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Abstract: In this paper we present several experiments done with a complex spatio-temporal neural network 
architecture, for three distinct traffic features and over four time horizons. The architecture was proposed in 
(Zhao et al., 2020), in which predictions for a single traffic feature (i.e. speed) were investigated. An 
implementation of the architecture is available as open source in the StellarGraph library (CSIRO's Data61, 
2018). We find that its predictive power is superior to the one of a simpler temporal model, however it 
depends on the particular feature predicted. All experiments were performed with a new dataset, which was 
prepared by the authors. 

1 INTRODUCTION 

Traffic forecasting is the process of studying traffic 
features (including standard data like flow, speed 
and occupancy) and predicting their trends over a 
short or long interval of time. It plays an important 
role inside a modern traffic management system, but 
also provides information in advance for traffic 
participants, allowing them to choose time optimal 
travel routes. Overall, it is a key element for 
improvements of the travel efficiency. 

However, performing traffic forecasting is a 
quite challenging undertaking. There exist complex 
spatio-temporal interdependencies that affect its 
performance. 

In this paper we present experiments done with a 
complex spatio-temporal neural network architecture 
which was very recently proposed in (Zhao et al., 
2020), its implementation called GCN-LSTM being 
made available as open source in the StellarGraph 
library (CSIRO's Data61, 2018). 

In (Zhao et al., 2020) the authors made 
predictions only for speed data, this being the only 
temporal traffic feature available in the two datasets 
used by the authors. We wanted to see if this 
architecture delivers also superior performance for 
forecasting other temporal traffic features. Therefore 
we have prepared a new dataset using data 

publically available from the Caltrans Performance 
Measurement System (PeMS, 2019). This new 
dataset includes three time-series of traffic features: 
flow, speed and occupancy. Then we have compared 
the predictions made by the more complex GCN-
LSTM model with the predictions made with a 
simpler LSTM model for all three temporal traffic 
features and for various time horizons. We have 
found that, in almost all experiments (with just one 
exception), the GCN-LSTM model provides better 
predictions.  

Therefore, the contributions in this paper are the 
following: 

 
 We have prepared a new dataset. It will be 

useful also for other experiments. This new 
dataset contains real time-series for three 
different traffic features;     

 We have studied the effect on predictions of 
various hyperparameters settings for the more 
complex GCN-LSTM model. For finding the 
best values, we have made experiments with 
several different parameters settings for the 
amount of hidden units on both the GCN and 
the LSTM layers and we automatically select 
the best of them for making predictions. 

 We have investigated the suitability of the 
GCN-LSTM model for making predictions on 
various new time-series of traffic features, 
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different from the (only) speed time-series 
which were studied in (Zhao et al., 2020).  

 
The prepared dataset, together with the 

implementation used for experiments, is available on 
demand from the authors.     

2 RELATED WORK 

Forecasting traffic features in order to build 
intelligent traffic management systems is a major 
research topic nowadays. There are many traffic 
forecasting approaches which were investigated by 
various authors. Nowadays, following the rapid 
development in the field of deep learning (Silver et 
al., 2016), (Silver et al., 2017), (Moravčík et al., 
2016), new neural networks architectures have 
received particular attention. When benchmarked 
versus other models, they are capable of achieving 
the top results.   

Many of the old approaches are forecasting just 
one temporal feature. Others ignore completely the 
spatial features, behaving like the traffic information 
is not at all constrained by the traffic infrastructure. 
However, it is quite clear that fully using both the 
spatial and all available temporal information is the 
answer for performant traffic forecasting. 

The traffic information is inherently related to 
graph like domains, due to the inherent topology of 
the roads networks. In the recent years a new 
architecture of neural networks, called Graph 
Convolutional Network (GCN), was developed in 
order to deal with this kind of information. It is a 
generalization of the standard Convolutional Neural 
Networks (CNN) architecture in the case of data 
available on graph domains. For more about GCN 
we point the reader to (Bruna et al., 2014), (Henaff 
et al., 2015), (Atwood and Towsley, 2016), (Niepert 
et al., 2016), (Kipf and Welling, 2017) and 
(Hechtlinger et al., 2017). Remark that, since its 
introduction, the GCN architecture has proven 
superior performance for many applications.  

The ability of GCN to handle information on 
graph domains has motivated several authors to 
develop various GCN architectures for forecasting 
traffic features. One of the first attempts in this 
direction was made by (Li et al., 2018), the authors 
proposing a model that can make use of the spatial 
features by computing random walks on graphs. 
This was quickly followed by several papers, like for 
example (Yu et al., 2018), (Zhao et al., 2020) and 
(Zhang et al., 2020), in which various authors 
propose different spatio-temporal neural network 

architectures for traffic forecasting. In general, in 
these papers only one particular temporal feature 
(i.e. speed) was used for training and predicting. 

Following this line of research, in this paper we 
investigate if one particular spatio-temporal neural 
network architecture may be used for forecasting 
other temporal traffic features and if it provides 
similar performance. 

3 METHODOLOGY 

3.1 Problem Statement 

The scope of this paper is to simultaneously predict 
multiple traffic features over a certain time horizon 
using both the historical traffic data collected by 
sensors and the spatial information about the 
location of the sensors on the roads. More precisely, 
we are interested in predicting the following traffic 
features: flow, speed and occupancy. These features 
are simultaneously collected in the data available 
from the Caltrans Performance Measurement System 
(PeMS, 2019). 

Let 𝑆 be the number of sensors in the data. We 
use a matrix 𝐴 ∈ ℝௌ୶ௌ  for representing the spatial 
information about the sensors. The matrix 𝐴 contains 
weights  𝑎௜௝ ∈ ሾ0,1ሿ  and it is called the adjacency 
matrix. The weight 𝑎௜௝ is set to be 0 if there is a 
significant distance or there is no road connection 
between the two sensors 𝑖 and 𝑗. It is set to be close 
to 1 if there exist a road connection between the two 
sensors 𝑖 and 𝑗 and also the distance between them is 
rather small. 

Let 𝑁  be the number of samples. For each 
feature 𝑓 the 𝑆 time-series collected by the sensors 
are contained in a feature matrix 𝐵௙ ∈ ℝௌ୶ே. Then, 
at a certain time 𝑡, the vector  𝐵௙,௧ ∈ ℝௌ contains the 
values collected by all sensors for the feature 𝑓. 

Let 𝑇  be a time horizon. Assuming that an 
adjacency matrix 𝐴  and a feature matrix 𝐵௙  are 
given, then the problem of spatio-temporal 
forecasting of the traffic feature 𝑓  for the time 
horizon 𝑇  is the problem of learning a mapping 
function 𝑚 (i.e. a model) such that  

 

𝐵௙,௧ା் ൎ 𝑚 ቀ𝐴; ൫𝐵௙,௧ି௡, … , 𝐵௙,௧ିଵ, 𝐵௙,௧൯ቁ. 
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3.2 The Architecture of GCN-LSTM 
Model 

The key idea behind the construction of a spatio-
temporal neural network is illustrated in Figure 1. 
Assume that the nodes 1, 2, 3 in the graph pictured 
below represent three traffic sensors.  A certain 
traffic feature read by sensor 2 at timestamp 𝑡 may 
explicitly be related (by spatial connections) to the 
data read by sensors 1 and 3 at timestamp 𝑡, and to 
the data read by sensor 2 at timestamp 𝑡 െ 1 (by the 
temporal connection).  Moreover, there exist implicit 
spatio-temporal connections with the data read by 
sensors 1 and 3 at timestamp 𝑡 െ 1. 

 

Figure 1: The spatial and temporal connections among 
sensors arranged in a graph. 

The architecture of the GCN-LSTM model 
which is available as open source in the StellarGraph 
library (CSIRO's Data61, 2018) was inspired by the 
ideas proposed in (Zhao et al., 2020) and it is 
illustrated in Figure 2.  

 

Figure 2: The architecture of the GCN-LSTM model. For 
each feature 𝑓 the 𝑆 time-series are used as input and the 
final prediction is obtained by passing them through the 
GCN and the LSTM layers. 

According to (Zhao et al., 2020) and (CSIRO's 
Data61, 2018) the GCN-LSTM model consists of 
two distinct parts: the GCN layers and the LSTM 
layers. The number and the size of GCN layers and 
the LSTM layers, as well as the number of LSTM 
cells are user defined. Remark that Gated Recurrent 
Units (GRU) are used in (Zhao et al., 2020) instead 
of LSTM, however in practice there are not any 
significant differences between them and are equally 
effective for various tasks. The basic operating 
principles of both the GRU and LSTM are 
approximately the same, according to (Chung et al., 
2020).  

 As can be seen in Figure 2, the GCN layers are 
used first in order to capture the spatial relationships 
between sensors. The information is added to the 
(temporal) information contained by the inputted 
time series. Remark that this part of the model can 
be adapted for predicting the value of a certain 
traffic feature on a future timestamp based only on 
its current values across the sensors graph (at single 
timestamp). However, the temporal information is 
also very important for predictions, so for obtaining 
the best results a subset of the time-series of values 
of the traffic feature (as measured at several 
previous timestamps across the sensors) should be 
used in order to predict its value at a future 
timestamp. For achieving this, in a second step the 
time-series (now augmented with spatial features) 
are inputted into the LSTM layers. (The number of 
LSTM cells is given by the length of the subset of 
the time-series used for training.) The final results 
are obtained by passing through a dropout and a 
dense layer. According to experimental results 
(CSIRO's Data61, 2018), their usage leads to 
improvement in performance and prevents over-
fitting.  

 In summary, the GCN-LSTM model may be 
used for capturing both the spatial and the temporal 
dynamics.    

3.3 Dataset 

For our experiments we have prepared a new dataset 
using traffic data collected from various roads in the 
State of California. The data is aggregated from 
sensors positioned on the freeways of the state and it 
is stored and publically available in the Caltrans 
Performance Measurement System (PeMS, 2019), a 
web platform where users can analyse and export 
traffic information. The data was automatically 
collected from the website using a Python script. 
Since the PeMS data contains many sensors for 
which the values of the corresponding features are 
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not measured, but instead are imputed by the system 
or simply not available, one important step in 
preparing the dataset was to choose several sensors 
for which as many as possible real observed values 
are available and which are also relatively close 
together. Using the plot on a map of the sensors and 
their associated percentage of real observed values, 
40 sensors found in all directions of a 4-way 
interchange have been manually selected. They are 
represented in Figure 1. 

 

Figure 3: Map of the manually selected sensors. The 
colours represent the corresponding traffic direction.  

For the selected sensors, our dataset contains 
time-series for all the traffic features studied in this 
paper, i.e. flow, speed and occupancy. The time 
period included in the dataset is from the 1st of April 
to the 30th of April 2019. For each sensor 
measurements are done every 5 minutes, so that a 
full day of measurements contains 288 observations.   

The system also offers a metadata file which 
contains structured descriptions of each individual 
sensor. From the data provided for each sensor the 
following features are useful for computing spatial 
information: freeway number, direction, latitude and 
longitude. 

3.4 Technical Implementation 

For the implementation of the machine learning 
models the Python libraries Tensorflow, Keras and 
StellarGraph were used. Tensorflow (Google Brain, 
2016) is a library developed by Google for 
implementing machine learning applications. On top 
of Tensorflow, another package has been built, 
named Keras (Chollet, 2015). It contains 
implementations of machine learning algorithms that 
are very popular and may be used to define and train 
models that combine them, as layers. StellarGraph 

(CSIRO's Data61, 2018) is another library based on 
TensorFlow that aims to help implementing graph 
convolutional neural network architectures. The 
open source implementation in StellarGraph of the 
architecture proposed in (Zhao et al., 2020) was used 
for the experiments presented in this paper. 

4 EXPERIMENTS 

4.1 Performance Metrics 

For the purpose of measuring the performance of the 
tested models, we have used in our experiments 
three standard performance metrics that evaluate the 
distance between the ground truth (i.e. the real, as 
measured in traffic feature yi) and the computed 
model prediction for the same feature. Assume that 
the testing dataset contains 𝑁  samples (epochs) of 
the form ሺ𝑥௧, 𝑦௧ሻ and 𝑚  is the model under 
consideration. Denote by 𝑦௧ഥ   the mean of 𝑦௧ .Then 
the prediction of the model for 𝑦௧ is 𝑚ሺ𝑥௧ሻ and we 
have: 
 
 Root Mean Squared Error (RMSE): 

 

𝑅𝑀𝑆𝐸ሺ𝑚ሻ ൌ ටଵ

ே
෌ ሺ𝑦௧ െ 𝑚ሺ𝑥௧ሻሻଶே

௧ୀଵ
; 

 
 Mean Absolute Error (MAE):  

 

𝑀𝐴𝐸ሺ𝑚ሻ ൌ
ଵ

ே
෌ |𝑦௧ െ 𝑚ሺ𝑥௧ሻ|ே

௧ୀଵ
; 

 
 The Coefficient of Determination (R2): 

 

𝑅ଶሺ𝑚ሻ ൌ 1 െ
෌ ሺ𝑦௧ െ 𝑚ሺ𝑥௧ሻሻଶே

௧ୀଵ

∑ ሺ𝑦௧ െ 𝑦௧ഥ ሻଶே
௧ୀଵ

 .  

 
More precisely, the first two metrics are 

measuring the model prediction error. They should 
be interpreted as follows: the smaller is the number 
computed, the better is the model. The capability of 
the model to make good predictions is measured by 
the coefficient of determination. Its interpretation is: 
the closer to 1 is the number computed (by definition 
it is always smaller than 1), the better is the model.   

4.2 Tuning Model Parameters 

For hyperparameters tuning a grid search is done in 
order to find the best amount of hidden units on both 
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the GCN and the LSTM layers. The best settings are 
automatically selected for making predictions. 

Table 1: Measuring the GCN-LSTM performance for 
predicting flow with variable amount of hidden units and 
under different time horizons. 

Time GCN 
LSTM 

64 128 256

15 min 
16 25.55 21.69 22.88
32 23.97 23.38 21.18 
64 24.45 22.57 21.51

30 min 
16 28.29 26.80 27.22
32 31.55 27.85 26.24
64 26.66 25.74 24.86

45 min 
16 30.99 27.56 28.49
32 29.41 28.50 28.27
64 29.39 30.06 29.02

60 min 
16 33.55 34.70 32.50
32 32.78 33.71 30.36
64 33.36 29.87 30.33

Table 2: Measuring the GCN-LSTM performance for 
predicting speed with variable amount of hidden units and 
under different time horizons. 

Time GCN 
LSTM 

64 128 256

15 min 
16 51.90 51.77 48.74
32 50.00 49.10 46.48
64 48.95 49.76 43.60 

30 min 
16 80.46 74.87 77.11
32 82.95 78.08 72.43
64 79.29 77.48 75.94

45 min 
16 95.26 94.33 97.12
32 95.75 93.23 93.94
64 96.05 94.80 90.07 

60 min 
16 111.20 106.79 123.63
32 110.45 107.35 111.23
64 117.64 106.60 114.93

Table 3: Measuring the GCN-LSTM performance for 
predicting occupancy with variable amount of hidden units 
and under different time horizons. 

Time GCN 
LSTM 

64 128 256

15 min 
16 27.91 24.51 25.28
32 27.37 24.46 24.58
64 26.53 24.86 22.64

30 min 
16 31.42 30.81 30.26
32 31.80 30.04 30.37
64 31.70 30.75 30.45

45 min 
16 34.97 34.08 34.10
32 34.23 34.65 34.46
64 34.66 33.50 35.28

60 min 
16 38.43 37.98 38.95
32 37.35 37.43 37.34
64 38.25 36.74 36.07 

The optimal number of hidden units found for 
each feature and under each time horizon is marked 
by bold numbers in the Tables 1, 2 and 3. Note that 
the MSE numbers in these tables are scaled; smaller 
numbers indicate better performance of the model. 

4.3 Experimental Results 

The performance of the GCN-LSTM model is 
compared with the performance of a LSTM model 
(Hochreiter et al., 1997), which is used as a baseline. 
This allows us to see the combined spatio-temporal 
prediction capability of the model. 

The final results of our experiments are 
contained in Table 4. We have compared the 
predictions made by the two models for 4 times 
horizons (15 min., 30 min., 45 min. and 60 min) and 
for 3 different traffic features (flow, speed and 
occupancy). From the total of 12 experiments made, 
the GCN-LSTM model has provided better results 
 

Table 4: Experimental Results. 

Time Metric 
LSTM GCN_LSTM 

flow speed occupancy flow speed occupancy

15 min 
RMSE 48.7111 6.4772 0.0492 42.5435 7.1176 0.0433
MAE 34.3575 3.5623 0.0273 30.5658 4.3369 0.0217
R2 0.9396 0.8142 0.6452 0.9471 0.7757 0.7253

30 min 
RMSE 56.0602 9.5153 0.0549 46.9174 8.8095 0.0485
MAE 40.6417 5.4586 0.0329 34.1318 5.2449 0.0257
R2 0.9077 0,5993 0.5568 0.9354 0.6566 0.6543

45 min 
RMSE 62.9085 10.4843 0.0581 48.1666 8.9197 0.0499
MAE 47.1767 6.3406 0.0364 35.2929 5.5909 0.0278
R2 0.8833 0.5139 0.5061 0.9319 0.6482 0.6342

60 min 
RMSE 71.9628 11.5291 0.0609 51.2077 9.8415 0.0501
MAE 54.5468 7.6336 0.0394 37.9371 6.0044 0.0277
R2 0.8466 0.4126 0.4548 0.9223 0.5720 0.6321
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than the LSTM model in 11 experiments. There 
exists 1 experiment (marked with italics in Table 4) 
in which the results obtained with the LSTM model 
were superior.   

4.4 Visual Interpretation of the Results 

For providing a better understanding of the results, 
we have selected one particular sensor and the 
predictions made by the two models for the 60 
minutes time horizon on a 2-days subset of test set 
are visualized in the Figures 2, 3 and 4. 

 

 

Figure 4: LSTM and GCN-LSTM flow predictions. 

 

Figure 5: LSTM and GCN-LSTM speed predictions. 

Together with the numerical data for 
performance in Table 4, these figures show:  

 Especially over longer time horizons the more 
complex spatio-temporal neural network 
architecture has better prediction capability 
than the simpler temporal neural network 
architecture. In other words, adding the spatial 
information to the model leads to a significant 
improvement of its predictive power;     

 

 

Figure 6: LSTM and GCN-LSTM occupancy predictions. 

 The prediction performance depends on the 
predicted traffic feature. As one can clearly 
see by comparing Figures 2 and 3, as well as 
from Table 4, there exist a difference in the 
performance of both models for predicting 
flow and speed. The flow predictions of both 
models are significantly better than those for 
speed. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper we present several experiments done 
with a complex spatio-temporal neural network 
architecture, which was initially proposed in (Zhao 
et al., 2020), for 3 distinct traffic features and over 4 
time horizons. First, we have found that, in almost 
all cases, the predictive power of this new 
architecture is superior to the one of a simpler 
temporal model. We conclude that there exists 
strong evidence that adding the spatial information is 
very important. Second, unlike in the setup 
considered in (Zhao et al., 2020) and also in other 
related papers (where only one traffic feature is 
investigated), we were interested to study the 
performance of the architecture for various traffic 
features, all of them being important for example  
when building a modern traffic management system. 
We have found that the architecture does not deliver 
uniform performance across all traffic features, its 
performance seem to depend heavily on the 
particular feature used. 

Our future work plan is to conduct more 
experiments with several architectures proposed 
very recently by various authors, as for example in 
(Li et al., 2018), (Yu et al., 2018) and (Zhang et al., 
2020).  We hope to find an architecture that does 
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deliver uniform performance, independent on the 
particular feature predicted. Since we have seen that 
using spatial information in almost all studied cases 
improves the overall performance of the model, we 
also intend to experiment with new, better ways of 
processing it. 
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