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Electrical load classification is a crucial task related to balance management in smart electrical grids. The

classification algorithms and methods enable the smart system to schedule and adjust the grid load to meet
the production capabilities. Fast decision-making is key to creating a responsive grid, especially when grid
operators utilize renewable energy sources such as wind or solar power. This paper proposes new approach
Smart Plug for Load Classification, an active load classification system to recognize the connected devices
based on their load with less than 10 seconds of measurement data. Also, we propose an IoT-capable measure-
ment device and show the collected data’s classification results with multiple methods suited for both Edge

Computing and Cloud computation.

1 INTRODUCTION

With the rise of renewable resources in electrical
grids, load balancing became a more complex task.
Unlike traditional power plants, renewable power pro-
duction levels cannot be controlled in most cases.
One solution to this challenge of balancing electric-
ity production and consumption levels is controlling
the demand side. This, however, requires knowl-
edge of the load and the ability to control them. As
both electricity production and consumption levels
can change rapidly, fast decision-making is required
to create a responsive grid. This paper presents the
Smart Plug for Load Classification (SP4LC), an active
load classification system capable of recognizing the
connected load based on its characteristic response to
manipulating its power signal. The data collected in
less than 10 seconds is enough to identify the con-
nected load accurately. We show multiple approaches
to classify the data measured by our prototype device.
The classification method depends on the use case
of the system. To enable on-device classification for
rapid response, less data is better and a method that
requires less computational power. In edge comput-
ing situations, fewer restrictions apply. With Cloud-
based solutions, there are virtually no restrictions in
terms of computational power.

The rest of the paper is structured as follows. Sec-
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tion 2 shows a summary of related publications. In
Section 3, we present the hardware prototype and
measurement methodology. Section 4 shows the Sup-
port Vector Machines classification results. In Section
5, we introduce measurement profiles for optimizing
the data collection depending on the requirements,
followed by Section 6 containing the Fully Connected
and Convolutional Neural Network classification re-
sults. The conclusions are presented in Section 7.

2 RELATED WORK

Electrical load classification is an essential part of the
operation of smart grids. With the adoption of re-
newable energy sources, load balancing has become
a critical part of the operation of the grid (Jaradat
et al., 2014). In order to actively balance the system
by controlling the load, knowledge is required about
the types of loads connected to the grid. In (Jaradat
et al., 2014), a Demand-Side Management system is
shown as a linear programming problem. The goal
was to maximize the utilization of renewable energy
sources and minimize the price of the purchased elec-
tricity from the grid.

Electrical load classification can be done intru-
sively, and non-intrusively (Ridi et al., 2014). Non-
Intrusive Load Monitoring can be achieved using a
Smart Meter. The Smart Meter can communicate with
the grid provider to help the operation of the Smart
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Grid. With Smart Meters, only the sum of all loads in
the household is measured, so disaggregation of the
load curve is necessary to learn about the individual
loads. In Intrusive Load Monitoring, metering is done
either for every load or each zone within the building.

Current smart plugs available on the market are
not capable of load identification (Gomes et al.,
2018). The user has to set up the basic properties
and scheduling of the connector. The proposed sys-
tem in (Gomes et al., 2018) uses environmental sen-
sors to help determine if an electric load is needed.
In (Gomes et al., 2019) a case study is shown how
EnAPlugs can provide energy savings by using sen-
sors to enable environmental awareness.

In (da S. Veloso et al., 2019), a system is shown
which uses Electric Load Signature (ELS) to differ-
entiate between loads. Measurements were done ev-
ery second for one hour to collect the ELS data. An-
other possibility for faster data collection is to use the
Voltage-Current curve of the load to determine the
type of electric load connected (Du et al., 2016).

In (Petrovié¢ and Morikawa, 2017) load classifica-
tion is achieved by using a bidirectional triode thyris-
tor to manipulate the voltage supply of the load. An
Arduino microcontroller was used to collect the mea-
surement data and control the TRIAC. The microcon-
troller masked the voltage signal of the load between
ratios of 10% and 95% with 5% steps. The other pa-
rameter used was the number of consecutive masking
cycles between 1 and 20. The load current, voltage,
and power were measured for each cycle of the AC
signal. The measured power data was put into a ma-
trix, and this matrix was the input of a Fully Con-
nected Neural Network used for load classification.
The classification accuracy was 96.5%, and each mea-
surement took 45 seconds.

This paper presents a similar approach to
(Petrovi¢ and Morikawa, 2017), but with several
improvements in the prototype device, measurement
speed, data collection, and classification methods.

3 NEW MEASUREMENT
PROTOCOL AND PROTOTYPE

To measure the response of an electric load to the ma-
nipulation of the AC input voltage, a custom mea-
surement device prototype was built. The prototype
device is capable of cutting off the AC supply of the
load, measuring the power characteristics of the de-
vice during the experiment, processing the data and
sending the processed data to the connected computer.
This section describes the measurement device pro-
totype as well as the measurement method used for
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Figure 1: Voltage cutoff method with different cutoff ratios.

collecting data about the devices’ characteristic re-
sponse.

3.1 Hardware Configuration

The prototype device uses the ESP32 microcontroller.
An off-the-shelf AC dimmer module is used to con-
trol the masking of the AC signal. A transformer and
a current transformer are used to measure the volt-
age and current of the load. The off-the-shelf dimmer
had zero-crossing detection capabilities so the mea-
surement could be precisely synchronized to the AC
voltage curve. The main advantages of the ESP32
over the Arduino microcontroller used in (Petrovi¢
and Morikawa, 2017) are the faster CPU frequency,
the 12-bit ADC, and the dual cores so that one core
can measure while the other core processes and sends
the data to the computer. In each period of the 230V
50Hz AC signal, the ESP32 measures 279-280 ADC
values from the transformer and the current trans-
former. The period of the 50Hz AC signal is 20ms.
This includes two zero-crossing events.

3.2 Measurement Method

Using the dimmer, the ESP32 cuts the voltage supply
of the load after a zero-crossing event for a specific
time period. This time period is given as the ratio of
cutoff time and the time between two zero-crossing
events (10ms) as demonstrated by Figure 1. The de-
vice uses cutoff ratios between 10% and 75% with a
5% step. For each cutoff ratio, the device measures 20
AC periods. Data is calculated for each period. Af-
ter a measurement with a cutoff ratio is completed, the
device waits 16 AC periods before proceeding to mea-
sure with the following cutoff ratio. This procedure
allows the load to receive uninterrupted power. The
measurement starts with a 10% cutoff ratio, and the
cutoff ratio is increased by 5% until 75%. The time
of the entire measurement is 488 AC cycles which are
9.76s.



Current
1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10%[0.086 0.093 0.083 0.087 0.086 0.09 0.076 0.074 0.069 0.082 0.07 0.087 0.082 0.076 0.083 0.077 0.077 0.083 0.078 0.077
15%| 0.073 0.085 0.08 0.079 0.081 0.089 0.086 0.084 0.077 0.078 0.084 0.078 0.079 0.08 0.077 0.079 0.078 0.089 0.076 0.08
20%|0.072 0.08 0.081 0086 0.082 008 0.079 0.077 0.082 0.086 0.087 0.084 0.065 0.088 0.081 0.068 0.081 0.077 0.075 0.076
25%| 0,074 0.078 008 0.068 0076 0079 0078 0.078 0.073 0.076 0.083 0.083 0.08 0.082 0.086 0.079 0.086 0.086 0.081 0.079
30%| 0,066 0.075 0.078 0.082 0.076 0.077 0.067 0.075 0.082 0.08 0.075 0.084 0.077 0.073 0.089 0.075 0.077 0.075 0.081 0.091
35%| 0,077 0.069 0.077 0.076 0.085 0.066 0.073 0.083 0.069 0.078 0.079 0.077 0.084 0.072 0.069 0.083 0.079 0.082 0.08 0.067
40%| 0.073 0.086 0.077 0.087 0.074 0.074 0.069 0.07 0.075 0.079 0.071 0.071 0.079 0.084 0.075 0.084 0.068 0.077 0.071 0.074|
45%| 0.082 0.082 0.077 0.075 0.084 0.077 0.08 0.08 0.082 0.086 0.077 0.081 0.078 0.076 0.075 0.083 0.087 0.084 0.074 0.089|
50% 0,107 0.103 0.097 0.098 0.01 0105 0099 0.105 0.099 0.104 0.098 0.101 0.1 0.105 0.108 0.102 0.101 0.105 0.102 0.102
55%| 0126 0119 0118 0115 0.116 0116 0121 0118 0.2 0.124 0.122 0.117 0.118 0.109 0.122 0.112 0.119 0.118 0.116 012
60%| 018 0143 014 0132 0135 0131 0134 0136 0.133 0.132 0.132 0.132 0.135 0.133 0.14 0.132 0.135 0.133 0.133 0.135
65%| 0,149 0.189 0179 0.181 0.83 0182 0174 0.184 0.183 0.187 0.77 0.181 0.18 0.184 0.177 0.188 0.181 0.181 0.177 0.188
70%| 0.061 0.172 0194 0194 02 019 0198 0195 0.197 0.196 0.198 0201 0.192 0.195 0.2 0.199 0.195 0.195 0.198 0.199
75%| 0,026 0101 0244 0264 0249 0268 0244 0268 0255 0.26 0.267 0.256 0.262 0.265 0.254 0.255 0.266 0.268 0.255 0.263
Voltage

12 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20
10%[2162 2212 2207 2207 2209 221 2209 221 2211 221 2205 2208 2209 2205 2205 2206 2208 220.8 2212 2213
15%| 2136 2115 2113 2118 2108 2119 2114 2112 2116 2112 2116 2116 2119 2117 2112 2116 2116 212 2112 2116
20%|199.9 2027 2025 2021 2019 2027 2022 2023 2028 2026 2024 2029 203 202.1 2024 202 202.6 202.7 202.8 202.9
25%| 2021 1971 1971 1967 1966 1969 1967 1972 1969 197 1967 197 1965 1969 1967 196.6 1965 196.4 197.1 1968
30%| 1948 1938 1938 1943 1939 1938 1939 1936 1938 1942 1937 1938 1942 1938 1936 1939 1941 193.8 1938 1942
35%| 1916 1901 1901 1903 1906 1905 1907 1907 1906 190.9 190.5 1903 1905 1912 190.6 190.5 190.4 190.5 190.9 190.7
40%| 1864 1887 1885 1883 188 187.7 188.8 187.9 1882 1884 187. 1881 183 188 1882 1879 188 188 1879 1877
45%| 1806 1838 1838 1836 183.9 1836 1837 1823 1826 182.6 1838 1838 1836 1835 1833 1833 1831 1823 1823 1837
50%| 1697 174.6 1748 1746 1751 1738 1746 1743 1747 1747 1743 1742 174.1 1743 1738 1744 1743 174.6 1742 1739
55%| 1522 1621 1619 162 1624 162 1623 1611 1618 1619 1626 1619 1613 1622 1613 1611 1605 161 1611 1616
60%| 1205 1458 1452 1448 146 145 1445 1442 146 1452 1445 1459 1449 1445 1458 1447 1439 1454 1446 144
65%| 108 128 1257 1266 1275 1268 1259 1266 1273 1265 126 1265 127.1 1268 126 1265 127.2 1265 1262 127.2
70%[ 1015 1027 1025 1017 1026 1016 1027 1023 102 102 1017 1026 1024 1022 1027 1026 1027 102.6 1022 1018
75%| 74.57 7711 7696 7829 7745 778 77.06 7736 7723 764 77.44 77.27 77.23 7852 77.18 77.31 77.07 785 78.09 77.71
Power.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10%[6.0061 9,493 7.875 8.076 8.429 6156 7.46 6368 6.109 6.658 6.381 6842 6.2 6.814 B.355 7.406 7.269 7.556 6.199 7.591
15%| 6.488 7.498 7.252 7.333 4748 8259 9662 8.148 6.878 6.99 7.522 6.402 7.309 7.254 7.464 6513 7.046 8.293 7.011 5898
20%|5.495 6475 7.233 7.417 7.094 7.757 7.09 7.021 7.08 6284 8.1 7.656 4.837 6.678 7.499 5133 6.424 6.855 7.242 7.097
25%| 6.95 6.558 7.369 5.489 6.065 7.426 5.827 7.394 6.887 7.641 8.269 6.464 5.558 7.562 8104 6431 854 6839 7.32 6.044
30%| 6.793 6.765 6.65 7.929 7.169 6172 6249 6225 7.50 8.122 7.257 7.343 6.941 5.852 8017 7.314 6218 6.201 8.459 7.331
35%| 7.726 7.022 6766 6.848 8795 6795 7.651 7.024 4382 7.502 7.7 7241 7.129 6596 6.3 7.646 6.512 7.619 8.418 6.777
40%|7.326 839 8597 8676 6.074 5.98 6317 6.658 8.086 6.882 6.492 7.598 6.466 7.929 6.965 8225 4953 7.891 6.654 6.977|
45%|7.041 7.46 7.126 5.856 6.82 6777 6.183 7.462 7.198 8036 6.117 7.618 6.016 6361 7.355 8229 7.813 6773 6.606 7.79|
S0%| 7.64 7.8 6641 7.267 8351 7.805 7.828 7.316 7.746 8.149 7.896 7.643 7.252 7.962 7.585 7.89 7.303 7.897 8135 7.913
55%| 7.465 7.962 7.683 7.707 7344 7.69 7.433 7783 7.562 852 8.434 7.41 8.441 7.078 8.805 7.205 7.756 7.999 7.332 8.038
60%| 7.306 8.868 8364 7.387 7.799 6465 7.804 8202 8.176 7.995 6.889 7.444 7.965 6.973 9.249 6963 7.48 7.156 8.459 7.418
65%| 5.025 9.032 7.669 8423 8445 8258 7399 8587 8334 8.432 8.285 8.149 8.169 8316 7.874 8525 8.801 7.761 7.994 8.867
70%| 1318 6.626 8.686 8.054 8127 8021 7.914 8306 8237 8332 8.037 868 8.115 8115 8.483 8.111 8252 8.236 8.149 7.253
75%| 0,034 2526 8353 9252 839 919 8336 9248 8856 8512 9.018 8.946 8915 9.15 8796 8.69 9.243 9735 9.043 9.24

Figure 2: Measurement matrices for a USB charger. The
vertical axis shows the cutoff ratio, and the horizontal shows
the measurements for that cutoff ratio in sequence.

For each AC period, the device measures
Voltage(U [k]) and Current(/[k]) values as fast as the
ESP32 ADC allows. From this, for each AC period,
three values are calculated. The RMS Voltage and
Current:

=~ ) U[KI[K] )

The calculations are done on the ESP32. The data
is sent to the computer, where a matrix is constructed
for the Voltage, Current, and Power measurements.
An example of this can be seen in Figure 2.

3.3 Measured Devices

Common household devices were measured with the
prototype device. The following list contains the la-
bels used in the paper and the device description.

ipad10W - A 10W Apple USB adapter for iPad

usbapple5VIA - A 5W Apple USB adapter

usb5V1A - A 5W generic USB adapter

batterychargerdA - A four ampere “smart” lead-

acid battery charger

o batterycharger800mA - An 800mA traditional
lead-acid battery charger

e fan - A fan

e hairdryer - A hairdryer

e incandescentbulb - An incandescent light bulb

SP4LC: A Method for Recognizing Power Consumers in a Smart Plug

irlamp - An infrared heat lamp

laptop - A laptop charger charging the laptop
monitor - An LCD screen

solderingiron - A soldering iron

At least 250 measurements were taken with every de-
vice. For all classification methods, only the Power
matrix was used. Only those measurements were
used, where the average of the Power matrix was
greater than 1.5W.

4 PERFORMANCE OF SVM

Support Vector Machine classification requires fea-
ture extraction for fast computation and accurate re-
sults. Choosing these features is crucial in order to
separate the different loads. The following ten fea-
tures were selected to be used for the SVM classifica-
tion:

e AVG: mean of the matrix elements

e STDEV: standard deviation of the matrix ele-
ments

¢ ROWAVG: mean of the standard deviations of
matrix rows

e ROWSTD: standard deviation of the standard de-
viations of matrix rows

e COLUMNAVG: mean of the standard deviations
of matrix columns

e COLUMNSTD: standard deviation of the stan-
dard deviations of matrix columns

e TOPLEFT: mean of the top left 2x2 submatrix di-
vided by AVG

e BOTTOMLEFT: mean of the bottom left 2x2 sub-
matrix divided by AVG

e TOPRIGHT: mean of the top right 2x2 submatrix
divided by AVG

e BOTTOMRIGHT: mean of the bottom right 2x2
submatrix divided by AVG

Five of the feature values for the measured matri-
ces can be seen in Figure 3. One can observe that the
USB adapters have similar characteristics, and some
devices can be separated from some of the other de-
vices based on a single feature. These features change
in time, as can be seen in Figure 4.

For the SVM classification, 30 samples from each
class were enough to produce accurate predictions. A
linear kernel was used. The average confusion matrix
from 100 runs can be seen in Figure 5. It can be seen
that most of the error comes from wrongly classify-
ing a USB charger device. In most cases, differentiat-
ing between USB chargers is indifferent to the task of
load classification, so in Figure 6, only one USB class
was used.
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Figure 3: Five of the feature values plotted for the first 250 measurements.
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Figure 4: Five characteristics plotted for measurements
taken during the charging of the iPad.
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Figure 5: Confusion matrix (average of 100 runs) of the
SVM classification results. 30 samples from each class
were used for training.

S MEASUREMENT PROFILES

The previous section showed that the SVM method
is accurate for classifying the measurement data col-
lected. The question is whether similar results can
be achieved with fewer data and if so, it also reduces
computational complexity. Less computational com-
plexity allows Edge Computing methods to be used
and may also make it possible to run the classification
on the ESP32 microcontroller in the future.

The definition of measurement profiles is intro-
duced to modify the measurement parameters and en-
able the search for possible optimal choices. The
measurement profile defines the parameters of the
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Figure 6: Confusion matrix (average of 100 runs) of the
SVM classification results. 30 samples from each class
were used for training. Only one USB class was used.

measurement. The measurement profile consists of
the following:

r - the number of different cutoff ratios
percentage_min - the minimal cutoff ratio
percentage_max - the maximum cutoff ratio

h - the number of cycles the AC signal is cut for
each cutoff ratio

d - the number of cycles where the AC signal is
not modified between measuring with two cutoff
ratios

The cutoff ratios are evenly spaced between
percentage_min and percentage_max. The measure-
ment profiles will be shown in the following form:

{< r, percentage_min — percentage_max >,h,d}

The number of cycles (one full period of the AC volt-
age signal - 20ms) required for one full measurement
with a measurement profile can be calculated using
the following formula:

Neyeles =h-r+d-(r—1) 3)

Multiple submatrices can be extracted from orig-
inal measurements and used for classification. These
submatrices extract the data that the measurement
profile would have collected. (E.g.: if 4 = 6, then only
the first six columns of the original matrices would
be considered.) Running the simulations for multiple
parameters shows an estimate of how accuracy would
change using different measurement profiles. Using
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RESULTS for WORST classification accuracy:

RESULTS for AVERAGE classification accuracy:

2 4 6 8 10 12 14 16 18

20 2 4 6 8 10 12 14 16 18 20

<14,10%-75%>| 96.25% 96.56% 97.43% 98.00% 96.95% 97.90% 97.71% 97.62% 98.29%
<7,10%-70%> [95.14% 96.08% 97.05% 97.05% 96.57% 96.76% 97.52% 96.00% 97.24%
<5,10%-70%> [93.48% 96.39% 97.28% 97.20% 97.61% 96.86% 97.43% 97.14% 96.85%
<4,10%-70%> [93.76% 95.34% 96.53% 96.73% 96.65% 97.50% 96.64% 96.56% 96.95%
<3,10%-70%> [ 93.65% 95.19% 96.82% 96.86% 97.19% 97.29% 97.41% 97.42% 97.52%
<2,10%-75%> [92.31% 94.84% 96.59% 97.02% 97.44% 97.96% 97.97% 98.07% 97.87%
<3,15%-75%> |91.93% 95.50% 96.17% 97.11% 96.93% 97.25% 97.75% 97.08% 98.05%
<4,15%-75%> |93.44% 96.04% 96.47% 97.18% 97.58% 97.49% 97.01% 96.63% 97.32%
<5,15%-75%> [95.19% 96.56% 97.38% 97.30% 97.31% 97.51% 98.09% 97.51% 97.80%
<7,15%-75%> | 94.08% 96.60% 97.03% 97.14% 97.61% 97.04% 97.24% 96.37% 97.90%

97.71%|97.89% 98.23% 98.84% 99.04% 98.99% 98.99% 98.97% 98.92% 98.99% 99.00%
97.14%|96.65% 97.73% 98.34% 98.62% 98.58% 98.52% 98.62% 98.51% 98.61% 98.63%
96.85%|96.01% 97.79% 98.39% 98.62% 98.57% 98.43% 98.65% 98.45% 98.46% 98.43%
97.52%|95.43% 97.30% 98.16% 98.52% 98.45% 98.76% 98.62% 98.52% 98.49% 98.79%
97.52%|95.85% 97.22% 98.21% 98.40% 98.32% 98.70% 98.73% 98.76% 98.78% 98.84%
97.67%|94.42% 96.54% 98.32% 98.48% 98.83% 99.22% 99.07% 99.19% 99.11% 99.01%
97.67%|93.65% 96.75% 97.84% 98.37% 98.49% 98.60% 98.82% 98.84% 99.02% 99.03%
97.79%|95.23% 97.40% 97.84% 98.59% 98.60% 98.43% 98.52% 98.56% 98.65% 98.82%
98.09%|96.58% 97.68% 98.42% 98.91% 98.94% 98.86% 99.00% 98.97% 98.95% 99.03%
98.09% | 96.40% 97.85% 98.24% 98.74% 98.80% 98.71% 98.72% 98.70% 98.65% 98.88%

Figure 7: Simulations ran on an early version of the created dataset, 100 samples from each class, 30 used for training. The
vertical axis shows the cutoff ratios, and the horizontal shows the number of AC cycles for each cutoff ratio. Each simulation
was run 100 times, and the worst and average accuracy values were shown.
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Figure 8: Average simulation results plotted for each cutoff ratio set. The bigger markers show the measurement profiles
chosen. The horizontal axis shows the number of cycles each measurement would take assuming d = 16.

different cutoff ratio numbers between 2 and 14 and
different /4 values between 2 and 20, the accuracy re-
sults can be seen in Figure 7.

Then we can choose measurement profiles to use
for actual measurement collection. In the plots of the
results for each measurement ratio set (Figure 8), it
can be seen that by increasing A, the change in ac-
curacy slows down, and only the measurement time
increases. Based on this data, the following measure-
ment profiles were selected:

e TEST_ORIG : {< 14,10% —75% >,h = 20,d =
16} Measurement time: 488 AC cycles (9.76s)

e TEST_ HALVED : {< 7,15% — 75% >,h =
10,d = 8} Measurement time: 118 AC cycles
(2.36s)

e TEST_TINY :{<2,10%—75% >,h=12,d =4}
Measurement time: 28 AC cycles (0.56s)

e TEST FOUR: {<4,15% —75% >,h=8,d =4}
Measurement time: 44 AC cycles (0.88s)

In Figure8, the selected measurement profiles are
shown with a bigger maker.

The software of the microcontroller was also mod-
ified to allow measurements with measurement pro-
files. Data was collected for the same devices listed
in Section 3.3. For each measurement profile, at least

Table 1: SVM Classification results for each measurement
profile. Each classification was run 100 times, the average
accuracy values are shown.
Measurement AllUSB | One USB
profile classes | class (iPad)
TEST_ORIG 96.49% 99.56%
TEST_HALVED | 93.36% 98.74%
TEST_TINY 91.89% 97.40%
TEST_FOUR 94.42% 99.35%

250 measurements were taken per class.

The results of the SVM classification with mea-
surement profiles can be seen in Figures 9 (with sep-
arate USB classes) and 10 (one usb class - iPad). It
can be seen that with the reduced amount of data col-
lected, the classification accuracy decreases, but the
average accuracy values are still over 91%. Table 1
summarizes the classification accuracy results for all
measurement profiles.

A small training sample size (30) is enough to
achieve above 99% accuracy with the SVM classifica-
tion method. This means that only a few minutes are
required to collect the necessary measurements and
profile a device.
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Figure 9: Confusion matrix (average of 100 runs) of the
SVM classification results for the new measurement pro-
files. 30 samples from each class were used for training.
The column class labels are the same as in Figure 5.

solderingiron

Table 2: FC NN Classification results for each measurement
profile. Each classification was run 100 times, one USB
class was used.

Measurement Average Worst
profile accuracy | accuracy
TEST_ORIG 99.51% | 98.53%
TEST_-HALVED | 98.52% | 94.07%
TEST_TINY 97.88% | 96.20%
TEST_FOUR 98.50% | 97.20%

6 DATA CLASSIFICATION WITH
NEURAL NETWORKS

The data were also classified with a simple, Fully
Connected Neural Network. The input layer used the
ten features chosen in Section 4, and two hidden lay-
ers of sizes 10 and 6 were used. The activation func-
tion was ReLU. The result can be seen in Figure 11,
and the results are summarized in Table 2.

6.1 Classification with CNN

Convolutional Neural Networks are popular solu-
tions in image processing tasks. As in the cases of
the TEST_ORIG, TEST_-HALVED, and TEST_FOUR
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Figure 10: Confusion matrix (average of 100 runs) of the
SVM classification results for the new measurement pro-
files. 30 samples from each class were used for training.
Only one USB class was used. The column class labels are
the same as in Figure 6.

measurement profile matrices, we can interpret the
task at hand as an image processing task with a low-
resolution input image. Using only the power ma-
trix, the network could not distinguish between the
incandescent light bulb and the infrared lamp. As
it turns out, the infrared lamp used for the measure-
ments is also an incandescent bulb emitting infrared
radiation, so we expect them to have similar char-
acteristics. This inability to distinguish between the
same kind of devices shows the CNN’s capability to
extract generalized features and shows the network’s
deeper understanding of the connected load.

The CNN consisted of two convolutional lay-
ers with (3 x 3) kernels. The first used ReLU and
padding, while the second did not use padding and
used softmax as the activation function. We were
using softmax provided normalization before the FC
layers. The first convolutional layer extracted 48 fea-
tures, while the second extracted 64 features. After
flattening the layers, two hidden, fully connected lay-
ers with ReLLU activation function were used (48 and
64 neurons) before the final layer with softmax acti-
vation. The results of the classification can be seen
in Figure 12. By using the Power, the Voltage (di-
vided by 230), and the Current matrices, 50 samples
for each class in the training set are enough to achieve
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Table 3: CNN Classification results for the TEST_ORIG, TEST_-HALVED and TEST_FOUR profiles.

Used data — Training samples per class Power — 150 Power, Voltage, Current — 50
Accuracy avg worst avg worst
TEST_ORIG 99.92% | 99.56% | 99.84% 99.50%
TEST_HALVED 99.90% | 99.56% | 99.86% 99.44%
TEST_FOUR 99.35% | 75.44% | 98.81% 82.17%
[Dimensions: <zox14> Dimensions: <20x14>
s TEST-ORIG cracy 03392102372646332 TEST_ORIG
— T 5 \WORST Accuracy: 0.9955506324768066
- 3 8 g g % = 5 3 % g g
§ & §: f F § § % § 4 ;8 ) g
g T4 g H 3 3 g 3 s 3 &®
: B £ ¢ T & ¢ § & 3§ & ¢
ipad10W = _ e -'2. § ° g %
batterychargerdA -0412 0.07 1.8 [ = 32 S
ban:mZarge:awmA mm 0.19 3 § @
fan >
hairdryer 0.05 UsB
inzan?::::tbmb 001 126 batterychargerdA
laptop 0.01 021 0.02 batterycharger800mA
monitor 0.08 fan
solderingiron 009 009 |0 003 006 hairdryer
[Dimensions: <t0x7> .
eenny 053 190999993554 TEST_HALVED incandescents
(WORST Accuracy: 0.9406666666666667 |2pt0p

ipad10W/
batterychargerdA 0.04
batterycharger800mA

fan

hairdryer

incandescentbulb
irlamp
laptop
monitor
solderingiron

[Dimensions: <12x2>
Accuracy: 0.978819212808539
WORST Accuracy: 0.961974649766511
ipad10W/
batterychargersA  0.16
batterycharger800mA  0.13
fan

hairdryer
incandescentbulb

irlamp.

laptop 114 1.05
monitor 0.08 323 001 021

solderingiron

Dimensions: <8xd>
Accuracy: 0.9849999999999999
\WORST Accuracy: 0.972
ipad10W
batterychargerdA
batterycharger800mA
fan
hairdryer
incandescentbulb

irlamp

laptop
monitor
solderingiron

Figure 11: Confusion matrix (average of 100 runs) of the
FC NN classification results. 100 samples from each class
were used for training, 150 for testing. One USB class was
used.

the same accurate results. The results are shown in
Figure 13. Table 3 summarizes the results.

7 CONCLUSION

‘We have presented a solution to the fast classification
of electric loads. The measurement time can be as
low as 0.56s, while a complete measurement takes
less than 10 seconds. We proposed different clas-
sification methods suited for different applications.
While deep networks such as CNN can provide high
(99.92% average) accuracy rate and better generaliza-
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Figure 12: Confusion matrix (average of 100 runs) of the
CNN classification results. A common USB class was used
for the three USB adapters, and the incandescent light bulb
and the infrared lamp were merged to one class (incandes-
cents). 150 samples from each class were used for training
the model, 100 were used for testing.

tion, the computational requirements are much higher.
For edge computing solutions, traditional FC NN and
SVM provide a better solution to achieve similar re-
sults with less computational resources. If the data
collection is the bottleneck, then SVM is the best op-
tion as a small dataset is enough thanks to the care-
fully selected features used for the input of the SVM
classification. As SVM requires the least amount of
computational power from the methods presented, it
is ideal for on-device classification. Classification on
the microcontroller of the measurement prototype de-
vice is one area considered for future research related
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Figure 13: Confusion matrix (average of 100 runs) of the
CNN classification results using the Power, Current, and
Voltage(divided by 230) matrices. A common USB class
was used for the three USB adapters, and the incandescent
light bulb and the infrared lamp were merged into one class
(incandescents). Fifty samples from each class were used
for training the model, 200 were used for testing.

to this topic.

We have also introduced measurement profiles
that show that even less data is enough to classify the
connected load accurately. A reduction of the amount
of collected data also reduces the computational re-
quirements of the classification. Based on the require-
ments of the classification system, the data collection
can be optimized with the help of measurement pro-
files to achieve faster device labeling and data pro-
cessing while decreasing accuracy only by a small
amount.

7.1 Future Work

With the method presented, we have shown that with
only 30 training samples, SVM classification could
achieve an average of 99.56% accuracy rate. This
means that even with the longest test profile, the train-
ing data collection requires less than 6 minutes of
measurement per electric load. The CNN approach
shows that the network can understand the type of
features and can generalize, so similar types of de-
vices (like USB chargers) will be accurately classi-
fied; however, the current system cannot detect new
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types of electric loads that were not measured previ-
ously. Detecting a previously unknown device as un-
known is a complex task. In future work, we intend to
examine Open Set classification methods for detect-
ing previously unseen devices. A smart plug system
with Open Set classification methods could automat-
ically trigger the training data collection for a previ-
ously unseen load. User interaction would only be
needed for providing a label for the device.

The other area considered for future work is the
classification on the microcontroller. The methods
presented may enable the classification of the con-
nected load on the ESP32 microcontroller inside the
prototype device. With the WiFi capabilities of the
microcontroller, a Wireless Sensor Network could be
built. As the dimmer used in the prototype device can
cut the connected load’s power supply, the prototype
is capable of not only measuring but also controlling
the load, so no hardware modifications would be re-
quired for a smart plug system.
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