
Towards an Overhead Estimation Model for Multithreaded Parallel
Programs

Virginia Niculescu a, Camelia Şerban b and Andreea Vescan c

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Computer Science Department,
Cluj-Napoca, Romania

Keywords: Parallel Programming, Metrics, Overhead, Multithreading, Synchronization, Estimation, Validation.

Abstract: The main purpose of using parallel computation is to reduce the execution time. To reach this goal, reducing
the overhead time induced by the additional operations that parallelism implicitly imposes, becomes a ne-
cessity. In this respect, the paper proposes a new model that evaluates the overhead introduced into parallel
multithreaded programs that follows SPMD (Single Program Multiple Data) model. The model is based on
a metric that is evaluated using the source code analysis. Java programs were considered for this proposal,
but the metric could be easily adapted for any multithreading supporting imperative language. The metric
is defined as a combination of several atomic metrics considering various synchronisation mechanisms. A
theoretical validation of this metric is presented, together with an empirical evaluation of several use cases.
Additionally, we propose an AI based strategy to refine the evaluation of the metric by obtaining accurate
approximation for the weights that are used in combining the considered atomic metrics.

1 INTRODUCTION

A general expectation from the parallel program-
ming is that by doubling the hardware resources,
one can reasonably expect a program to run twice
as fast. However, in typical parallel programs, this
is rarely the case, due to many overheads associated
with parallelism. An accurate quantification of these
overheads is critical for understanding and improv-
ing the parallel programs performance. The parallel
computation is also limited by overhead costs such
as: threads/processes start, management and termina-
tion costs, synchronization problems – task coordi-
nation, cost of communication among multiple tasks
(threads/processes), the overhead of some software li-
braries, parallel compilers or interpreters and support-
ive OS.

SPMD (Single Program, Multiple Data) program-
ming model (Grama et al., 2003) is characterized by
the fact that all the processes/threads execute a copy
of the same program on different data. SPMD is
widely used in parallel programming, due to the ease
of designing a program that consists of a single code

a https://orcid.org/0000-0002-9981-0139
b https://orcid.org/0000-0002-5741-2597
c https://orcid.org/0000-0002-9049-5726

running on all processing elements. The differenti-
ation between the execution on each processing ele-
ment (thread/process) can be done based on the ID of
each process/thread.

The overhead time (TO) is estimated, in general, as
being the difference between the product of the paral-
lel time with the number of processing elements, and
the sequential time:

TO = p∗Tp−Ts (1)

This is a very general evaluation and it is difficult to be
used in the design stage of the development. For a cer-
tain class of parallel programs – as SPMD on shared
memory platforms – written in a particular language
(as Java) – where we know the specific synchroniza-
tion mechanisms that could be used, we may estimate
more accurately the overhead time. We propose in
this paper such a model for SPMD multithreaded Java
programs, based on a synchronization overhead met-
ric. Java programs were considered for this model,
but it could be easily adapted for any multithreading
supporting imperative language.

Thus, the contribution of the paper is three-fold:
(1) a new model for overhead evaluation, based on
a metric defined as an aggregation of several atomic
metrics related to various synchronization mecha-
nisms; (2) the theoretic validation of the proposed

502
Niculescu, V., Şerban, C. and Vescan, A.
Towards an Overhead Estimation Model for Multithreaded Parallel Programs.
DOI: 10.5220/0011083400003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 502-509
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

metric using Weyuker’s metric properties (Misra and
Akman, 2008), (EJ, 1988), and (3) an empirical eval-
uation of the weights used in the metric definition,
based on concrete experiments. In addition, an AI
strategy to refine the metric by obtaining a more ac-
curate approximation for its weights is proposed.

Regarding the usability of the proposed metric we
could mention the possibility to estimate the overhead
time at the design stage, compare different design so-
lutions for a given problem, or estimate the need for
refactorization.

The paper is structured as follows. Section 2 dis-
cusses related work regarding theoretical validation
of software metrics and tools for performance assess-
ment in concurrent programs. Section 3 describes the
main synchronization mechanisms in Java, while the
definition of the new metric is given in Section 4, to-
gether with its theoretical and empirical analysis. The
conclusions and further work are emphasized in the
last section.

2 RELATED WORK

This section describes existing approaches regarding
theoretical and empirical validation of software met-
rics and existing tools for multithreaded programs
performance evaluation.
Evaluation of Software Metrics - Various Criteria.
Measures and way of measuring in Software Engi-
neering (SE) domain are different from that of other
engineering domains. In comparison with measuring
the length of an engineering product, measuring the
size of a software, such as program length, is not so
easy and there are few formal approaches that rigor-
ously apply software measures. Formal approaches
in SE are usually based on different types of metrics
that are used in order to quantify those aspects that
are considered important for the assessment. Many
researchers (EJ, 1988), (H, 1992), (B and N, 1995),
(Briand LC and S, 1995) contributed to lay a foun-
dation for measuring software, both for metric defini-
tion and metrics validation. There are basically two
categories of techniques for metrics’ validation: the
empirical validation which confirms the metrics ac-
tual applicability, and the analytical evaluation de-
fined based on definite measurement theories. Prior
to the empirical validation (i.e., applying to industry),
every metric has to be analytically evaluated to con-
firm that it has scientific pedestal, and it was defined
based on definite measurement theories.
Tools for Performance Evaluation. Software perfor-
mance is in many cases increased by implying parallel
and concurrent computation. In order to make effec-

tive the development of such programs, the develop-
ers have come to expect tools that are able to augment
the design and execution infrastructure with different
capabilities such as design assistance, performance
evaluation, debugging or execution control. There is
quite a large set of tools like these, and further on we
will mention just a few that were proposed for mul-
tithreaded programming, and which are related to the
overhead time.

Tmon, a tool for monitoring, analyzing and tuning
the performance of multithreaded programs was pro-
posed (Ji et al., 1998). The tool relies on two mea-
sures performed at the run-time of the program; it
uses thread waiting time and constructs thread wait-
ing graphs. A static analysis tool called Iceberg (Shah
and Guyer, 2016) was proposed in order to identify
performance bugs in concurrent Java programs. They
developed an analysis called latency variability anal-
ysis, a flow-sensitive analysis trying to estimate the
range of possible latencies through a block of code.
Iceberg tool (Shah and Guyer, 2018) was improved in
order to perform a dynamic analysis of Java programs.
A tool that automatically detects the inefficiency in-
tervals representing time periods when a concurrent
application is not using all its capabilities of the par-
allel system was proposed in (Espinosa et al., 1998).
Another lock profiler designed in the context of a new
metric, critical section pressure, is proposed in paper
(David et al., 2014). There are several applications
serving as testing environment for this tool, the re-
sults showing that it can detect phases where a lock
hinders the threads process.

In relation to the existing approaches our proposed
metric can be used early in the development lifecycle,
when the system design is known, to predict the over-
head added by the parallelism. In this way, possible
errors and crash that could appear during the life of
the program can be prevented. As far as we know
there are no references in literature regarding such a
metric.

3 SYNCHRONIZATION
MECHANISMS

In order to evaluate the overhead brought through syn-
chronization we will consider the following synchro-
nization mechanisms:

• critical sections
– using Locks
– using synchronized methods and blocks

• conditional waiting
– using wait/notify calls

Towards an Overhead Estimation Model for Multithreaded Parallel Programs

503

– using Condition variables and the correspond-
ing await/signal calls

• barriers - using CyclicBarrier

• ’rendez-vous’ mechanisms using Exchanger

A lock is a synchronization mechanism for enforcing
the access limitation to a resource in an execution en-
vironment where there are many threads of execution.
A lock is designed to enforce a mutual exclusion con-
currency control policy (Garg, 2004; Raynal, 2013).
In Java, Lock class provides implementation for this
mechanism (Göetz et al., 2006).

Synchronized methods and blocks in Java are im-
plemented based on the association of each object to
a monitor (Göetz et al., 2006), and they are mecha-
nisms for defining critical sections. A monitor encap-
sulates: shared data structures, procedures that oper-
ate on the shared data structures, and synchronization
between concurrent procedure invocations. In case of
Java we may consider that the encapsulated data are
the object attributes, and by defining synchronized
methods we may define the procedures (methods) that
should be called based on mutual exclusion (Göetz
et al., 2006; Garg, 2004; Raynal, 2013). Monitors
could also include conditional synchronization; Java
provides only one condition queue per monitor using
the corresponding wait/notify methods.

Synchronization conditions (also known as condi-
tion queues or condition variables) provide a means
for one thread to suspend execution (to ”wait”) until
notified by another thread when some state condition
arrives to be true. The correspondent Java implemen-
tation is the class Condition, and its instances should
always be associated with a lock (Göetz et al., 2006).

A barrier is a synchronization method that forces
a group of threads or processes to stop at the
point of the barrier, and not proceed until all
other threads/processes reach this barrier. A Java
CyclicBarrier object is an object that implements
a barrier, which can be used (reused) cyclically - in
multiple points of the program execution. The method
await is used to specify the synchronization points
(Göetz et al., 2006; Garg, 2004; Raynal, 2013).

The Java Exchanger(Göetz et al., 2006) class im-
plements the “rendez-vous” concept, which specifies
a two-way synchronization and communication be-
tween two threads or processes: if one thread arrives
to the rendez-vous point it waits for the other to ar-
rive and then they exchange information (Garg, 2004;
Raynal, 2013).

There are also many other synchronization mech-
anisms and an example worth to be mentioned is the
semaphore. A semaphore (Garg, 2004; Raynal, 2013)
is a synchronization construct that is typically used
to coordinate the access of multiple threads/processes

to resources. It also has a Java implementation –
class Semaphore (Göetz et al., 2006). We don’t con-
sider them in this paper because usually they are not
used in SPMD type of programs. More details about
other synchronization mechanisms could be found in
(Göetz et al., 2006; Garg, 2004; Raynal, 2013).

As noticed, critical sections could be obtained
through multiple mechanisms: - e.g. locks, synchro-
nized blocks.
Do their choice influence the program performance?
Theoretically, we may assume that the answer is af-
firmative, and also from some simple experiments
we noticed that there are some differences. In gen-
eral, solving a problem could have different solutions
based on different synchronisation mechanisms.

4 OVERHEAD METRIC

We propose a model to approximate the overhead of
SPMD Java programs by using a metric defined based
on the different characteristics of the synchronization
mechanisms.

4.1 Java SPMD Programs

In order to evaluate the overhead brought by the
synchronization we will consider the synchronization
mechanisms mentioned in the previous section.

We consider SPMD programs formed of three
parts: threads creation, starting all the threads using
the same code/program (in Java the function run()),
and joining all threads.

Combining two such programs P1 and P2 into a
new program P3=P1+P2 (here we consider + the
combining operator) means that the P3 program is ob-
tained by sequentially combing the two running func-
tions runP3=runP1 ; runP2.

In addition, we also consider that into a program
we don’t have adjacent critical sections – if they are
then they will be implicitly merged into one.

4.2 Metric Definition

The proposed overhead metric is an aggregated met-
ric, which is based on atomic metrics that corresponds
to the synchronization mechanisms described in Sec-
tion 4.1.

The overhead time TO can be estimated based on a
synchronization metric O by using the following def-
initions:

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

504

O : P→ R, TO : P×S→ R,
P is the set of all SPMD Java programs and
S is the set of all execution systems

TO(P,S) = tS ∗
[
wth manag + O(P)

]
,P ∈ P,S ∈ S

(2)
where

• P = (P1,P2, ...,Pp) , Pi : 0 ≤ i < p represents the
finite set of threads defined inside a SPMD pro-
gram;

• tS represents a time that depends on the per-
formance of the execution system, the number
of processors of the system (wproc), and on the
threads per cores ratio (wload);

• wth manag = the weight for managing the threads.

We have

O(P) =
wbar ∗ p ∗ (#bar) ∗ f (wload ,dis) +
wwait ∗ (#wait) / f (wload ,dis) +
wcond ∗ (#await) / f (wload ,dis) +
wex ∗ (#ex) / f (wload ,dis) +

wsync ∗ p∗
(

∑
#sync
i=1 csi

)
/ f (wload ,dis) +

wlock ∗ p∗
(
∑

#lock
i=1 csi

)
/ f (wload ,dis) +

(3)
where:

• #bar and wbar – the number of synchroniza-
tion barriers based on the calls of await through
CyclicBarriers, and the corresponding weight;

• #wait and wwait – the total number of calls of wait
method of Object, and the corresponding weight;

• #await and wcond – the total number of await op-
erations called through a Condition variable, and
the corresponding weight;

• #ex and wex – the total number of exchange op-
erations executed through an Exchanger, and the
corresponding weight;

• #sync and wsync – the number of critical sections
specified with synchronized blocks or methods,
and the corresponding weight;

• #lock and wlock – the number of critical sec-
tions specified with Lock objects and lock(), and
unlock() methods, and the corresponding weight;

• csi the size of a critical section (#i) – this is ex-
pressed in number of statements;

• dis is a measure of the dissimilarity between the
threads estimated as:

dis =
#conditional statements

#total statements
• f (wload ,dis) = σ∗wload ∗(1+dis) is a calibration

function; a barrier is delayed when the wload and
dis are increasing, but all the other synchroniza-
tion mechanisms are favored in this case.

In general, a high level of loading (wload) increases
the execution time; for example for the barrier execu-
tion if the loading is low the probability that threads
arrive in the same time at the barrier point is very high,
and vice-versa if the loading is high is very probable
the threads arrive at the barrier point at different times.
Also, if the dissimilarity between the threads is higher
then the probability of threads arriving at the barrier
at different moments in time is also higher. This is
why in the overhead metric formula the time due to
barriers should be multiplied by the calibration func-
tion.

For the critical sections we have the opposite situ-
ation: it is desirable that the threads arrive to critical
sections at different times, and high level of loading
determine this implicitly.

When we use Condition and wait-notify for con-
ditional synchronization, we need to use them inside
the critical sections; the overhead due to these critical
sections is included into the corresponding weights
wwait and wcond .

4.3 Theoretical Validation of the Metric

Among numerous metric validation criteria that exist
in the literature, as we have mentioned them in the
Section 2, Weyuker’s properties are most extensively
used for evaluating software metrics; they are guiding
tools for identifying good and complete metrics (EJ,
1988).
Property 1: Non-coarseness. (∃) (P1), (P2) two
distinct programs from P such that O(P1) 6= O(P2).

This is trivially fulfilled by O metric due to the
fact that is not defined as a constant map.
Property 2: Granularity. It states that there will be a
finite number of cases for which the metric value will
be the same.

It is considered that this property is met by any
metric measured at the program level, because the
universe deals with at most a finite set of programs
and so the set of those programs having the same
value for the proposed metric is also finite (Chi-
damber and Kemerer, 1994).
Property 3: Non-Uniqueness (Notion of Equiva-
lence). (∃) (P1), (P2) two distinct programs from
P such that O(P1) = O(P2).

We may consider two programs that each update
a variable (based on some formulas) inside a criti-
cal section; for the first program we may use with
synchronized and for the second Lock. The values for
wsync and wlock could be different but by chosen the
sizes m and n of the two critical sections correspond-
ingly, we arrive to the same value for the metric. It is
possible to find n and m such that

Towards an Overhead Estimation Model for Multithreaded Parallel Programs

505

m∗wsync = n∗wlock,
(

n
m =

wsync
wlock

)
.

Property 4: Design Details are Important. This
property states that, in determining the metric for an
artifact, its design details also matters. When we con-
sider the designs of two programs P1 and P2, which
are the same in functionality, does not imply that
O(P1) = O(P2).

In our case, we have different means to
achieve similar things; for example we have
synchronized and locks for critical sections, and
Object:wait-notify and Condition:await-signal
for conditional synchronization.
Property 5: Monotonicity.

It states that a component of a program is always
simpler than the whole program. For all (P1), (P2) ∈
P either O(P1)≤O(P1+P2) or O(P2)≤O(P1+P2)
should hold.

Our metric is defined as a summation of atomic
metrics and based on the combing operation we have
O(P1+P2) is bigger or equal than O(P1) or O(P2).
Property 6: Non-equivalence of Interaction. If P1,
P2 and P3 are three programs having the property that
O(P1) = O(P2) does not imply that O(P1 + P3) =
O(P2 + P3). This suggests that the interaction be-
tween P1 and P3 may differ from that of P2 and P3.

If the P1 program ends with a critical section, and
P2 doesn’t end with a critical section, while P3 starts
with a critical section, then for P1+P3 the two corre-
sponding critical sections will be implicitly merged,
and this reduces the overhead. Then O(P1 + P3)¡
O(P2+P3).
Property 7: Permutation. It states that permuta-
tion of elements within the program being measured
may change the metric value. Being given a program
P1 that is transformed into a program P2 by permut-
ing the order of the statements such that the provided
functionalities are preserved, the property states that
O(P1) 6= O(P2).

Considering a parallel program P1 that defines a
critical section (defined through synchronized) that
contains n statements, but not all the n statements
need mutual exclusion, we can transformed it to ob-
tain P2 by moving one of these statements out of the
critical section; this way the functionality is preserved
and the overhead metric is reduced because the size of
the critical section is reduced. For the initial variant
we have O(P1) =wsync ∗n and for the second we have
O(P2) = wsync ∗ (n−1).
Property 8: Renaming Property. When the name of
the measured artifact changes, the metric should not
change. That is, if program P2 is obtained by renam-
ing program P1 then O(P1) = O(P2).

As the proposed metric is measured at the pro-
gram level and, it does not depend on the name of

the program nor on the name of its classes, methods
and instance variables (through which the synchro-
nization mechanisms are implemented) it also satis-
fies this property.
Property 9: Interaction Increases Complexity. It
states that when two programs are combined, inter-
action between them can increase the metric value.
When two programs P1 and P2 are considered
O(P1)+O(P2)≤ O(P1+P2).

In general for the proposed metric we have that
O(P1)+O(P1) = O(P1+P2) (based on the combin-
ing operator – section 4.1, and the metric definition
based on summation).

Hence, the proposed metric is effective and can
be utilized for the purpose of overhead estimation in
SPMD programs.

4.4 Empirical Weights Evaluation

Empirical validation is extremely significant for the
accomplishment of any software measurement project
(Basili et al., 1996), (Fenton and Pfleeger, 1997).
Metrics proposal do not have much value without
demonstrating its practical utilization. Thus, study-
ing the applicability and usefulness of the proposed
metric which has been already validated theoretically
is very important.

A possible approach that can be followed for eval-
uation is provided in the book of Yin (Yin, 2008),
which emphasizes when it is possible to rely on case
studies method and how to do the research design
with this approach.

In order to verify and emphasize how the met-
ric could be used we have considered a use-case that
could be solved using several variants, each of these
using different synchronization mechanisms.

The considered problem is so called reduce oper-
ation: for a given list of elements and an associative
operator defined on the type of the elements we have:

reduce(⊕)[e0,e1, . . . ,en−1] = e0⊕ e1⊕·· ·⊕ en−1

If the elements are real numbers and the operator
is the addition operator, reduce operation computes
the sum of all given real numbers. The sequential
computation requires n operations when applied on
a list of n numbers.

An efficient parallel computation is based on a
”tree-like” computation that is derived from the re-
cursive definition of the reduce function:

reduce(⊕)[e] = e
reduce(⊕)[p|q] = reduce(⊕)[p]⊕ reduce(⊕)[q]

where | is the concatenation operator. an example is
illustrated in the Figure 1 1.
1source: https://docs.nvidia.com/cuda/samples/6 Advanced/reduction/doc/reduction.pdf

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

506

Figure 1: The computation of the sum by using tree-like
computation (Mark Harris, 2022).

As it can be seen in the Figure 1 the program cre-
ates a number of threads equal to the number of ele-
ments – n, and the computation is done in k = log2 n
steps. At each step the threads with an ID divis-
ible with the stride ∗ 2 will add to its correspond-
ing element E[ID] the value on the position equal to
ID− stride. In order to obtain the correct answer
is mandatory that this operation to be executed only
after the value on the position ID− stride was al-
ready updated in the previous step. The thread ex-
ecution is done theoretically completely in parallel
but the execution of operations executed by differ-
ent threads is non deterministic (i.e. implicitly not all
the threads execute the operations on one level in the
same time). In order to impose this synchronization
different mechanisms could be used and lead to 4 vari-
ants: with a barrier after each level,or with synchro-
nization between pairs that need to exchange informa-
tion using wait-notify, Condition, or Exchange.

If we consider also multithreading variants de-
rived from the sequential algorithm, the numbers are
split between the threads and each updates of the sum
variable with its own value inside a critical section.
Obviously, it is not an efficient approach since the
computations is still done sequentially due to the crit-
ical section. These variants are considered here just
as means to evaluate the corresponding weights wsync
and wlock.

Metric Evaluation for Reduce Variants

For each variant presented in the previous section we
evaluate the O metric, and then we will compare the
results with the concrete execution times obtained for
the variants execution on two different systems. The
goal is to obtain an estimation of the weights defined
in the metric.
V1 Barrier
– a barrier is used after each level in the tree execu-
tion;

#bar = log2 n = k
DIS = k/(3k) = 0.33

V2 synchronized + wait
At each level there are pairs of threads (thread ID
should use the value of thread (ID−stride) only after
this one finished previous update) that needs to syn-
chronize one to another through wait-notify mecha-
nism. All these pairs are disjunctive, and at each step
the number of pairs that need to synchronize in pairs
decreases by 2.

#wait = ∑
log2 n
i=1 n/2i = n

DIS = 2k/(5k) = 0.4

V3 locks + await from Condition
At each level there are pairs of threads that needs to
synchronize one to another through conditional vari-
ables. (Similar to variant V2.)

#cond = ∑
log2 n
i=1 n/2i = n

DIS = 2k/5k = 0.4

V4 Exchanger
At each level there are pairs of threads that needs to
synchronize one to another through an Exchanger. All
these pairs are disjunctive.

#ex = ∑
log2 n
i=1 n/2i = n

DIS = 2k/(5k) = 0.4

V5 Critical section with synchronized
There is one critical section of size 1.

#sync = 1; csi = 1
DIS = 0

V6 Critical section with Lock
There is one critical section of size 1.

#lock = 1; csi = 1
DIS = 0

Depending on the value of the weights we may es-
timate which variant could be better on different sys-
tems. For all the variants, the source code of the run()
function was analysed.

The evaluation of the weights is not an easy task,
and we propose, as a first step, an empirical strategy
based on the execution time for all previously speci-
fied variants, on different arrays’ size and on different
machines.

4.5 Experiments and Weights
Evaluation

Our replication strategy considers experiments of the
variants of reduction operation implementation on
different computation machines – (C1 and C2). The
two machines systems have the following character-
istics: C1 – a computer with 1 processor Intel(R)

Towards an Overhead Estimation Model for Multithreaded Parallel Programs

507

Figure 2: The execution time for n=32 on both C1 and C2
machines.

Core(TM) i7-7500U CPU @ 2.50GHz, 4 Core(s) with
hyperthreading, running Java 8 (macOS); C2 – an
x3750 M4 machine, with 4 processors Intel Xeon E5-
4610 v2 @ 2.30GHz CPUs, 8 cores per CPU with
hyperthreading, running Java 8 (CentOS 7). Due to
stochastic nature of the programs’ execution, they
must be repeated several times in order to mitigate
against the effect of random variation. We have used
in our evaluation 30 executions and we took their av-
erage.

The results are shown in Figure 2 and Figure 3
where time is expressed in microseconds. It can be
noticed that the barrier variants for the both cases are
much higher, and this is why the variations on the
1024 threads cases are not quite visible in the figure.
For n = 1024 the execution time for the barrier ver-
sion is much higher, but the other variants preserve
almost the same shape as for n = 32 case.

The strategy that we followed in order to approxi-
mate the weights was based on computing the differ-
ences between the execution times, and relies on the
observed fact that the execution time of the first vari-
ant (V1- Barrier) it is always the highest.

So, the steps of our evaluation strategy were:

1. Measure the execution times for the six describe
variants on the two machines C1 and C2 for two
cases: U1: n = 32; U2: n = 1024.

2. Compute for each case Ci-Uj (1 ≤ i, j ≤ 2) the
following differences:

• T (V 1)−T (V 2);
• T (V 1)−T (V 3);
• T (V 1)−T (V 4);
• T (V 1)−T (V 5);
• T (V 1)−T (V 6)

In this way, we eliminate the thread management
overhead time.

3. Each variant (V1-V6) depends on only one type of
weight and we can start from a fix value of one of
these. We started by considering wbar = 1+ wload

1000 .

Figure 3: The execution time for n=1024 on both C1 and
C2 machines.

4. Compute the values of the others weights by ap-
plying the formulas determined at step 3 based on
the metric for each variant.

In order to estimate the final value for weights we also
used values for tS that have been approximated based
on the systems characteristics. Also, the approxima-
tion of the function f was done based on observation
(σ = 100); more different values have to be tried for
further evaluations.

In Table 1 we added the results of the evaluation
of the weights following the described strategy. The
values show that the differences are not very big and
so they are promising as a first step for the estimation.

Table 1: The estimated values for the weights based on the
empirical evaluation.

Variants
32 1024

weights C1 C2 C1 C2 mean
wbar 1.004 1.008 1.128 1.03 1.04
wwait 0.93 1.59 1.03 1.71 1.31
wcond 2.29 2.56 1.81 1.94 2.15
wex 1.80 2.38 2.06 2.15 2.09

wsync 0.97 1.38 1.43 1.76 1.38
wlock 2.02 1.53 1.50 1.77 1.70

In order to arrive to a validated estimation, we pro-
pose, as a further work, to apply a more complex eval-
uation strategy that is based on artificial intelligence
methods. The estimated values could be the starting
point in the evaluation.
AI based strategies for weights evaluations. Such a
strategy could be formed of the followings steps: (1)
consider a set of already implemented parallel pro-
grams having different complexities; (2) evaluate the
metric for each program; (3) measure the execution
times of each program with different numbers of ex-
ecution threads; (4) use a Machine Learning-based
method (linear regression, neural network) or a Ge-
netic Algorithm-based approach in order to tune the

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

508

values for the weights; (5) validate the results on new
programs

The current paper offers preliminaries measure-
ments and estimation for the overhead metric, which
was theoretically validated.

5 CONCLUSIONS

An important desiderata in writing parallel programs
is to reduce the overhead time which in some cases
may cover the advantages of doing some computa-
tion in parallel. We have proposed a metric that esti-
mates the overhead time for parallel Java SPMD mul-
tithreaded programs and we theoretically validated it;
here Java programming language was considered but
the metric can be easily adapted for other languages,
since the synchronization mechanisms are very simi-
lar.

• estimate the overhead time at the development
stage;

• compare different design solutions for a given
problem, and choose the most optimal from the
overhead point of view;

• estimate the need for refactorization of a given
program by evaluating the improvements that
could be achieved by changing the design method
or only by changing the synchronization mecha-
nisms.

We have shown that the metric definition corresponds
to a proper definition of a software metric, and we
provided a theoretical validation using Weyuker’s
properties. A first evaluation of the weights associ-
ated to the aggregated atomic metrics was done based
on different implementation variants of the reduce op-
eration; the results proved to be promising. Still, for a
proper empirical validation this should be improved,
and so, we proposed an AI based strategy that could
be followed as a next step for attaining this goal.

REFERENCES

B, K. and N, F. (1995). Towards a framework for software
measurement validation. IEEE Transactions on soft-
ware Engineering, 21(12):929–943.

Basili, V., Briand, L., and Melo., W. (1996). A validation
of object-oriented design metrics as quality indicators.
20(10):751–761.

Briand LC, E. K. and S, M. (1995). On the application of
measurement theory in software engineering. Techni-
cal report, ISER Technical Report.

Chidamber, S. and Kemerer, C. (1994). A Metric Suite for
Object- Oriented Design. IEEE Transactions on Soft-
ware Engineering, 20(6):476–493.

David, F., Thomas, G., Lawall, J., and Muller, G. (2014).
Continuously measuring critical section pressure with
the free-lunch profiler. SIGPLAN Not., 49(10):291–
307.

EJ, W. (1988). Evaluating software complexity mea-
sure. IEEE Transactions on software Engineering,
14(9):1357–1365.

Espinosa, A., Margalef, T., and Luque, E. (1998). Auto-
matic performance evaluation of parallel programs. In
Euromicro Workshop on Parallel and Distributed Pro-
cessing, pages 43—-49.

Fenton, N. and Pfleeger, S. (1997). Software Metrics:
A Rigorous and Practical Approach. International
Thomson Computer Press, London, UK, second edi-
tion.

Garg, V. K. (2004). Concurrent and Distributed Computing
in Java. John Wiley fsSons, Inc., USA.

Göetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D.,
and Lea, D. (2006). Java Concurrency In Practice.
Addison Wesley Professional.

Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003).
Introduction to Parallel Computing, Second Edition.
Addison-Wesley.

H, Z. (1992). On weyuker’s axioms for software complexity
measures. Software Quality Journal, 1(4):225–260.

Ji, M., Felten, E. W., and Li, K. (1998). Performance mea-
surements for multithreaded programs. In ACM SIG-
METRICS Joint IC on Measurement and Modeling of
Computer Systems, pages 161–170. ACM.

Mark Harris. Optimizing Parallel Reduction in CUDA.
https://docs.nvidia.com/cuda/. Online; accessed 25
January 2022.

Misra, S. and Akman, I. (2008). Applicability of weyuker’s
properties on oo metrics: Some misunderstandings.
Computer Science and Information Systems, 5(1):17–
23.

Raynal, M. (2013). Concurrent Programming: Algorithms,
Principles, and Foundations. Springer-Verlag Berlin
Heidelberg.

Shah, M. D. and Guyer, S. Z. (2016). Iceberg: A tool for
static analysis of java critical sections. In ACM SIG-
PLAN International Workshop on State Of the Art in
Program Analysis, pages 7–12. ACM.

Shah, M. D. and Guyer, S. Z. (2018). Iceberg: Dy-
namic analysis of java synchronized methods for in-
vestigating runtime performance variability. In IS-
STA/ECOOP Workshops, pages 119–124. ACM.

Yin, R. K. (2008). Case Study Research: Design and Meth-
ods (Applied Social Research Methods). Sage Publi-
cations, fourth edition. edition.

Towards an Overhead Estimation Model for Multithreaded Parallel Programs

509

