
A Comparative Analysis of JSON Schema Inference Algorithms

Ivan Veinhardt Latták and Pavel Koupil a

Department of Software Engineering, Charles University, Prague, Czech Republic

Keywords: Schema Inference, Reverse Engineering, Document Model, JSON.

Abstract: NoSQL databases are becoming increasingly more popular due to their undeniable advantages in the context
of storing and processing Big Data, mainly horizontal scalability and minimal requirement to define a schema
upfront. In the absence of the explicit schema, however, an implicit schema inherent to the stored data still
exists and it needs to be reverse engineered from the data. Once inferred, it is of a great value to the stake-
holders and database maintainers. Nevertheless, the problem of schema inference is non-trivial and is still
the subject of ongoing research. In this paper we provide a comparative analysis of five recent proposals of
schema inference approaches targeting the JSON format. We provide both static and dynamic comparison of
the approaches. In the former case we compare various features. In the latter case we involve both functional
and performance analysis. Finally, we discuss remaining challenges and open problems.

1 INTRODUCTION

Traditional database management systems (i.e., rela-
tional, object, object-relational) enforce that the data
are highly structured and conform to a strictly pre-
defined schema which is designed in one of the first
steps of forward engineering approaches. From the
point of view of data management this approach is de-
noted as schema-on-write. On the other hand, novel
NoSQL systems reflecting the V-features of Big Data
(Volume, Velocity, Variety, Veracity, ...) relax this
rule, since it does not reflect requirements typical for
Big Data applications, which work also with semi-
structured or unstructured data. However, when the
data is retrieved to be processed, its structure needs
to be known. We speak about schema-on-read ap-
proaches.

Although semi-structured and unstructured data is
not bound with an explicit schema, this schema is im-
plicitly present and can therefore be inferred, i.e. re-
verse engineered, from the data. Despite its limita-
tions (given by the quality and richness of the input
data), a schema inferred from a sample dataset is of
great value – it can be used by stakeholders to reason
about the data, by automated tools for data validation
and migration, for object code generation, etc. Or, an
inferred schema of newly added schema-less data can
be integrated to the originally designed schema and
thus enrich the knowledge of the structure of data.

a https://orcid.org/0000-0003-3332-3503

The inference process itself, however, is non-
trivial. Several schema inference approaches already
exist but many are insufficient in various aspects.
Hence, our aim in this paper is to thoroughly ana-
lyze the problems of schema inference. In particular,
we focus on semi-structured data, namely document-
oriented data, due to higher complexity of the docu-
ment model and the overwhelming popularity of doc-
ument databases1 compared to key/value or columnar
ones.

In our previous paper (Čontoš and Svoboda,
2020), we already examined a number of existing so-
lutions and we described their strengths and weak-
nesses. In addition, we provided an example of in-
ferred JSON schema for each discussed approach. In
this paper we significantly extend our work. The main
contributions are as follows:

• We analyze five recent JSON schema inference
approaches. Apart from a static analysis and dis-
cussion of various features, we provide an exper-
imental analysis of the algorithms involving both
functional and performance analysis.

• Implementations of all the examined approaches
were acquired from the authors2 and debugged
when necessary. The datasets, as well as the used
generator are available in GitHub repository3 for

1https://db-engines.com/en/ranking
2The links to repositories are provided in Table 1.
3https://github.com/ivan-lattak/schema-inference

Veinhardt Latták, I. and Koupil, P.
A Comparative Analysis of JSON Schema Inference Algorithms.
DOI: 10.5220/0011046000003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 379-386
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

379



further exploitation.

• We discuss a set of open problems and challenges
in the area of schema inference, including the con-
text of currently highly popular multi-model data.

• As long as we are not authors of any of the com-
pared approaches, we provide an unbiased com-
parative study.

The rest of the paper is structured as follows: Sec-
tion 2 summarizes both the compared approaches
and other related work. In section 3 we provide a
comparison of the selected algorithms based on their
static characteristics. In section 4, we present an
experimental analysis of selected existing solutions,
both functional and performance. In Section 5 we
overview challenges and discuss possible future im-
provements. We conclude in Section 6.

2 SCHEMA INFERENCE
APPROACHES

Research on schema inference of semi-structured
data is not new as it involves both modern NoSQL
databases as well as a bit older technologies such
as XML4 or RDF5. In this section, we introduce se-
lected comparative works and we summarize the most
prominent and relevant schema inference approaches.

There exist several surveys dealing with schema
inference approaches in document databases.
Mlýnková et al. (Mlýnková and Nečaský, 2013)
provide an overview of the field of heuristic
XML Schema inference and summarize existing
approaches and open problems. Morales in his dis-
sertation thesis (Morales, 2017) statically compares
several schema extraction algorithms over multiple
NoSQL stores.

We believe that due to the versatility and popular-
ity of the JSON format, JSON schema inference ap-
proaches are the most promising, especially in terms
of extensibility towards schema inference in popular
multi-model systems. Hence, in this paper, we focus
on these approaches. In particular, we analyze the fol-
lowing ones:

• Sevilla et al. (Sevilla Ruiz et al., 2015b) present
an approach for inferring versioned schemas from
document NoSQL databases based on Model-
Driven Engineering (MDE) along with sample
applications created from such inferred schemas.
This research is furthered by Morales in his dis-
sertation thesis (Morales, 2017) and by Hernan-

4https://www.w3.org/TR/xml/
5https://www.w3.org/RDF/

dez et al. who tackle the issues of visualization of
schemas of aggregate-oriented NoSQL databases
and propose desired features which should be sup-
ported in visualization tools (Chillón et al., 2017).
Most recently, Fernandez et al. expand upon
the meta-model from paper (Sevilla Ruiz et al.,
2015b) by introducing a unified meta-model ca-
pable of modeling both NoSQL and relational
data (Candel et al., 2021).

• Scherzinger et al. (Scherzinger et al., 2013) intro-
duce a platform-agnostic NoSQL data evolution
management and schema maintenance solution.
The same research group later proposes an ap-
proach for extraction of a schema from JSON data
stores, measuring the degree of heterogeneity in
the data and detecting structural outliers (Klettke
et al., 2015). They also introduce an approach for
reconstructing schema evolution history of data
lakes (Klettke et al., 2017b). Additionally, Moller
et al. present jHound (Möller et al., 2019), a
JSON data profiling tool which can be used to
report key characteristics of a dataset, find struc-
tural outliers, or detect documents violating best
practices of data modeling. Finally, Fruth et al.
present Josch (Fruth et al., 2021), a tool that en-
ables NoSQL database maintainers to extract a
schema from JSON data more easily, refactor it,
and then validate it against the original dataset.

• Baazizi et al. (Baazizi et al., 2019b) propose a dis-
tributed approach for parameterized schema infer-
ence of massive JSON datasets and introduce a
simple but expressive JSON type language to rep-
resent the schema.

• Izquierdo and Cabot provide an MDE-based ap-
proach for discovering schema of multiple JSON
web-based services (Izquierdo and Cabot, 2013a)
and later put it in practice as a web-based applica-
tion along with a visualization tool (Izquierdo and
Cabot, 2016).

• Frozza et al. introduce a graph-based approach
for schema extraction of JSON and BSON6 doc-
ument collections (Frozza et al., 2018a) and an-
other inference process for columnar NoSQL
databases (Frozza et al., 2020), specifically
HBase7.

In addition, there exists a number of approaches that
deal with different data models. For example:

• Bex et al. (Bex et al., 2010) introduce a method
of inference of a concise XML DTD8 by reduc-

6https://bsonspec.org
7http://hbase.apache.org
8https://www.w3.org/XML/

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

380



ing the problem to learning concise regular ex-
pressions from positive examples (i.e., documents
valid against the target DTD).

• DiScala and Abadi (DiScala and Abadi, 2016)
present an algorithm for automatic generation of a
relational database schema from JSON data along
with subsequent transformation of the data itself.

• Galinucci et al. (Gallinucci et al., 2018) propose
a way how to enable non-technical users to enrich
RDF data cubes by recognizing recurring patterns
in linked open data.

• Finally, Bouhamoum et al. (Bouhamoum et al.,
2018) deal with the issues of horizontal scaling of
existing RDF schema discovery approaches and
present a method based on extracting a condensed
representation of the initial dataset.

Nevertheless, in the rest of the comparative study
we will focus only on the following JSON schema
inference approaches: Sevilla et al. (Sevilla Ruiz
et al., 2015b), Klettke et al. (Klettke et al., 2017b),
Baazizi et al. (Baazizi et al., 2019b), Izquierdo and
Cabot (Izquierdo and Cabot, 2013a), and Frozza et
al. (Frozza et al., 2018a).

3 STATIC ANALYSIS

First of all, we focus on the statically determinable
features. Table 1 summarizes the comparison of the
key characteristics discussed in the following para-
graphs.

• Input Format: All selected approaches support
schema extraction from JSON data. Frozza et al.
approach supports also BSON data. In addition,
approaches by Sevilla et al. and Klettke et al.
mention how other aggregate-oriented data can be
trivially converted to JSON, so that in practice any
schema inference approach for JSON data can be
used also for key/value and columnar data.

• Multiple Collections: The majority of algorithms
support inference only from a single document
collection at a time, while merging of these
schemas is left up to the user. Approaches that
can process an entire JSON database are Sevilla
et al. and Izquierdo and Cabot exploiting MDE to
do so.

• Inference Process: Most of the approaches extract
schema information from all the documents stored
in the input collection. Approaches by Sevilla et
al. and Frozza et al. first select a minimal collec-
tion of mutually distinct documents such that they
still bear all the different input cases. A common

feature of all the approaches is the replacement
of values of properties by names of the primitive
types encountered. In addition, this step is usually
parallelized using MapReduce or Apache Spark
which greatly improves the scalability.

• Output Format: The majority of approaches out-
put the inferred schema in a textual format. Klet-
tke et al. and Frozza et al. use JSON Schema9

and Baazizi et al. use their own type description
language. The approaches by Sevilla et al. and
Izquierdo and Cabot output the inferred schema
as a data model, both based on UML10.

• Implementation: The approaches of Sevilla et al.
and Izquierdo and Cabot were implemented as
Java applications running on the Eclipse platform.
Both of them offer a Java API and a simple web
application wrapper. Klettke et al. implemented
their approach as Java application running on the
Spring Boot platform. Baazizi et al. implemented
their approach as a Scala application designed to
run in the Apache Spark environment. Finally,
the approach by Frozza et al. is implemented as
a JavaScript web application. The front end is
written in TypeScript and provides the user with
a presentation layer, while the back end is written
using Node.js and contains the implementation of
the inference approach.

• Structural Components: All the approaches are
capable of inference of various structural compo-
nents of JSON documents, including simple data
types (String, Number, Boolean) and some com-
plex data types (array, object). Parent/child rela-
tionships (within aggregates) are also captured in
inferred schemas, either as nesting in textual form
or an arrow in the graphical form of an inferred
schema. On the other hand, there is no approach
capable of inference of complex data structures,
including sets, maps and tuples.

• Integrity Constraints: Only one specific type of
integrity constraints (ICs), namely simple referen-
tial integrity, is detected by the inference approach
by Sevilla et al. No other ICs are inferred by any
of the researched inference approaches.

• Optional Properties: All approaches, except for
Izquierdo and Cabot, are able to describe optional
properties in their schemas. JSON Schema-based
approaches, i.e., Klettke et al. and Frozza et al.,
use keyword required to enumerate the required
properties, while others are optional. Approach
of Baazizi et al. uses the optionality modifier (i.e.,

9https://json-schema.org
10https://www.omg.org/spec/UML/

A Comparative Analysis of JSON Schema Inference Algorithms

381



Table 1: Comparison of selected schema inference approaches.
Sevilla Klettke Baazizi Izquierdo Frozza

Repository (Sevilla Ruiz et al., 2015a) (Klettke et al., 2017a) (Baazizi et al., 2019a) (Izquierdo and Cabot, 2013b) (Frozza et al., 2018b)

Algorithm MapReduce + MDE Fold into graph Type reduction
in Apache Spark MDE Aggregation +

fold into graph

Input format Aggregate-oriented
NoSQL data JSON JSON JSON web service

responses Extended JSON

Input type Multiple collections Single collection Single collection Multiple collections Single collection

Output format NoSQL Schema model JSON Schema Custom textual
type language Ecore model JSON Schema

Schema root Entities Documents Documents Entities Documents

Implementation Eclipse bundle Spring Boot
application

Apache Spark
application in Scala Eclipse bundle Node.js web

application
Optional Yes Yes Yes No Yes

Entity versions Yes No Yes No No
Union type No Yes Yes No Yes
References Yes No No No No

Tuple No No No No No
Set No No No No No

Map No No No No No
Extended JSON No No No No Yes

Complex IC No No No No No
Scalable design Yes Yes Yes Yes No

Scalable
implementation Yes No Yes No No

?) to describe optional properties when a kind-
equivalence relation is used in the reduction. Ap-
proach by Sevilla et al. can infer optional prop-
erties by merging all versions of a single entity
together, marking each property as required if it is
present in all of them, and optional if not.

• Union Type: Approaches by Klettke et al., Frozza
et al., and Baazizi et al. can infer and express
union types in the schema. The former two use
JSON Schema keyword oneOf, while the latter
one defines for this purpose the union type con-
structor (i.e., +). Approaches by Sevilla et al. and
Izquierdo and Cabot do not support union types of
properties. Approach by Sevilla et al. uses entity
versioning instead while approach by Izquierdo
and Cabot uses the alternative approach of reduc-
ing different types to their most generic type, like
EString.

• Scalability: Despite the fact that the majority of
approaches has a scalable design, the implemen-
tations are not parallelized, therefore they do not
scale horizontally. Sevilla et al. use MapReduce
to decrease the number of input documents that
are considered in the rest of the schema inference
process. Similarly, Apache Spark is used in ap-
proach of Baazizi et al.

4 DYNAMIC ANALYSIS

Next we design, execute, and evaluate experiments
which demonstrate the behavior of individual ap-
proaches. We identify points of failure and illus-
trate differences between the approaches. The first
phase involves a functional analysis of the given ap-
proaches. It exemplifies the functional behavior of

the approaches when applied on datasets containing
different schema features. The second phase, perfor-
mance analysis, compares the relative runtime per-
formance of the approaches by executing them in an
identical environment and against identical datasets.

4.1 Functional Analysis

For this analysis we have created manually 8 sep-
arate datasets with self-descriptive names, each fo-
cusing on a different schema feature, namely Primi-
tiveTypes, SimpleArrays, SimpleObjects, ComplexAr-
rays, ComplexObjects, Optional, Union, and Refer-
ences. They are located in the /experiment directory
within the root of the GitHub repository11 as JSON
files. These datasets were imported to a collection
named articles, each within a separate MongoDB
database. Then, all 5 inference approaches were run
over the databases. Since the majority of the ap-
proaches behaved according to the expectation with
a majority of the datasets, we will only discuss the
detected abnormalities.

Dataset SimpleArrays features an empty JSON ar-
ray in property nothings. The empty array is not
handled correctly by the implementation of Sevilla et
al. – it throws an uncaught exception during the infer-
ence. The implementation by Frozza et al. also has
a problem with this edge case, although not so severe
one – the resulting JSON Schema is invalid as it con-
tains an invalid definition for the array element type.

Dataset ComplexArrays contains a two-
dimensional array in property nested arrays.
The dimensionality is not handled correctly by the
approach by Izquierdo and Cabot, which models the
property as a simple one-to-many relationship.

11https://github.com/ivan-lattak/schema-inference

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

382



In dataset Optional the optional properties were
not modeled by the approach by Izquierdo and
Cabot For an unknown reason, optional property
body.compressed was not inferred at all.

Approach by Sevilla et al. inferred the union types
in dataset Union as versioned entities instead. How-
ever, the union type is used as the element type of
an heterogeneous array in property comments. This
heterogeneous array is modeled by Sevilla et al. as a
tuple containing a string and a number instead. In the
schema inferred by Izquierdo and Cabot the heteroge-
neous types are reduced to the most generic type, i.e.,
String.

Finally, dataset References contains references to
entities in two forms: a property named article id
and a property containing BSON DBRef. These were
difficult to handle for most inference approaches –
Sevilla et al. and Izquierdo and Cabot output an
empty schema and an empty package definition, re-
spectively, while approaches by Klettke et al. and
Frozza et al. end with an error and do not output any
schema.

4.2 Performance Analysis

Next we compare the approaches in terms of runtime
performance. This was done using a series of perfor-
mance experiments, running the existing implementa-
tions against a number of datasets.

4.2.1 Execution

To the best of our knowledge, there is no open JSON
dataset covering all the structural aspects we want to
test. So, first, we have generated a dataset of 500,000
JSON documents, serving as the master dataset for
our experiments. For this generation we have used
the jsongenerator open-source library, whose source
code is available in GitHub12. This library is able to
generate JSON documents according to a given JSON
Schema. As the schema for the generation, we used a
manually created schema that covers all the aspects of
JSON data, i.e., simple types, complex types, nesting,
union types, optional fields, etc.

We conducted 8 experiments differing in the size
of input data. Namely the chosen sample sizes were
1k, 2k, 4k, 8k, 16k, 32k, 64k, and 128k documents.
Each experiment was conducted using the following
steps:

1. Extract a randomly sampled subset of the given
size.

2. Run each algorithm on the extracted subset 30
times.

12https://github.com/jimblackler/jsongenerator

3. Repeat the previous steps a total of 30 times.

Experiments of different sizes were chosen, because
we wanted to measure the performance of a given im-
plementation as it changes depending on the number
of input documents. If we had extracted just one ran-
dom sample of a given size for an experiment, the re-
sults could be distorted as the runtime performance of
the algorithms could become dependent on the par-
ticularities of each random selection. 30 different
random samples of a given size were extracted from
the master dataset to mitigate this distortion. Fur-
thermore, if only a single run of each algorithm was
performed for a given size, the results could be dis-
torted by the runtime cost of algorithm initialization
and would not reflect the sustained performance of
the algorithm. Additional distortion could be caused
by momentary decrease of system resources caused
by random external influences. To mitigate both of
them, 30 runs of each algorithm were performed on
each extracted subset.

The experiments were performed on a virtual ma-
chine running on VMware13 infrastructure with 64
gigabytes of memory and 8 single-thread processor
cores. When performing the measurements, the first,
so-called warm-up run for each random sample for
each approach was significantly longer than the rest.
Measurements for these warm-up runs were removed
not to skew the results.

4.2.2 Results

Figure 1 depicts the behavior of each of the ap-
proaches in all experiments. The x-axis represents
the different experiment sizes. The y-axis represents
the average runtime of each approach. The legend
above explains the meaning of the different colors of
the lines.

The linear scale shows the differences in average
runtimes for large data. Frozza et al. performed the
best for larger datasets, twice as fast as the slowest
approaches. In the 16k, 32k, and 64k experiments
Sevilla et. al., Baazizi et al., and Izquierdo and Cabot
kept roughly identical performance. However, in the
128k experiment, Baazizi had significantly better per-
formance compared to the other two.

Figure 2 contains a line chart almost identical to
the previous one, only the y-axis is logarithmic. This
chart can better express the performance behavior for
smaller-size experiments since the logarithmic scale
emphasizes relative differences in small numbers and
shrinks them in large numbers. More importantly,
though, this chart demonstrates the linear scalability

13https://www.vmware.com/

A Comparative Analysis of JSON Schema Inference Algorithms

383



Ti
m

e 
[m

s]

0

7500

15000

22500

30000

Documents [unit]
1k 2k 4k 8k 16k 32k 64k 128k

Sevilla Klettke Baazizi Canovas Frozza

Figure 1: Average runtimes of measured inference ap-
proaches across all experiment sizes, linear scale.

of each of the measured approaches. All five ap-
proaches exhibit their performance as more-or-less
straight lines on the chart.

Ti
m

e 
[m

s]

100

1000

10000

100000

Documents [unit]
1k 2k 4k 8k 16k 32k 64k 128k

Sevilla Klettke Baazizi Canovas Frozza

Figure 2: Average runtimes of measured inference ap-
proaches across all experiment sizes, logarithmic scale.

Looking at the logarithmic line chart, we can see
that Sevilla et al., Izquierdo and Cabot and especially
Klettke et al. approaches performed significantly bet-
ter for smaller sample sizes. This can be attributed
mainly to the high overhead cost of using Apache
Spark in the approach by Baazizi et al. This differ-
ence between the approaches by Klettke et al. ver-
sus the approach by Baazizi et al. becomes less pro-
nounced for larger sample sizes. Baazizi et al. even
started performing better in the largest experiment.

4.2.3 Evaluation

The results of the experiment provide useful insight to
the performance of each approach and the dependence
of the performance on the size of the input data.

Different approaches are preferable for usage de-
pending on the size of the input data. For small

datasets, Sevilla et al., Klettke et al., Izquierdo and
Cabot, and even Frozza et al. are advisable due to
the fact that they do not incur high flat overhead costs
of the Apache Spark framework unlike Baazizi et
al. Out of these, Sevilla et al. had the best perfor-
mance. Combining that with the most interesting fea-
ture set (especially the unique ability to infer refer-
ences) makes it the best option for small datasets.

As far as large datasets are considered, Frozza et
al. is the best option if inference is to be run on
a single machine. However, as MongoDB datasets
can span multiple database nodes and can contain up-
wards of millions of documents, horizontal scaling of
schema inference may be desired. In that case, Frozza
et al. is unsuitable, as it cannot be horizontally scaled.

Sevilla et al. and Izquierdo and Cabot can
scale horizontally by decreasing the input size using
MapReduce built into MongoDB, in which case the
number of MongoDB cluster nodes is the scaling fac-
tor. However in the worst-case scenario where every
(or almost every) document has a unique raw schema
this may not significantly decrease the input size, in
which case the algorithm will run slowly.

Baazizi et al. can linearly scale even for the de-
scribed worst-case scenario simply by adding nodes
to the Apache Spark cluster on which the approach is
run.

5 CHALLENGES AND OPEN
PROBLEMS

After a detailed analysis of existing approaches, we
provide a discussion of important open problems and
challenges in the area of schema inference.

In general, a schema describes the structure of the
data, i.e., it is a set of named (ordered) sets of possibly
hierarchical properties. Additionally, a schema may
contain a list of integrity constraints, e.g., describing
complex business rules or references between data.
All these features need to be inferred.

• Complex Types: There are complex types which
can not be inferred by any examined approach and
whose consideration could increase the usability
of the approach. Maps, sometimes also called
dictionaries, are similar in structure to JSON ob-
jects but semantically different, because the key
of the set is not a part of the schematic informa-
tion (metadata), but it is part of actual data. Simi-
larly tuples are special cases of arrays – they have
a fixed size and the types of their positional ele-
ments must be modeled separately, not as a union.
(Tuples in this sense are supported only by Sevilla

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

384



et al.) Finally, sets, i.e., unordered arrays, should
be modeled distinctly from standard ordered ar-
rays.

• References: Another area of the approach that
could be improved is modeling of entity refer-
ences. Currently, to confirm that a property is an
entity reference, the inferred entities are searched
to find one with a matching name. To make this
heuristic stronger, the reference itself could be
checked against existing objects of the given en-
tity type. Additionally, a support for other than
primitive-typed entity references, such as refer-
ences with composite keys, could be beneficial.
In general, various types of references are com-
monly used in document databases.

• Complex Integrity Constraints: There is a room
for improvements in the field of inference of com-
plex integrity constraints for semi-structured data
in general. At first sight, this goes beyond the lim-
its of JSON, since JSON Schema does not con-
sider complex integrity constraints. On the con-
trary, e.g., XML allows one to model not only
keys and references, but also conditional expres-
sions and complex integrity constraints. Or, the
combination with (a subset of) the Object Con-
straints Language14 may extend the expressive
power of JSON Schema for practical purposes.

From a more general point of view a JSON Schema
inference approach could serve as a basis for a multi-
model schema inference approach capable of process-
ing data from relational, graph, key/value, document,
columnar, and other logical models within a single
schema. However, from this point of view the prob-
lem of multi-model schema inference involves the fol-
lowing issues:

• Fetching Data: The currently existing schema in-
ference approaches are closely bound to a partic-
ular database system. They use specific ways of
retrieving data and thus are not applicable to other
database systems or data models in general. An
optimal algorithm should allow for different ways
of reading data and be independent of a particular
system. Additionally, and for performance rea-
sons of the approach, it should allow a choice of
the framework for data retrieval, e.g., a choice be-
tween MapReduce, Apache Spark, etc.

• Unified Inference Process: There are at least two
approaches to multi-model schema inference: 1)
Since JSON is a complex format, it allows us to
model constructs of various data models. Thus,
existing inference approaches can be applied to

14https://www.omg.org/spec/OCL/2.4/PDF

multi-model environment if other data models are
first converted to a collection of JSON documents
(similarly to ArangoDB which stores even the
graph model in JSON documents) and then their
schema is inferred. 2) An alternative approach can
create a universal schema inference approach that
uses data-model specific wrappers implementing
properties of particular data models.

• Schema Representation: Taking a look at this cri-
terion with the multi-model context in mind, there
is a concern how the output schema should be ap-
propriately represented. For example, we have
proposed a schema description format (Svoboda
et al., 2021) suitable for both semi-structured data
(i.e., the document model) and data from other
models, both aggregate-oriented and aggregate-
ignorant.

6 CONCLUSION

The purpose of this paper was to provide an unbiased
comparative analysis of recent proposals of JSON
schema inference approaches. Our aim was to intro-
duce interesting research directions for scientists, as
well as to describe possibilities and limitations of ex-
isting solutions for practitioners.

To summarize our findings, despite the fact that
there have recently been numerous attempts to de-
vise an approach for schema inference from JSON
documents, there are still many areas in which they
need to be improved. From the ability to model even
deeply nested JSON structures to various issues with
the necessary horizontal scalability, there is a signifi-
cant number of aspects in which the existing solutions
are still limited. Primarily, as far as we know, there
still does not exist a schema inference approach for
JSON data able to infer and detect other than basic
integrity constraints.

The most promising and at the same time proba-
bly the most applicable seems to be the area of multi-
model schema inference. Today, it often makes sense
for a company to store different parts of their data us-
ing different storage technologies and, consequently,
different logical models. For this purpose there exist
tens of multi-model databases15 originally both rela-
tional and NoSQL. This multi-model context is es-
pecially difficult to grasp and develop a suitably ro-
bust schema inference approach. The JSON docu-
ment model is robust and complex, as are schema in-
ference approaches based on it. Hence, they can serve
as a good starting point. However, the problem of de-

15https://db-engines.com/en/ranking

A Comparative Analysis of JSON Schema Inference Algorithms

385



tection and modeling of inter-model entity references
and other integrity constraints becomes significantly
more challenging.

ACKNOWLEDGEMENTS

This paper is based on Ivan Veinhardt Latták’s Master
thesis (Veinhardt Latták, 2021). This work was sup-
ported by the GAČR project no. 20-22276S.

REFERENCES

Baazizi, M.-A., Colazzo, D., Ghelli, G., and Sartiani, C.
(2019a). https://gitlab.lip6.fr/collab/pstl2020. (un-
available).

Baazizi, M.-A., Colazzo, D., Ghelli, G., and Sartiani, C.
(2019b). Parametric Schema Inference for Massive
JSON Datasets. The VLDB Journal.

Bex, G. J., Neven, F., Schwentick, T., and Vansummeren,
S. (2010). Inference of Concise Regular Expressions
and DTDs. ACM Trans. Database Syst., 35(2):11:1–
11:47.

Bouhamoum, R., Kellou-Menouer, K., Lopes, S., and
Kedad, Z. (2018). Scaling up Schema Discovery for
RDF Datasets. In 2018 IEEE ICDEW, pages 84–89.
IEEE.

Candel, C. J. F., Ruiz, D. S., and Garcı́a-Molina, J. (2021).
A Unified Metamodel for NoSQL and Relational
Databases. CoRR.

Chillón, A. H., Morales, S. F., Sevilla, D., and Molina, J. G.
(2017). Exploring the Visualization of Schemas for
Aggregate-Oriented NoSQL Databases. In ER Fo-
rum/Demos 1979, volume 1979 of CEUR, pages 72–
85.

Čontoš, P. and Svoboda, M. (2020). JSON Schema Infer-
ence Approaches. In ER Workshops, pages 173–183.
Springer.

DiScala, M. and Abadi, D. J. (2016). Automatic Generation
of Normalized Relational Schemas from Nested Key-
Value Data. In SIGMOD ’16, pages 295–310.

Frozza, A. A., Defreyn, E. D., and dos Santos Mello,
R. (2020). A process for inference of columnar
nosql database schemas. In Anais do XXXV Simpósio
Brasileiro de Bancos de Dados, pages 175–180. SBC.

Frozza, A. A., dos Santos Mello, R., and da Costa, F.
d. S. (2018a). An Approach for Schema Extraction
of JSON and Extended JSON Document Collections.
In IRI 2018, pages 356–363. IEEE.

Frozza, A. A., dos Santos Mello, R., and da Costa,
F. d. S. (2018b). https://github.com/gbd-
ufsc/jsonschemadiscovery.

Fruth, M., Dauberschmidt, K., and Scherzinger, S. (2021).
Josch: Managing Schemas for NoSQL Document
Stores. In ICDE ’21, pages 2693–2696. IEEE.

Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., and
Romero, O. (2018). Interactive Multidimensional
Modeling of Linked Data for Exploratory OLAP. Inf.
Syst., 77:86–104.

Izquierdo, J. L. C. and Cabot, J. (2013a). Discovering Im-
plicit Schemas in JSON Data. In ICWE ’13, pages
68–83. Springer.

Izquierdo, J. L. C. and Cabot, J. (2013b).
https://github.com/som-research/jsondiscoverer.

Izquierdo, J. L. C. and Cabot, J. (2016). JSONDiscoverer:
Visualizing the Schema Lurking behind JSON Docu-
ments. Knowledge-Based Systems, 103:52–55.

Klettke, M., Awolin, H., Storl, U., Muller,
D., and Scherzinger, S. (2017a).
https://github.com/dbishagen/darwin.

Klettke, M., Awolin, H., Storl, U., Muller, D., and
Scherzinger, S. (2017b). Uncovering the Evolution
History of Data Lakes. In 2017 IEEE International
Conference on Big Data, pages 2380–2389, New
York, United States. IEEE.

Klettke, M., Störl, U., and Scherzinger, S. (2015). Schema
Extraction and Structural Outlier Detection for JSON-
based NoSQL Data Stores. In DBIS ’15, pages 425–
444.

Mlýnková, I. and Nečaský, M. (2013). Heuristic Methods
for Inference of XML Schemas: Lessons Learned and
Open Issues. Informatica, 24(4):577–602.

Möller, M. L., Berton, N., Klettke, M., Scherzinger, S., and
Störl, U. (2019). jhound: Large-scale profiling of open
json data. BTW 2019.

Morales, S. F. (2017). Inferring NoSQL Data Schemas with
Model-Driven Engineering Techniques. PhD thesis,
University of Murcia, Murcia, Spain.

Scherzinger, S., Klettke, M., and Störl, U. (2013). Manag-
ing schema evolution in NoSQL data stores. In DBPL
’13.

Sevilla Ruiz, D., Morales, S. F., and Garcı́a Molina,
J. (2015a). https://github.com/catedrasaes-
umu/nosqldataengineering.

Sevilla Ruiz, D., Morales, S. F., and Garcı́a Molina, J.
(2015b). Inferring versioned schemas from NoSQL
databases and its applications. In Conceptual Model-
ing, pages 467–480. Springer.

Svoboda, M., Contos, P., and Holubova, I. (2021). Cate-
gorical Modeling of Multi-Model Data: One Model
to Rule Them All. In MEDI ’21, pages 1–8. Springer.

Veinhardt Latták, I. (2021). Schema Inference for NoSQL
Databases. Master thesis, Charles University in
Prague, Czech Republic.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

386


