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Abstract: Electrical load classification is a crucial task related to balance management in smart electrical grids. The
classification algorithms and methods enable the smart system to schedule and adjust the grid load to meet
the production capabilities. Fast decision-making is key to creating a responsive grid, especially when grid
operators utilize renewable energy sources such as wind or solar power. This paper proposes new approach
Smart Plug for Load Classification, an active load classification system to recognize the connected devices
based on their load with less than 10 seconds of measurement data. Also, we propose an IoT-capable measure-
ment device and show the collected data’s classification results with multiple methods suited for both Edge
Computing and Cloud computation.

1 INTRODUCTION

With the rise of renewable resources in electrical
grids, load balancing became a more complex task.
Unlike traditional power plants, renewable power pro-
duction levels cannot be controlled in most cases.
One solution to this challenge of balancing electric-
ity production and consumption levels is controlling
the demand side. This, however, requires knowl-
edge of the load and the ability to control them. As
both electricity production and consumption levels
can change rapidly, fast decision-making is required
to create a responsive grid. This paper presents the
Smart Plug for Load Classification (SP4LC), an active
load classification system capable of recognizing the
connected load based on its characteristic response to
manipulating its power signal. The data collected in
less than 10 seconds is enough to identify the con-
nected load accurately. We show multiple approaches
to classify the data measured by our prototype device.
The classification method depends on the use case
of the system. To enable on-device classification for
rapid response, less data is better and a method that
requires less computational power. In edge comput-
ing situations, fewer restrictions apply. With Cloud-
based solutions, there are virtually no restrictions in
terms of computational power.

The rest of the paper is structured as follows. Sec-
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tion 2 shows a summary of related publications. In
Section 3, we present the hardware prototype and
measurement methodology. Section 4 shows the Sup-
port Vector Machines classification results. In Section
5, we introduce measurement profiles for optimizing
the data collection depending on the requirements,
followed by Section 6 containing the Fully Connected
and Convolutional Neural Network classification re-
sults. The conclusions are presented in Section 7.

2 RELATED WORK

Electrical load classification is an essential part of the
operation of smart grids. With the adoption of re-
newable energy sources, load balancing has become
a critical part of the operation of the grid (Jaradat
et al., 2014). In order to actively balance the system
by controlling the load, knowledge is required about
the types of loads connected to the grid. In (Jaradat
et al., 2014), a Demand-Side Management system is
shown as a linear programming problem. The goal
was to maximize the utilization of renewable energy
sources and minimize the price of the purchased elec-
tricity from the grid.

Electrical load classification can be done intru-
sively, and non-intrusively (Ridi et al., 2014). Non-
Intrusive Load Monitoring can be achieved using a
Smart Meter. The Smart Meter can communicate with
the grid provider to help the operation of the Smart
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Grid. With Smart Meters, only the sum of all loads in
the household is measured, so disaggregation of the
load curve is necessary to learn about the individual
loads. In Intrusive Load Monitoring, metering is done
either for every load or each zone within the building.

Current smart plugs available on the market are
not capable of load identification (Gomes et al.,
2018). The user has to set up the basic properties
and scheduling of the connector. The proposed sys-
tem in (Gomes et al., 2018) uses environmental sen-
sors to help determine if an electric load is needed.
In (Gomes et al., 2019) a case study is shown how
EnAPlugs can provide energy savings by using sen-
sors to enable environmental awareness.

In (da S. Veloso et al., 2019), a system is shown
which uses Electric Load Signature (ELS) to differ-
entiate between loads. Measurements were done ev-
ery second for one hour to collect the ELS data. An-
other possibility for faster data collection is to use the
Voltage-Current curve of the load to determine the
type of electric load connected (Du et al., 2016).

In (Petrović and Morikawa, 2017) load classifica-
tion is achieved by using a bidirectional triode thyris-
tor to manipulate the voltage supply of the load. An
Arduino microcontroller was used to collect the mea-
surement data and control the TRIAC. The microcon-
troller masked the voltage signal of the load between
ratios of 10% and 95% with 5% steps. The other pa-
rameter used was the number of consecutive masking
cycles between 1 and 20. The load current, voltage,
and power were measured for each cycle of the AC
signal. The measured power data was put into a ma-
trix, and this matrix was the input of a Fully Con-
nected Neural Network used for load classification.
The classification accuracy was 96.5%, and each mea-
surement took 45 seconds.

This paper presents a similar approach to
(Petrović and Morikawa, 2017), but with several
improvements in the prototype device, measurement
speed, data collection, and classification methods.

3 NEW MEASUREMENT
PROTOCOL AND PROTOTYPE

To measure the response of an electric load to the ma-
nipulation of the AC input voltage, a custom mea-
surement device prototype was built. The prototype
device is capable of cutting off the AC supply of the
load, measuring the power characteristics of the de-
vice during the experiment, processing the data and
sending the processed data to the connected computer.
This section describes the measurement device pro-
totype as well as the measurement method used for

Figure 1: Voltage cutoff method with different cutoff ratios.

collecting data about the devices’ characteristic re-
sponse.

3.1 Hardware Configuration

The prototype device uses the ESP32 microcontroller.
An off-the-shelf AC dimmer module is used to con-
trol the masking of the AC signal. A transformer and
a current transformer are used to measure the volt-
age and current of the load. The off-the-shelf dimmer
had zero-crossing detection capabilities so the mea-
surement could be precisely synchronized to the AC
voltage curve. The main advantages of the ESP32
over the Arduino microcontroller used in (Petrović
and Morikawa, 2017) are the faster CPU frequency,
the 12-bit ADC, and the dual cores so that one core
can measure while the other core processes and sends
the data to the computer. In each period of the 230V
50Hz AC signal, the ESP32 measures 279-280 ADC
values from the transformer and the current trans-
former. The period of the 50Hz AC signal is 20ms.
This includes two zero-crossing events.

3.2 Measurement Method

Using the dimmer, the ESP32 cuts the voltage supply
of the load after a zero-crossing event for a specific
time period. This time period is given as the ratio of
cutoff time and the time between two zero-crossing
events (10ms) as demonstrated by Figure 1. The de-
vice uses cutoff ratios between 10% and 75% with a
5% step. For each cutoff ratio, the device measures 20
AC periods. Data is calculated for each period. Af-
ter a measurement with a cutoff ratio is completed, the
device waits 16 AC periods before proceeding to mea-
sure with the following cutoff ratio. This procedure
allows the load to receive uninterrupted power. The
measurement starts with a 10% cutoff ratio, and the
cutoff ratio is increased by 5% until 75%. The time
of the entire measurement is 488 AC cycles which are
9.76s.
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Figure 2: Measurement matrices for a USB charger. The
vertical axis shows the cutoff ratio, and the horizontal shows
the measurements for that cutoff ratio in sequence.

For each AC period, the device measures
Voltage(U [k]) and Current(I[k]) values as fast as the
ESP32 ADC allows. From this, for each AC period,
three values are calculated. The RMS Voltage and
Current:

VRMS =

√
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n
·

n
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k=1

U [k]2 , IRMS =

√
1
n
·

n
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k=1

I[k]2 (1)

And the Real Power:

P =
1
n
·

n

∑
k=1

U [k]I[k] (2)

The calculations are done on the ESP32. The data
is sent to the computer, where a matrix is constructed
for the Voltage, Current, and Power measurements.
An example of this can be seen in Figure 2.

3.3 Measured Devices

Common household devices were measured with the
prototype device. The following list contains the la-
bels used in the paper and the device description.

• ipad10W - A 10W Apple USB adapter for iPad
• usbapple5V1A - A 5W Apple USB adapter
• usb5V1A - A 5W generic USB adapter
• batterycharger4A - A four ampere ”smart” lead-

acid battery charger
• batterycharger800mA - An 800mA traditional

lead-acid battery charger
• fan - A fan
• hairdryer - A hairdryer
• incandescentbulb - An incandescent light bulb

• irlamp - An infrared heat lamp
• laptop - A laptop charger charging the laptop
• monitor - An LCD screen
• solderingiron - A soldering iron

At least 250 measurements were taken with every de-
vice. For all classification methods, only the Power
matrix was used. Only those measurements were
used, where the average of the Power matrix was
greater than 1.5W.

4 PERFORMANCE OF SVM

Support Vector Machine classification requires fea-
ture extraction for fast computation and accurate re-
sults. Choosing these features is crucial in order to
separate the different loads. The following ten fea-
tures were selected to be used for the SVM classifica-
tion:

• AVG: mean of the matrix elements
• STDEV: standard deviation of the matrix ele-

ments
• ROWAVG: mean of the standard deviations of

matrix rows
• ROWSTD: standard deviation of the standard de-

viations of matrix rows
• COLUMNAVG: mean of the standard deviations

of matrix columns
• COLUMNSTD: standard deviation of the stan-

dard deviations of matrix columns
• TOPLEFT: mean of the top left 2x2 submatrix di-

vided by AVG
• BOTTOMLEFT: mean of the bottom left 2x2 sub-

matrix divided by AVG
• TOPRIGHT: mean of the top right 2x2 submatrix

divided by AVG
• BOTTOMRIGHT: mean of the bottom right 2x2

submatrix divided by AVG

Five of the feature values for the measured matri-
ces can be seen in Figure 3. One can observe that the
USB adapters have similar characteristics, and some
devices can be separated from some of the other de-
vices based on a single feature. These features change
in time, as can be seen in Figure 4.

For the SVM classification, 30 samples from each
class were enough to produce accurate predictions. A
linear kernel was used. The average confusion matrix
from 100 runs can be seen in Figure 5. It can be seen
that most of the error comes from wrongly classify-
ing a USB charger device. In most cases, differentiat-
ing between USB chargers is indifferent to the task of
load classification, so in Figure 6, only one USB class
was used.
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Figure 3: Five of the feature values plotted for the first 250 measurements.

Figure 4: Five characteristics plotted for measurements
taken during the charging of the iPad.

Figure 5: Confusion matrix (average of 100 runs) of the
SVM classification results. 30 samples from each class
were used for training.

5 MEASUREMENT PROFILES

The previous section showed that the SVM method
is accurate for classifying the measurement data col-
lected. The question is whether similar results can
be achieved with fewer data and if so, it also reduces
computational complexity. Less computational com-
plexity allows Edge Computing methods to be used
and may also make it possible to run the classification
on the ESP32 microcontroller in the future.

The definition of measurement profiles is intro-
duced to modify the measurement parameters and en-
able the search for possible optimal choices. The
measurement profile defines the parameters of the

Figure 6: Confusion matrix (average of 100 runs) of the
SVM classification results. 30 samples from each class
were used for training. Only one USB class was used.

measurement. The measurement profile consists of
the following:

• r - the number of different cutoff ratios
• percentage min - the minimal cutoff ratio
• percentage max - the maximum cutoff ratio
• h - the number of cycles the AC signal is cut for

each cutoff ratio
• d - the number of cycles where the AC signal is

not modified between measuring with two cutoff
ratios

The cutoff ratios are evenly spaced between
percentage min and percentage max. The measure-
ment profiles will be shown in the following form:

{< r, percentage min− percentage max >,h,d}

The number of cycles (one full period of the AC volt-
age signal - 20ms) required for one full measurement
with a measurement profile can be calculated using
the following formula:

Ncycles = h · r+d · (r−1) (3)

Multiple submatrices can be extracted from orig-
inal measurements and used for classification. These
submatrices extract the data that the measurement
profile would have collected. (E.g.: if h= 6, then only
the first six columns of the original matrices would
be considered.) Running the simulations for multiple
parameters shows an estimate of how accuracy would
change using different measurement profiles. Using
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Figure 7: Simulations ran on an early version of the created dataset, 100 samples from each class, 30 used for training. The
vertical axis shows the cutoff ratios, and the horizontal shows the number of AC cycles for each cutoff ratio. Each simulation
was run 100 times, and the worst and average accuracy values were shown.

Figure 8: Average simulation results plotted for each cutoff ratio set. The bigger markers show the measurement profiles
chosen. The horizontal axis shows the number of cycles each measurement would take assuming d = 16.

different cutoff ratio numbers between 2 and 14 and
different h values between 2 and 20, the accuracy re-
sults can be seen in Figure 7.

Then we can choose measurement profiles to use
for actual measurement collection. In the plots of the
results for each measurement ratio set (Figure 8), it
can be seen that by increasing h, the change in ac-
curacy slows down, and only the measurement time
increases. Based on this data, the following measure-
ment profiles were selected:

• TEST ORIG : {< 14,10%− 75% >,h = 20,d =
16}Measurement time: 488 AC cycles (9.76s)

• TEST HALVED : {< 7,15% − 75% >,h =
10,d = 8} Measurement time: 118 AC cycles
(2.36s)

• TEST TINY : {< 2,10%−75%>,h= 12,d = 4}
Measurement time: 28 AC cycles (0.56s)

• TEST FOUR : {< 4,15%−75% >,h = 8,d = 4}
Measurement time: 44 AC cycles (0.88s)

In Figure8, the selected measurement profiles are
shown with a bigger maker.

The software of the microcontroller was also mod-
ified to allow measurements with measurement pro-
files. Data was collected for the same devices listed
in Section 3.3. For each measurement profile, at least

Table 1: SVM Classification results for each measurement
profile. Each classification was run 100 times, the average
accuracy values are shown.

Measurement
profile

All USB
classes

One USB
class (iPad)

TEST ORIG 96.49% 99.56%
TEST HALVED 93.36% 98.74%

TEST TINY 91.89% 97.40%
TEST FOUR 94.42% 99.35%

250 measurements were taken per class.
The results of the SVM classification with mea-

surement profiles can be seen in Figures 9 (with sep-
arate USB classes) and 10 (one usb class - iPad). It
can be seen that with the reduced amount of data col-
lected, the classification accuracy decreases, but the
average accuracy values are still over 91%. Table 1
summarizes the classification accuracy results for all
measurement profiles.

A small training sample size (30) is enough to
achieve above 99% accuracy with the SVM classifica-
tion method. This means that only a few minutes are
required to collect the necessary measurements and
profile a device.
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Figure 9: Confusion matrix (average of 100 runs) of the
SVM classification results for the new measurement pro-
files. 30 samples from each class were used for training.
The column class labels are the same as in Figure 5.

Table 2: FC NN Classification results for each measurement
profile. Each classification was run 100 times, one USB
class was used.

Measurement
profile

Average
accuracy

Worst
accuracy

TEST ORIG 99.51% 98.53%
TEST HALVED 98.52% 94.07%

TEST TINY 97.88% 96.20%
TEST FOUR 98.50% 97.20%

6 DATA CLASSIFICATION WITH
NEURAL NETWORKS

The data were also classified with a simple, Fully
Connected Neural Network. The input layer used the
ten features chosen in Section 4, and two hidden lay-
ers of sizes 10 and 6 were used. The activation func-
tion was ReLU. The result can be seen in Figure 11,
and the results are summarized in Table 2.

6.1 Classification with CNN

Convolutional Neural Networks are popular solu-
tions in image processing tasks. As in the cases of
the TEST ORIG, TEST HALVED, and TEST FOUR

Figure 10: Confusion matrix (average of 100 runs) of the
SVM classification results for the new measurement pro-
files. 30 samples from each class were used for training.
Only one USB class was used. The column class labels are
the same as in Figure 6.

measurement profile matrices, we can interpret the
task at hand as an image processing task with a low-
resolution input image. Using only the power ma-
trix, the network could not distinguish between the
incandescent light bulb and the infrared lamp. As
it turns out, the infrared lamp used for the measure-
ments is also an incandescent bulb emitting infrared
radiation, so we expect them to have similar char-
acteristics. This inability to distinguish between the
same kind of devices shows the CNN’s capability to
extract generalized features and shows the network’s
deeper understanding of the connected load.

The CNN consisted of two convolutional lay-
ers with (3× 3) kernels. The first used ReLU and
padding, while the second did not use padding and
used softmax as the activation function. We were
using softmax provided normalization before the FC
layers. The first convolutional layer extracted 48 fea-
tures, while the second extracted 64 features. After
flattening the layers, two hidden, fully connected lay-
ers with ReLU activation function were used (48 and
64 neurons) before the final layer with softmax acti-
vation. The results of the classification can be seen
in Figure 12. By using the Power, the Voltage (di-
vided by 230), and the Current matrices, 50 samples
for each class in the training set are enough to achieve
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Table 3: CNN Classification results for the TEST ORIG, TEST HALVED and TEST FOUR profiles.

Used data — Training samples per class Power — 150 Power, Voltage, Current — 50
Accuracy avg worst avg worst

TEST ORIG 99.92% 99.56% 99.84% 99.50%
TEST HALVED 99.90% 99.56% 99.86% 99.44%

TEST FOUR 99.35% 75.44% 98.81% 82.17%

Figure 11: Confusion matrix (average of 100 runs) of the
FC NN classification results. 100 samples from each class
were used for training, 150 for testing. One USB class was
used.

the same accurate results. The results are shown in
Figure 13. Table 3 summarizes the results.

7 CONCLUSION

We have presented a solution to the fast classification
of electric loads. The measurement time can be as
low as 0.56s, while a complete measurement takes
less than 10 seconds. We proposed different clas-
sification methods suited for different applications.
While deep networks such as CNN can provide high
(99.92% average) accuracy rate and better generaliza-

Figure 12: Confusion matrix (average of 100 runs) of the
CNN classification results. A common USB class was used
for the three USB adapters, and the incandescent light bulb
and the infrared lamp were merged to one class (incandes-
cents). 150 samples from each class were used for training
the model, 100 were used for testing.

tion, the computational requirements are much higher.
For edge computing solutions, traditional FC NN and
SVM provide a better solution to achieve similar re-
sults with less computational resources. If the data
collection is the bottleneck, then SVM is the best op-
tion as a small dataset is enough thanks to the care-
fully selected features used for the input of the SVM
classification. As SVM requires the least amount of
computational power from the methods presented, it
is ideal for on-device classification. Classification on
the microcontroller of the measurement prototype de-
vice is one area considered for future research related
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Figure 13: Confusion matrix (average of 100 runs) of the
CNN classification results using the Power, Current, and
Voltage(divided by 230) matrices. A common USB class
was used for the three USB adapters, and the incandescent
light bulb and the infrared lamp were merged into one class
(incandescents). Fifty samples from each class were used
for training the model, 200 were used for testing.

to this topic.
We have also introduced measurement profiles

that show that even less data is enough to classify the
connected load accurately. A reduction of the amount
of collected data also reduces the computational re-
quirements of the classification. Based on the require-
ments of the classification system, the data collection
can be optimized with the help of measurement pro-
files to achieve faster device labeling and data pro-
cessing while decreasing accuracy only by a small
amount.

7.1 Future Work

With the method presented, we have shown that with
only 30 training samples, SVM classification could
achieve an average of 99.56% accuracy rate. This
means that even with the longest test profile, the train-
ing data collection requires less than 6 minutes of
measurement per electric load. The CNN approach
shows that the network can understand the type of
features and can generalize, so similar types of de-
vices (like USB chargers) will be accurately classi-
fied; however, the current system cannot detect new

types of electric loads that were not measured previ-
ously. Detecting a previously unknown device as un-
known is a complex task. In future work, we intend to
examine Open Set classification methods for detect-
ing previously unseen devices. A smart plug system
with Open Set classification methods could automat-
ically trigger the training data collection for a previ-
ously unseen load. User interaction would only be
needed for providing a label for the device.

The other area considered for future work is the
classification on the microcontroller. The methods
presented may enable the classification of the con-
nected load on the ESP32 microcontroller inside the
prototype device. With the WiFi capabilities of the
microcontroller, a Wireless Sensor Network could be
built. As the dimmer used in the prototype device can
cut the connected load’s power supply, the prototype
is capable of not only measuring but also controlling
the load, so no hardware modifications would be re-
quired for a smart plug system.
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