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Abstract: The task to predict software defects remains a topic of investigation in software engineering and machine
learning communities. The current literature proposed numerous machine learning models and software fea-
tures to anticipate defects in source code. Furthermore, as distinct machine learning approaches emerged in
the research community, increased possibilities for predicting defects are made possible. In this paper, we dis-
cuss the results of using a previously applied dataset to predict software defects. The dataset contains 47,618
classes from 53 Java software projects. Besides, the data covers 66 software features related to numerous
aspects of the code. As a result of our investigation, we compare eight machine learning models. For the
candidate models, we employed Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN),
Multilayer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (CART), Random Forest (RF),
and Gradient Boosting Machine (GBM). To contrast the models’ performance, we used five evaluation metrics
frequently applied in the defect prediction literature. We hope this approach can guide more discussions about
benchmark machine learning models for defect prediction.

1 INTRODUCTION

With the consistent expansion of software develop-
ment, the reliability of these projects represents a key
concern for developers and stakeholders alike (Jing
et al., 2014; Wang et al., 2016). The software sys-
tems’ internal features and capabilities may introduce
defects leading the software project to fail in various
stages of development and maintenance. Guided by
this matter, software teams adopt strategies to miti-
gate the impacts of defective code. As a result, the
current literature reports several efforts to assist de-
velopers to anticipate future defects in the source code
(Nagappan et al., 2006; Hassan, 2009; D’Ambros
et al., 2010; Tantithamthavorn et al., 2019). As an
example, software defect prediction is one of the re-
search directions in applying machine learning mod-
els to predict software defects in projects. In this do-
main, prior studies investigated code metrics as pre-
dictors of software defects (Nagappan et al., 2006;
Menzies et al., 2007; Moser et al., 2008; Menzies
et al., 2010; D’Ambros et al., 2010; dos Santos
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et al., 2020) and bad smells (Khomh et al., 2012;
Palomba et al., 2013). This cooperation is strengthen-
ing as both software engineering and machine learn-
ing fields become closer in the task of anticipating de-
fects in source code (Tantithamthavorn et al., 2019;
Jiarpakdee et al., 2020; dos Santos et al., 2020).

Corresponding to the software features to pre-
dict defects, various studies focus on unique fea-
tures extracted from source code that may cause
defects (Nagappan et al., 2006; Amasaki, 2018).
For instance, these software features could represent
change metrics (Moser et al., 2008; D’Ambros et al.,
2010), class-level metrics (Herbold, 2015; Jureczko
and Madeyski, 2010), Halstead and McCabe met-
rics (Menzies et al., 2007; Menzies et al., 2010), en-
tropy metrics (Hassan, 2009; D’Ambros et al., 2010),
among others. In this paper, we do not differentiate
software features from code metrics. Despite the ad-
vantages of using such software features to predict
defects, one issue is that the machine learning mod-
els are not always useful for the software community.
As a result, one of the main challenges faced by re-
searchers is the applicability of these models in real-
world projects (Ghotra et al., 2015). To tackle this
problem, we focus on data analysis of a large dataset
known as unified dataset (Ferenc et al., 2018; Ferenc
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et al., 2020a). This data contains information about
47,618 classes, 53 Java projects, and 66 software fea-
tures. These software features relate to different char-
acteristics of the code such as cohesion, complexity,
coupling, documentation, inheritance, and size (Tóth
et al., 2016). In contrast to other works from the cur-
rent literature (Jureczko and Spinellis, 2010), the uni-
fied dataset presents numerous features and classes,
which makes the analysis more comprehensive about
the software features.

Furthermore, we applied three steps to fit the data
for the experiments. In the first step, we use data
cleaning to deal with missing and duplicate entries.
Second, we apply data normalization, balancing, and
encoding the data. Finally, we use feature engineer-
ing concepts to create new software features from the
existing ones, to select the relevant software features
for the prediction, and to analyze the correlation and
variance of the remaining software features. To com-
pare the results of the data preparation, we use eight
benchmark algorithms to validate the analysis. These
algorithms are largely applied in the defect predic-
tion literature. Our results suggest that three mod-
els are efficient in predicting defects in Java projects.
Random Forest, Gradient Boosting Machine, and K-
Nearest Neighbor.

This paper is organized as follows. Section 2
presents the methodology and its main steps. Thus,
we discuss the goals and the research question that
guided the investigation (Section 2.1). Next, we
present the data (Section 2.2) and the data prepara-
tion (Section 2.3). Moreover, we present the software
features (Section 2.4). Then, Section 3 discusses the
main results of our paper. Next, Section 4 presents
the threats to validity of our study. In Section 5, we
present some relevant work related to our paper. Fi-
nally, Section 6 discusses the final remarks and further
explorations of our paper.

2 METHODOLOGY

This section describes the methodology we choose
to investigate the software defects in Java projects.
We divide our method into four steps. Section 2.1
presents the main goal and research questions from
our experiments. Next, we discuss the dataset we used
to predict software defects (Section 2.2). Then, Sec-
tion 2.3 displays the data preparation applied to fit the
data for the experiments. Afterward, Section 2.4 de-
scribes the software features for defect prediction in
Java projects that we extracted from the entire set of
software features.

2.1 Goal and Research Questions

In this paper, we investigate different algorithms that
may explain the software features that contribute to
the defectiveness of Java classes. To do so, we em-
ployed data preparation to find the software features
for the defect prediction task and to clean the data.
Therefore, our main objective is to investigate soft-
ware features applied for defect prediction. Guided
by this objective, our paper examines the following
overarching question.

− How effective are benchmark models to the defect
prediction task in Java projects?

To explore this research question, we rely on a pre-
viously used dataset about defect prediction (Ferenc
et al., 2018; Ferenc et al., 2020a). This dataset con-
veys information about 53 Java projects and 66 soft-
ware features. After cleaning and exploring the data,
we compare the accuracy of benchmark models previ-
ously applied in the literature. We compare five evalu-
ation metrics: ROC Area Under the Curve (AUC), F1
score, precision, recall, and accuracy. For the candi-
date models, we employed Logistic Regression (LR),
Naive Bayes (NB), K-Nearest Neighbor (KNN), Mul-
tilayer Perceptron (MLP), Support Vector Machine
(SVM), Decision Tree (CART), Random Forest (RF),
and Gradient Boosting Machine (GBM). Our research
provides intriguing discussions about machine learn-
ing models for defect prediction. For instance, we
show that RF, GBM, and KNN are slightly more ef-
fective in predicting defects in Java classes (over 90%
of AUC compared to other classifiers).

2.2 Unified Data

The dataset used in our experiments represents a
merged version of several resources available for the
scientific community (Tóth et al., 2016; Ferenc et al.,
2018; Ferenc et al., 2020a; Ferenc et al., 2020b). In
total, five data sources provided the data: PROMISE
(Sayyad S. and Menzies, 2005), Eclipse Bug Pre-
diction (Zimmermann et al., 2007), Bug Prediction
Dataset (D’Ambros et al., 2010), Bugcatchers Bug
Dataset (Hall et al., 2012), and GitHub Bug Dataset
(Tóth et al., 2016)1. The dataset contains 47,618
classes from 53 Java projects. Furthermore, the data
comprises 66 software features related to different as-
pects of the code. More details about the dataset and
the models generated in this paper are available in the
replication package2. The dataset is imbalanced as

1https://zenodo.org/record/3693686
2https://github.com/anonymous-replication/replication-

package-unified

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

372



only around 20% of the classes represent a software
defect (Ferenc et al., 2018). For this reason, we had
to apply a data preparation step to create the machine
learning models to predict software defects as we dis-
cuss next.

2.3 Data Preparation

To prepare the data for the experiments, we needed
to apply several machine learning processes. Figure
1 exemplifies the data preparation executed in our pa-
per. These steps were necessary not only to clean the
data and avoid misinterpretation but also to discover
a list of software features picked during the feature
selection step.

(i) (ii)

(iii)

Data	Cleaning

-	Non-numeric	data
-	Remove	Duplicates
-	Missing	Values

Data	Exploration

-	Normalization
-	Balancing
-	Encoding

Feature	Engineering

-	Feature	Selection
-	Correlation-Threshold
-	Variance	Analysis

Figure 1: Data Preparation Process.

Data Cleaning. First, we applied data cleaning to
eliminate duplicated classes and non-numeric data (i -
Figure 1). This process is especially critical in the de-
fect prediction task, as many datasets have incorrect
entries gathered by automatic systems (Petrić et al.,
2016). We execute data imputation to track the miss-
ing values. At the end of this step, we could reduce
the dimension of the data as we remove repeated data
entries.
Data Exploration. Further, in the second step of the
data preparation (ii - Figure 1), we executed data ex-
ploration. Here, we track over-represented features,
applied one-hot encoding (Lin et al., 2014), and nor-
malize the data. At last, we removed two software
features in the over-represented step. These software
features gathered information about the exact line of
code a class started and finished. In terms of encod-
ing, we applied one-hot encoding to the type feature.
The type feature stored information about the class
type. For instance, we created new features for class,
enumerates, interfaces, and annotations. Since we
are aware of the multicollinearity problem that one-
hot encoding may introduce in the models, we tested
for Variance Inflation Factor (VIF), and we concluded
that the preparation was done right (low VIF values).
Finally, we applied data normalization using Standard

Scaler, and Synthetic Minority Oversampling Tech-
nique (SMOTE) (Tantithamthavorn et al., 2018) to
deal with the imbalanced nature of the dataset. In
total, the unified data contained only around 20% of
defective classes. For this reason, oversampling was
necessary to generate models that could generalize to
unseen data.
Feature Engineering. At the final step, we ap-
plied feature engineering to select the features that
are important for our predictions (iii - Figure 1). We
tested several methods to choose the software fea-
tures, although a recent implementation of the Gradi-
ent Boosting Machine known as LightGBM demon-
strated better results in terms of selecting features. At
the end of this process, we ended up with 14 software
features varying from different software characteris-
tics.

2.4 Software Features

The current literature has a plethora of software
features to predict defects (Jing et al., 2014; Tan-
tithamthavorn and Hassan, 2018). The complete list
of features used in the target data (66 in total) is avail-
able under the replication package. Table 1 presents
the fourteen software features selected with the fea-
ture selection step executed in step 2 (Figure 1). Table
1 presents the acronym and name of each of the se-
lected features. All these software features are from
the class-level, due to their scope. As we may ob-
serve, most features are related to size (NA, NG,
NLG, NS, and TNM) (Ferenc et al., 2018). However,
some features are related to documentation (CLOC,
CK, AD, PUA), code coupling (CBOI, NOI), and
code complexity (CC, WMC, NL) (Tóth et al., 2016;
Ferenc et al., 2018).

Table 1: Selected Class Level Software Features.

Acronym Description
WMC Weighted Method per Class
NL Nesting Level
CC Clone Coverage
CBOI Coupling Between Objects classes Inv.
NOI Number of Outgoing Invocations
AD API Documentation
CD Comment Density
CLOC Comment Lines of Code
PUA Public Undocumented API
NA Number of private attributes
NG Number of getters
NLG Number of local getters
NS Number of setters
TNM Total Number of Methods
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3 EXPERIMENTAL RESULTS

This section presents the experimental results of our
paper. First, we discuss the predictive accuracy of the
machine learning models. As a result, we divide the
first section into nine parts where the first eight in-
troduce the results of the classification experiments.
Hence, the last section proposes a discussion of the
experiments. Finally, we present the implications of
our work for the defect prediction task.

3.1 Predictive Accuracy

The predictive accuracy of machine learning mod-
els depends on the association between the structural
software properties and a binary outcome. In this
case, the properties are the software features widely
applied in the literature (Ferenc et al., 2018; Ferenc
et al., 2020a). Therefore, the binary outcome is the
feature that yields the defective or clean class. In
this case, the low association between the software
features and the classification technique can generate
a large error. Next, we discuss the predictive accu-
racy of these methods for the target data. To test the
models, we apply five evaluation metrics (accuracy,
recall, precision, F1, and AUC). The following dis-
cussion takes into consideration the maximum, mini-
mum, median, mean, and standard deviation (SD) of
each evaluation metric.

3.1.1 Logistic Regression

Rows of Table 2 indicate the five performance met-
rics we used in this study. The columns show their
maximum (Max) and minimum (Min) values. Table
2 also shows the median (Median) and mean (Mean)
and standard deviation (SD) of the performance met-
rics. Table 2 presents the performance of Logistic Re-
gression (LR). In general, LR showed an AUC num-
ber of nearly 77% (on average). Furthermore, the
model using LR is stable as the tradeoff between the
precision and recall is minimum. As we balance the
dataset prior prediction (with oversampling applying
the SMOTE technique), we can consider the AUC
numbers as a good indication of model performance.
In this case, LR is a fair predictor; however, the av-
erage AUC is not optimal (around 77%) compared to
other classification models.

3.1.2 Naive Bayes

In Table 3, we can observe that the Naive Bayes (NB)
predictor achieved AUC numbers close to 74%. This
result is lower than the LR model (by approximately

Table 2: Logistic Regression Evaluation.

Max Min Median Mean SD
accuracy 0.701 0.685 0.694 0.693 0.005
recall 0.691 0.668 0.680 0.680 0.009
precision 0.706 0.690 0.698 0.698 0.006
f1 0.698 0.680 0.690 0.689 0.006
roc auc 0.771 0.759 0.769 0.767 0.004

3.5%). Thus, we note that NB shows a high differ-
ence between the F1 and AUC scores. It happens be-
cause the model achieved low recall. It means that
the NB model is demanding and does not think many
classes have defects. All the software classes that are
not defects are undeniably clean (i.e., non-defective).
However, this model misses a lot of actual defects.
We derive this conclusion from the high difference be-
tween precision and recall (around 45%). Although,
this model is also stable as we note by the SD (last
column of Figure 3).

Table 3: Naive Bayes Evaluation.

Max Min Median Mean SD
accuracy 0.614 0.606 0.610 0.610 0.003
recall 0.329 0.314 0.319 0.320 0.005
precision 0.782 0.754 0.758 0.762 0.009
f1 0.460 0.443 0.451 0.451 0.005
roc auc 0.747 0.733 0.741 0.740 0.004

3.1.3 K-Nearest Neighbor

Table 4 shows the results of applying the K-Nearest
Neighbor (KNN) algorithm. We can observe that
the average AUC number is around 91%, the highest
number compared to Logistic Regression and Naive
Bayes. However, this model does not present the high
precision and low recall problem. The difference be-
tween the AUC and F1 is minimum. Another intrigu-
ing result relates to the recall number, which was the
best metric in this model. It means that this model can
select the correct number of defective classes in 94%
of the time. Moreover, the variation denoted by the
SD is also low such as in the previous cases.

Table 4: K-Nearest Neighbor Evaluation.

Max Min Median Mean SD
accuracy 0.842 0.832 0.838 0.838 0.003
recall 0.941 0.928 0.933 0.934 0.005
precision 0.790 0.774 0.784 0.784 0.005
f1 0.856 0.848 0.852 0.852 0.002
roc auc 0.914 0.905 0.909 0.910 0.003

3.1.4 Multilayer Perceptron

Table 5 presents the general performance of using a
Multilayer Perceptron (MLP). The model exhibits a
low variation in their performance, as we observe by
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the SD of all metrics. Like the K-Nearest Neighbor
model, the MLP model showed an efficient classifica-
tion power (AUC numbers of nearly 85%). Further-
more, the F1 score was also high (around 76%). Thus,
the MLP model is consistent in predicting defects in
Java classes, although KNN presented a better perfor-
mance overall.

Table 5: Multilayer Perceptron Evaluation.

Max Min Median Mean SD
accuracy 0.769 0.759 0.764 0.764 0.004
recall 0.790 0.747 0.760 0.763 0.015
precision 0.772 0.747 0.763 0.762 0.008
f1 0.770 0.753 0.764 0.762 0.006
roc auc 0.847 0.835 0.842 0.842 0.003

3.1.5 Support Vector Machine

In Table 6, we show the overall performance of apply-
ing Support Vector Machine (SVM) in the selected
data. As we can observe, this model is very consis-
tent in predicting defective classes in the target lan-
guage. As not only the AUC numbers (approximately
80%) are high, but also the F1 score (nearly 74%)
is high. The model is similar to Logistic Regres-
sion, Multilayer Perceptron, and K-Nearest Neighbor
in that manner (showed a consistent F1 score). How-
ever, KNN is the only model to predict a defect with
above 90% accuracy (measured by AUC), and SVM
falls into the MLP predictive power (where the model
achieved above 80% of AUC).

Table 6: Support Vector Machine Evaluation.

Max Min Median Mean SD
accuracy 0.738 0.725 0.733 0.732 0.004
recall 0.757 0.735 0.746 0.748 0.007
precision 0.733 0.719 0.723 0.725 0.005
f1 0.742 0.728 0.738 0.736 0.005
roc auc 0.809 0.793 0.802 0.802 0.005

3.1.6 Decision Trees

Table 7 displays the results of applying the Decision
Tree (DT) algorithm. We observe that DT is as consis-
tent as Logistic Regression, Support Vector Machine,
Multilayer Perceptron, and K-Nearest Neighbor. The
average AUC number was nearly 86%. As a result,
the model correctly predicts a defect in over 85% of
the cases. In this case, both MLP and SVM present
similar findings (over 80% accuracy). The F1 score is
very tight to the AUC evaluation metric meaning that,
the machine learning model can predict the classes
that are not defective (specificity of the model).

Table 7: Decision Tree Evaluation.

Max Min Median Mean SD
accuracy 0.857 0.843 0.850 0.850 0.004
recall 0.860 0.834 0.844 0.845 0.006
precision 0.860 0.848 0.854 0.854 0.005
f1 0.853 0.844 0.848 0.848 0.003
roc auc 0.86 0.847 0.853 0.854 0.004

3.1.7 Random Forest

Table 8 illustrates the performance of Random Forest
(RF). The algorithm achieved accuracy numbers mea-
sured by AUC close to 96%. Compared to other mod-
els, RF achieved very high accuracy numbers. Not
only the AUC numbers are high but also the F1 score
(nearly 90% of F1 measure). For this reason, we con-
sider RF very robust to predict software defects in
Java. The model was the most stable among the an-
alyzed models (SD of around 0.015%). Furthermore,
RF and KNN are the only models to achieve an AUC
number above 90%.

Table 8: Random Forest Evaluation.

Max Min Median Mean SD
accuracy 0.905 0.892 0.900 0.900 0.004
recall 0.903 0.889 0.897 0.896 0.005
precision 0.910 0.896 0.898 0.900 0.005
f1 0.904 0.893 0.899 0.899 0.004
roc auc 0.956 0.95 0.955 0.954 0.003

3.1.8 Gradient Boosting Machine

In Table 9, we show the performance of the Gradi-
ent Boosting Machine (GBM). The model achieved
an AUC number of nearly 95%. For this reason, GBM
falls into the K-Nearest Neighbor and Random Forest
categories, where these models reached above 90% of
predictive power. Furthermore, the model is stable in
terms of presenting a very low SD. The model is ro-
bust as the F1 score is close to 88%.

Table 9: Gradient Boosting Machine Evaluation.

Max Min Median Mean SD
accuracy 0.890 0.876 0.883 0.883 0.003
recall 0.846 0.825 0.835 0.835 0.005
precision 0.932 0.915 0.923 0.923 0.004
f1 0.885 0.869 0.877 0.877 0.004
roc auc 0.954 0.944 0.949 0.949 0.002

3.1.9 Discussion

Table 10 shows the overall performance of all bench-
mark machine learning models. We observe that
Random Forest (RF) and Gradient Boosting Machine
(GBM) show the highest AUC numbers. RF also
showed the highest F1 score and accuracy numbers.
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In terms of precision, i.e., the number of chosen de-
fective classes that are correctly selected by the ma-
chine learning model, the GBM demonstrated better
results than the other models. It is intriguing to note
that the K-Nearest Neighbor (KNN) showed the best
recall score, i.e., the percentage of correct defective
classes that were selected by the model.

Table 10: Overall Performance of Benchmark Models.

accuracy recall precis. f1 auc
LR 0.693 0.680 0.698 0.689 0.767
NB 0.610 0.320 0.762 0.451 0.740
KNN 0.838 0.934 0.784 0.852 0.910
MLP 0.764 0.763 0.762 0.762 0.842
SVM 0.732 0.748 0.725 0.736 0.802
DT 0.850 0.845 0.854 0.848 0.854
RF 0.901 0.896 0.901 0.899 0.954
GBM 0.883 0.835 0.923 0.877 0.949

Therefore, we conclude that three machine learn-
ing models are more efficient in predicting defects in
Java: GBM, RF, and KNN. Other algorithms did not
perform as well as these models. However, if the de-
veloper is interested in the recall of a model, we rec-
ommended using the KNN algorithm as it showed the
best performance for that evaluation metric. Overall,
GBM is the most consistent model as it represents the
lowest variance among the selected benchmark mod-
els.

The results suggested that ensemble meth-
ods, such as RF and GBM, tend to perform
slightly better at predicting defects for the tar-
get dataset. However, developers interested in
the recall should focus on the KNN model

3.2 Implications

This section presents the main limitations that could
potentially threaten the results of this paper.

− We discovered that three models are more effec-
tive in predicting defects in Java projects: Ran-
dom Forest, Gradient Boosting Machine, and K-
Nearest Neighbor. Further explorations about pre-
dicting defects in Java projects could favor these
machine learning models instead of the other five
experimented in our investigation.

− The feature engineering technique discovered
fourteen software features from the original 66
features (Table 1). Most features relate to size
(NA, NG, NLG, NS, and TNM) (Ferenc et al.,
2018). However, some features related to docu-
mentation (CLOC, CK, AD, PUA), code coupling

(CBOI, NOI), and code complexity (CC, WMC,
NL) (Ferenc et al., 2020a).

4 THREATS TO VALIDITY

This section presents the main limitations that could
potentially threaten the results in this paper.

− Internal Validity: Threats related to internal va-
lidity are practices that can influence the indepen-
dent variable to causality (Wohlin et al., 2012). In
this paper, the chosen dataset is a possible threat
to the internal validity, as we naively employed
the data reported in the current literature (Ferenc
et al., 2018). As a result, we cannot reason on data
quality, as any storing process could insert erro-
neous data into the dataset, especially in a com-
plex context such as software development. An-
other problem with the data is the fact that around
80% of the target classes represent non-defective
instances and only around 20% represents defects.

− External Validity: External validity threats are
conditions that limit our ability to generalize the
results of our study (Wohlin et al., 2012). In our
paper, these threats relate to the limited number
of programming languages we investigated. In
this case, we only analyzed the Java programming
language. For this reason, it may be a problem
to generalize the findings of our paper to distinct
programming languages, especially for languages
that are very unusual from Java.

− Construct Validity: Threats to the construct va-
lidity relate to assuming the result of the exper-
iments to the concept or theory (Wohlin et al.,
2012). The feature engineering technique used in
this paper is a possible threat to the construct va-
lidity. We tested several approaches and decided
to focus on a tree-based technique for feature se-
lection. However, the tree-based may not gener-
alize well to other models. Furthermore, it may
be the reason the tree-based models outperformed
other models, as we derive the set of relevant fea-
tures from them.

− Conclusion Validity: Threats to the conclusion
validity correspond to issues that affect the abil-
ity to dispatch the correct conclusion between the
procedure and the consequence (Wohlin et al.,
2012). Our study, in most parts, depends on
the software features selected in data prepara-
tion. Furthermore, we cannot guarantee how
much distinct feature selection techniques would
differ from the target method.
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5 RELATED WORK

One effort to create effective Machine Learning mod-
els valuable for the Software Engineering community
represents the predictive models using source code
features. These studies share the fact that they use
code metrics for the prediction. Furthermore, they
vary in terms of accuracy, complexity, target program-
ming language, and the input dataset. For instance,
Nagappan and Ball (2005) discuss a technique for
software defect prediction density. Under those cir-
cumstances, they discover a collection of applicable
code churn patterns. The works use regression mod-
els to determine the absolute measures of code churn.
They conclude that these features are poor predictors
of defect density. As a result, they propose a set of
features to predict defect density (Nagappan and Ball,
2005).

In a similar approach, Nagappan et al. (2006) con-
ducted an empirical exploration of the post-release
defect history with five Microsoft projects. The works
located that some defect-prone features show a high
correlation with code complexity measures. In the
end, they apply principal component analysis on the
code metrics to build regression models that accu-
rately predict the likelihood of post-release defects.
These studies are undoubtedly valuable to the defect
prediction task. However, they do not provide any
insights into the software features’ capacity to inter-
pret the machine learning models (Nagappan et al.,
2006). Similarly, the work of Xu et al. (2018) em-
ployed a non-linear mapping method to extract repre-
sentative features by embedding the initial data into a
high-dimension space (Xu et al., 2018).

In these lines, Wang et al. (2016) examined the
impact of using the program’s semantic on the pre-
diction model’s features. This study tests ten open-
source projects, and it improved the F1 score for both
within-project defect prediction by 14.2% and cross-
project defect prediction by 8.9%, compared to con-
ventional features. The works used deep belief net-
works to automatically learn semantic features from
token vectors obtained from abstract syntax trees
(Wang et al., 2016). Another tackle into the defect
prediction came from Jiang et al. (2013). This study
proposed a personalized defect prediction technique
for each developer. The works use software features
composed of attributes extracted from a commit, such
as Lines of Code (LOC). The study used three types
of software features, namely vectors, bag-of-words,
and metadata information (Jiang et al., 2013).

6 CONCLUSION

This work presented the evaluation of eight different
algorithms employed to predict software defects in
Java projects. We measure the performance of the al-
gorithms on a dataset recently published that encapsu-
lates several years of development in 53 Java projects.
In total, we analyze 66 software features related to the
different aspects of the source code. As in many other
datasets applied in the defect prediction literature, the
data was highly imbalanced. For this reason, we em-
ployed a technique known as SMOTE to rebalance the
data. In this case, we oversampled the data before ex-
perimentation. As a result, we could generate models
that achieved good performance in predicting defects
in Java projects. We conclude that K-Nearest Neigh-
bor, Random Forest, and Gradient Boosting Machine
(represented by LightGBM implementation) achieved
higher predictive accuracy (measured by AUC) than
other benchmark models.

In the future steps of this research paper, we want
to explore techniques for explaining the defects in
Java projects. We may apply a model-agnostic tech-
nique (such as SHAP or LIME) to explain the soft-
ware defects based on the achieved machine learning
models. As the literature progresses in the explain-
ability of defect models, we could analyze the thresh-
old of software features in many scenarios. Further-
more, another possibility for this paper is the classi-
fication of software features before model prediction.
Doing so, we could evaluate the predictions by com-
paring these classes with Java developers.
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