.

Malmi, L. and Korhonen, A. (2008). Active learning and
examination methods in a data structures and algo-
rithms course. In Bennedsen, J., Caspersen, M. E., and
Kölling, M., editors, Reflections on the Teaching of
Programming: Methods and Implementations, pages
210–227. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Medeiros, R. P., Ramalho, G. L., and Falcão, T. P. (2019). A
systematic literature review on teaching and learning
introductory programming in higher education. IEEE
Transactions on Education, 62(2):77–90.

Nilson, L. B. (2003). Teaching at Its Best A Research-BAsed
Resource for College Instructors. Anker Publishing
Company, Inc., 2 edition.

Nørmark, K., Thomsen, L. L., and Torp, K. (2008).
Mini project programming exams. In Bennedsen,
J., Caspersen, M. E., and Kölling, M., editors, Re-
flections on the Teaching of Programming: Methods
and Implementations, pages 228–242. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Quille, K., Nolan, K., Becker, B. A., and McHugh, S.
(2021). Developing an Open-Book Online Exam for
Final Year Students, page 338–344. Association for
Computing Machinery, New York, NY, USA.

Salguero, A., Griswold, W. G., Alvarado, C., and Porter,
L. (2021). Understanding sources of student struggle
in early computer science courses. In Proceedings of
the 17th ACM Conference on International Comput-
ing Education Research, ICER 2021, page 319–333,
New York, NY, USA. Association for Computing Ma-
chinery.

Salguero, A., McAuley, J., Simon, B., and Porter, L. (2020).
A longitudinal evaluation of a best practices cs1. In
Proceedings of the 2020 ACM Conference on Inter-
national Computing Education Research, ICER ’20,
page 182–193, New York, NY, USA. Association for
Computing Machinery.

Stuurman, S., Passier, H. J., Geven, F., and Barendsen, E.
(2019). Autism: Implications for inclusive educa-
tion with respect to software engineering. In Proceed-
ings of the 8th Computer Science Education Research
Conference, CSERC ’19, page 15–25, New York, NY,
USA. Association for Computing Machinery.

Thompson, E. (2007). Holistic assessment criteria: Apply-
ing solo to programming projects. In Proceedings of
the Ninth Australasian Conference on Computing Ed-
ucation - Volume 66, ACE ’07, page 155–162, AUS.
Australian Computer Society, Inc.

Williams, L., Titus, K. J., and Pittman, J. M. (2021). How
early is early enough: Correlating student perfor-

mance with final grades. In Computing Education
Practice 2021, CEP ’21, page 13–16, New York, NY,
USA. Association for Computing Machinery.

CSEDU 2022 - 14th International Conference on Computer Supported Education

554


