
3D Object Recognition using Time of Flight Camera with Embedded
GPU on Mobile Robots

Benjamin Kelényi, Szilárd Molnár and Levente Tamás a

Department of Automation, Technical University of Cluj-Napoca, Memorandumului St. 28, 400114 Cluj-Napoca, Romania

Keywords: Time of Flight, 3D Point Clouds, Mobile Robots, Embedded Devices, Depth Image Processing.

Abstract: The main goal of this work is to analyze the most suitable methods for segmenting and classifying 3D point
clouds using embedded GPU for mobile robots. We review the current main approaches including, the point-
based, voxel-based and point-voxel-based methods. We evaluated the selected algorithms on different publicly
available datasets. Simultaneously, we created a novel architecture based on point-voxel CNN architecture that
combines depth imaging with IR. This architecture was designed particularly for pulse-based Time of Flight
(ToF) cameras and the primary algorithm’s target being embedded devices. We tested the proposed algorithm
on custom indoor/outdoor and public datasets, using different camera vendors.

1 INTRODUCTION

With the appearance of the compact radiometric sen-
sors the perception for the mobile robotic applications
passed through a paradigm shift: from 2D image-
based sensing the direct depth information was avail-
able. Besides the already existing 3D laser scanners,
the consumer level depth cameras such as Kinect,
Asus Xtion or RealSense allowed the integration of
these depth sensors on mobile platforms providing
rich geometric, shape and scale information. By the
fusion of spectral information from the 2D cameras
with the point-wise depth ensured an environment
perception for a large spectrum of applications in-
cluding mapping (Tamas and Goron, 2014), object de-
tection (Tamas and Cozma, 2021), augmented reality
(Blaga et al., 2021) or pose estimation (Frohlich et al.,
2021)

Due to the discrete point characteristics of the 3D
data acquired from the sensors, this is the preferred
representation method in favour of mesh, paramet-
ric or voxel spatial representation. Recently, with
the evolving of the deep learning techniques for 2D
images, or natural language processing the attention
of these methods shifted towards the 3D domain as
well (Tamas and Jensen, 2014). Although the im-
plementation of the discrete convolution over the 3D
space is demanding due to its high dimensionality
and having a limited number of public datasets com-

a https://orcid.org/0000-0002-8583-8296

pared to the 2D domain, the deep learning-based so-
lutions for the 3D data are still in research focus
today (Fooladgar and Kasaei, 2020). Furthermore,
the development of embedded or real-time solutions
for the point-cloud processing (Oleksiienko and Iosi-
fidis, 2021) using these techniques is still in progress.
With the evolution of the embedded GPU processing
power, early phase solutions exist for real-time ap-
plications for point-clouds. The main focus of this
paper is the evaluation of the existing methods for
the feasibility of training and evaluation of custom
point-cloud data-based object recognition on embed-
ded GPU platforms.

In this work, we focused on the Time of Flight
(ToF) depth cameras, more specifically the pulse-
based variants returning beside the discrete depth
points the infrared reflectively as well of the mea-
sured surface. We analyzed several methods suit-
able for embedded GPU processing and based on
public and our custom dataset we summarized our
findings related to the specific 3D object recognition
task. From the publicly available datasets, we consid-
ered the NYU (Nathan Silberman and Fergus, 2012),
S3DIS (Armeni et al., 2017), and Shapenet (Yi et al.,
2016) variants. For the own dataset, we created a
bunch of recordings from different depth camera ven-
dors including Microsoft, Intel, Analog Devices, and
Asus.

The methods selected for analysis are point-based
variants, and the major criteria were that they should
be usable also on recent embedded GPU platforms

Kelényi, B., Molnár, S. and Tamás, L.
3D Object Recognition using Time of Flight Camera with Embedded GPU on Mobile Robots.
DOI: 10.5220/0010972200003124
In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP, pages
849-856
ISBN: 978-989-758-555-5; ISSN: 2184-4321
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

849

targeting mobile robot applications. As of the cur-
rent state of the art (Shi et al., 2021; Le and Duan,
2018; Jiao and Yin, 2020), our selection was on the
point-based methods, the fastest runtime variants be-
ing in this category. Based on these criteria, our selec-
tion resulted in the PointNet (Qi et al., 2017a), Point
Transformer (Zhao et al., 2021), and mixed Point-
voxel CNN (Liu et al., 2019) methods.

Besides the choice of these three algorithms, we
extended the Point-voxel CNN method with pulse-
based Time of Flight (ToF) camera-specific IR image
data to have a better recognition performance on em-
bedded GPU platforms.

The extensive algorithm testing on public datasets
as well as our real dataset was performed on differ-
ent platforms ranging from high-end desktop GPU-
s through cloud-based variants to embedded GPU-
s. Also, we investigated for the mentioned algo-
rithms the variance of performance concerning differ-
ent types of recent commercial-grade depth cameras,
as the characteristics returned by these devices heav-
ily influence the recognition pipeline.

The contribution of this paper is summarized as
follows: 1) overview and selection of embedded deep
learning-based point cloud processing algorithms; 2)
customization of the PV-CNN with ToF specific IR
data for better accuracy; 3) extensive camera-specific
algorithm evaluation for object recognition purposes
and validation on custom indoor-outdoor datasets us-
ing different GPU architectures ranging from embed-
ded devices to cloud solutions. The paper is organized
as follows: in section 2 we shortly describe the state
of the art for the point-cloud-based object recognition
approaches with the focus on the embedded devices.
Following this in 3, we present our customized PV-
CNN (Liu et al., 2019) with combined depth and IR
images. Next we summarize our finding with differ-
ent types of ToF cameras for this algorithm in 4.1.
Finally, in section 4.2 we present our results on the
comparison of different embedded object recognition
algorithms working with point-clouds.

2 RELATED WORK

In this section, we make an overview of the depth in-
formation processing in the era of deep learning with
a special focus on real-time operation candidates for
embedded platforms. Next, we shortly present the
three methods which we considered for our test bunch
on embedded platforms.

2.1 Traditional Methods

Traditional point cloud recognition methods were
built on keypoint-feature pairs. Usually, these low-
level semantic data about the objects of interest were
used in statistical or kernel-based clustering methods
in order to match in a template-observation pair the
correspondences. For the consumer level ToF cam-
eras, good overview of the available feature-based
methods can be found in (Tamas and Jensen, 2014).

2.2 Multi-modal Approaches

The multi-modal approaches make use of heteroge-
neous data including radiometric and spectral input as
well. This fusion can be done with a relative pose esti-
mation between different camera modalities (Frohlich
et al., 2021). A good overview of the recent multi-
modal object recognition can be found in (Ophoff
et al., 2019) while in (Jiao and Yin, 2020) a ToF cam-
era focused two phase overview is presented.

2.3 Learning-based Representation for
Embedded Processing

The main focus of this paper is based on the 3 meth-
ods (PointNet, Point Transformer, and Point-Voxel
CNN) thus we describe each approach independently
and summarize the algorithm’s performance as fol-
lows.

2.3.1 PointNet (Qi et al., 2017a)

Typical convolutional architectures requires input
data to be in a regular format, such as images and also
temporal features. However, point clouds aren’t in a
regular form, we must to organize the point clouds
into certain data structures.

The most popular solution is to convert the data to
a 3D voxel grid (Xu et al., 2021). Another solution
is to convert the point cloud to 2D projections which
creates spatial consistency in the point set, allowing
the usage of the convolution operators.

PointNet (Qi et al., 2017a) is the first method of a
new form of neural network that employs unordered
point clouds directly. The permutation invariance of
points in the point cloud is also addressed. As shown
in Fig. 1, PointNet can perform object classification,
partial segmentation and scene semantic analysis.

The classification network maps each of the in-
put points from three dimensions (x, y and z) to 64
dimensions using a shared MLP. Repeating this pro-
cedure the points from 64 dimensions are mapped

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

850

Figure 1: Typical applications of PointNet (Qi et al., 2017a).

to 1024 dimensions. After that, with the points ob-
tained from the previous step max pooling is used to
generate a global feature vector in R1024. Finally, a
fully-connected network is used to map the global fea-
ture vector to predict the scores for all the candidate
classes.

In the segmentation network, each of the n input
points must be allocated to one of the m segmenta-
tion classes. The points from 64 dimension are com-
bined with the global feature vector. Concatenating
the points from the 64 dimensional embedding space
with the global feature vector, a vector for each points
in R1088 will be obtained. MLPs are employed on the
n points, as in a classification network, to reduce the
dimensionality from 1088 to 128 and then to m. The
results will be an array of n×m vector. This n×m
vector represents the scores for each of then n points
and each of the m semantic subcategories.

The main characteristic of PointNet is that the net-
work is robust in terms of input disturbance. In ad-
dition, the network can learn to summarize the shape
through a sparse set of key points, usually with a fixed
point-width.

PointNet uses an operation that is symmetrical to
its input, that is, the arrangement in the 3D point set is
irrelevant. These operations include fully connected
layers that share weights among all points and global
maximum pooling.

The main disadvantage of using PointNet is that
it does not directly utilize the local structure of the
data, which makes learning more difficult. This short-
coming was overcome in the method developed in the
work (Qi et al., 2017b).

2.3.2 Point Transformer (Zhao et al., 2021)

Many methods have been recently proposed to make
better use of the local structure, typically by sam-
pling a subset of representative points, using k-nearest
neighbors to create a group around each point in the
subset and then using a PointNet-like approach on
each group. In the final step, these groups are mapped

into local representations, which are then merged into
global feature vectors through additional layers.

The work of (Zhao et al., 2021) offers a new
method, utilizing the neural attention mechanism,
which is already well-established in Natural Lan-
guage Processing and is rapidly expanding to other
fields of machine learning. The authors employ vector
attention (Ioffe and Szegedy, 2015), a recent solution
that is an extension of the traditional scalar attention
approach.

The Point Transformer network used for the
segmentation task follows the U-Net (Ronneberger
et al., 2015) structure, consisting of 5 down-sampling
point attention layers, 5 similar up-sampling layers
and a final MLP layer, with a residual connection be-
tween the up and down layers.. The down-sampling
part manages the classification task by using a global
average pooling layer and an MLP layer.

2.3.3 Point-Voxel CNN (Liu et al., 2019)

The point-based networks are extensively used. How-
ever, as a result of the lack of explicit neighbor-
hood information in point representations, most ex-
isting point-based techniques rely on time-consuming
neighbor-finding algorithms.

Point-Voxel CNN proposed an approach that takes
advantage of both point and voxel representation to
achieve memory and computational efficiency at the
same time.

Figure 2: Point-Voxel CNN Architecture.

Point-Voxel CNN is based on a computationally
efficient design, which is shown in Fig. 2. As one can
see, the architecture is divided into two parts. The top
part is voxel-based feature aggregation and the bottom
part is Point-Based feature transformation. The up-
per branch (voxel-based) converts points into a low-
resolution voxel grid, then combines nearby points us-
ing voxel-based convolutions, and finally devoxelizes
them to points. The memory footprint is small since
voxelization or devoxelization both need a single scan
across all locations. It can afford a very high resolu-
tion since it does not combine the information of its
neighbors.

3D Object Recognition using Time of Flight Camera with Embedded GPU on Mobile Robots

851

DATADATA

FUSED
FEATURES

FUSED
FEATURES

 X Y Z IR

* * * *
* * * *

.

. . . .

Top Branch

DATA

CONVERTOR
OBTAINED

DATA
DATA

PARSER

NORMALIZE CONFIDENCE

PREDICTION

. . . .

MLP

Bottom Branch

FEATURES
 X Y Z

DEPTH

IR
FEATURES
 IR

Figure 3: Proposed Depth-IR CNN Architecture based on PV-CNN using pulse-based ToF camera.

3 OUR APPROACH

The voxel-based representation, according to our
findings, is regular and has high memory locality.
However, in order to avoid losing information, it re-
quires a high resolution. Multiple points are com-
pacted into the same voxel grid when the resolution
is poor, and these points are no longer distinct. Be-
cause our main focus is on Time of Flight (ToF) cam-
eras and the images received from these cameras are
usually ordered points, we bypassed the voxelization
and devoxelization aspects of our method based on
PV-CNN. Simultaneously, we incorporate the IR field
from the camera in order to enhance the model of the
original PV-CNN.

The architecture provided in the PV-CNN (Liu
et al., 2019) paper provides the foundation for our
implementation. We were able to create a new archi-
tecture for Time of Flight cameras by altering the old
architecture.

3.1 Architecture Details

Fig. 3 depicts our architectural design. The camera
picture is obtained in the first step. The depth and
infrared (IR) images are then recorded in a vector of
arrays. Each point in the vector is represented by an
array. The location coordinates (x, y, z) of each point
are represented by the first three positions of the array,
while the IR value is stored in the last position. The
data from the vector are passed on to the two branches
using a data parser. The top branch deals with depth
image processing, whereas the bottom one extracts
features, in this instance the IR picture. Finally, the
two feature vectors derived from the two branches are
merged together to calculate the confidence and pre-
diction for the desired object.

3.2 Depth-IR Aggregation

Because our design is split into two branches for
Depth and IR images, feature aggregation is done us-
ing a stack of 3D volumetric convolutions. After each
3D convolution, we apply batch normalization (Ioffe

and Szegedy, 2015) and the nonlinear activation func-
tion (Maas et al., 2013), much like in traditional 3D
models.

3.2.1 Multi-layer Perceptron

is applied to the input layer to extract attributes. The
generated MLP operates on each point to extract its
properties. There are 2048 points in a batch with 64-
channel features (with batch size of 16). We explore
combining data from each point’s 125 neighbors and
then transforming the resulting feature to obtain fea-
tures of the same size.

3.2.2 Normalization

Different point clouds might have very different
scales. As a result, before translating the point cloud
to the volumetric domain, we normalize the coordi-
nates {p}. To begin, we convert all points to a local
coordinate system, with the gravity center as the ori-
gin. The points are then normalized by dividing all
coordinates with max||p||2 and then scaled to [0, 1].

3.2.3 Feature Fusion

the output of Depth and IR image processing branches
have the same size and data types. Because the data is
of the same kind, merging the two can be done adding
them together.

4 EXPERIMENTS

4.1 Camera Comparison for
Recognition

For the real-time demo, we had a choice of 4 cam-
eras. Using RealSense D435i, Azure Kinect DK,
Pico Zense DCAM710 and Asus Xtion PRO depth
cameras we propose, a side-by-side geometric shapes
recognition for these four ToF depth cameras. Using
the ModelNet40 (Wu et al., 2015) dataset based pre-
trained model, our goal was to compare the cameras

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

852

Table 1: Side-by-side comparison between confusion matrix for different cameras.

Asus Xtion Pro Azure Kinect DK Pico Zense RealSense D435i

cy
lin

de
r

sp
he

re

v.
pl

an
e

h.
pl

an
e

cy
lin

de
r

sp
he

re

v.
pl

an
e

h.
pl

an
e

cy
lin

de
r

sp
he

re

v.
pl

an
e

h.
pl

an
e

cy
lin

de
r

sp
he

re

v.
pl

an
e

h.
pl

an
e

cylinder 0.94 0.01 0.04 0.01 0.86 0.11 0.03 0.01 0.88 0.10 0.01 0.01 0.90 0.04 0.04 0.05
sphere 0.17 0.76 0.05 0.02 0.05 0.94 0.02 0.00 0.19 0.79 0.01 0.01 0.41 0.31 0.17 0.11
v. plane 0.01 0.00 0.94 0.04 0.00 0.00 0.94 0.06 0.05 0.00 0.92 0.03 0.17 0.01 0.67 0.15
h. plane 0.00 0.03 0.00 0.97 0.00 0.00 0.01 0.99 0.00 0.00 0.01 0.99 0.01 0.00 0.01 0.97

with the same recognition algorithms, on the same
environment, same dataset and same lighting condi-
tions, in this way ensuring that the comparisons were
appropriate. The main idea is to create a more real-
istic comparison so that the camera can be used for
real-time evaluation using embedded GPU’s such as
Jetson AGX.

4.1.1 Camera Comparison Method

In this section is presented our ground truth genera-
tion for the recognition pipeline based on geometric
primitive extraction from point-clouds.

Sphere

Cylinder

Horizontal
plane

Vertical
plane

Point Cloud Pipeline

Geometric
Shape

RANSAC

Figure 4: Our dataset processing pipeline.

The Fig. 4 shows how our pipeline works. In the
first phase, the data acquisition was done by mounting
the test cameras on a robot. The route of the robot was
recorded, so we can assume that the comparison was
made on the same dataset. After, storing the camera
recording in ROS bag type file, the message conver-
sion in point-cloud was performed offline using the
PCL-ROS library.

4.1.2 Camera Comparison Experiments Details

In order to make our algorithm as generic as possi-
ble, we decided to create a configuration file. Every-
thing in this configuration file may be modified dy-
namically, from the voxel filter settings to the tuning
parameters like the diameter of the sphere or cylin-
der. For our RealSense D435i camera, we used as
parameters for the voxel filter the value 0.02, the max-
imum circumference of the cylinder = 1, the mini-
mum circumference of the cylinder = 0.3, the maxi-
mum number of iterations of the cylinder = 100000.
With these settings, good results were obtained for
the whole dataset from different cameras. The next
step is to use the PointNet (Qi et al., 2017a) algorithm

to recognize the following regular geometric shapes:
cylinder, sphere, horizontal plane and vertical plane.
The last phase of the process consists of training and
validating the dataset.

To highlight the differences among the test cam-
eras, we present the behavior of each camera on our
dataset. The confusion matrix is designed for each
camera to better visualization of the performance of
our algorithm. Also, a comparison between results
was made. In this way, we can get the conclusion,
which camera is reliable for our algorithm.

4.1.3 Camera Comparison Results

Table 1 shows a side-by-side compassion between
cameras by confusion matrix. Each row of the matrix
represents the value in a predicted class while each
column represents the value in an actual class. The
correct object predictions are represented by the ma-
jor diagonal of each confusion matrix. The average
accuracy of the predictions is calculated by averaging
the diagonals. Thus, the following values are obtained
for the four cameras ordered by the head of the Table
1: 0.9025, 0.9325, 0.895, 0.7125. As a consequence,
the following four cameras are ranked in order with
the configs:

1. Azure Kinect DK - (640x576, range: 0.5 - 3.86m)

2. Asus Xtion PRO - (640x480, range: 0.8m - 3.5m)

3. Pico Zense 710 - (640x480, range: 0.2m - 8m)

4. RealSenseD435i - (1280×720, range: 0.3 - 3m)

4.2 Evaluation

To accomplish a large-scale examination, we com-
pared the presented methods (PointNet, Point Trans-
former and Point-Voxel CNN) on a variety of datasets
as well as devices. We trained and evaluated these
methods to perform 3D object classification.

The model was trained and tested on a variety
of platforms, ranging from high-performance com-
puters with an RTX 1060 - 6GB VRAM and 16GB
RAM, to low-performance embedded devices like Jet-
son Xavier NX.

3D Object Recognition using Time of Flight Camera with Embedded GPU on Mobile Robots

853

Table 2: Summary of the comparison with other methods.

Comparison between PointNet, Point-Voxel CNN and Point Transformer
Method Device Dataset mIoU[%] mAcc[%] Train/Img[ms] Eval/Img[ms]
PointNet GTX 1060 S3DIS 43.32 81.87 272.9 207.4

NYU 68.92 82.39 437.7 287.2
ShapeNet 78.75 - 207.9 166.8
Own 89.29 93.76 237.8 462.4

Jetson NX S3DIS 41.24 80.00 1674.2 908.0
NYU 67.1 84.07 1955.4 983.6
ShapeNet 78.79 - 2393.0 745.2
Own 87.95 93.76 1294.2 894.0

Colab S3DIS 44.19 79.98 334.1 199.8
NYU 69.87 82.87 529.6 280.3
ShapeNet 79.04 - 331.8 155.3
Own 91.1 94.84 464.7 427.2

PVCNN GTX 1060 S3DIS 54.99 86.24 595.6 345.7
NYU 78.36 82.28 719.2 298.7
ShapeNet 83.67 - 519.6 316.2
Own 87.77 91.68 645.6 314.7

Jetson NX S3DIS 55.22 86.18 5920.0 815.1
NYU 68.5 82.17 4403.3 879.5
ShapeNet 83.70 - 6898.4 694.3
Own 86.71 94.19 5493.8 728.8

Colab S3DIS 55.17 86.45 506.2 336.4
NYU 78.94 82.31 611.3 239.2
ShapeNet 83.67 - 441.1 231.7
Own 86.94 94.19 427.6 302.0

Point Transformer GTX 1060 S3DIS 69.4 74.8 328.8 889.5
NYU 78.69 83.06 342.2 295.3
ShapeNet 84.3 - 489.2 175.7
Own 91.64 92.48 315.6 387.6

Jetson NX S3DIS 69.5 75.1 3990.2 899.7
NYU 77.1 81.89 3890.7 886.4
ShapeNet 82.8 - 5163.9 791.2
Own 92.37 92.06 3707.0 812.4

Colab S3DIS 69.7 75.3 318.9 879.9
NYU 79.07 82.92 308.8 280.0
ShapeNet 83.84 - 435.2 186.0
Own 92.48 93.66 294.4 358.8

4.2.1 Datasets Used for Evaluation

Four datasets were used in the analysis. Three of these
datasets are open to the public, while one is custom.
The public datasets are as follows: Stanford Large-
Scale 3D Indoor Spaces (S3DIS) dataset (Armeni
et al., 2017), ShapeNetPart dataset (Yi et al., 2016)
and NYU Depth Dataset V2 dataset (Nathan Silber-
man and Fergus, 2012).

The S3DIS dataset contains 271 rooms in six
regions from three different buildings for semantic
scene processing. Each scan point is given a semantic
name from one of thirteen categories (ceiling, floor,
table, etc.). On Area 5, we assess each of the ap-
proaches provided. We utilize mean classwise inter-
section over union (mIoU) and mean of class-wise ac-
curacy (mAcc) as assessment measures.

The ShapeNetPart dataset has 3D object com-

ponent segmentation annotations. There are 16,880
models in all, divided into 16 form categories, includ-
ing 14,006 3D models for training and 2,874 for test-
ing. The number of pieces in each category ranges
from 2 to 6, with a total of 50 distinct parts. We re-
port category instance mIoU for assessment metrics.

The NYU dataset the subset comprises 1449
highly labeled color pictures and depth maps, with
795 images serving as the training dataset and 654
images serving as the testing dataset. As assess-
ment metrics, we use mean class-wise intersection
over union (mIoU) and mean of class-wise correct-
ness (mAcc).

Our custom dataset consists of four classes as a
structure and they are visible in Fig. 5. The first
row of the picture depicts the object in RGB format,
whereas the second row shown the identical objects
but segmented. The four classes are cylinder, box,

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

854

bag, and robot frame. In each class, 1000 images
depict the segmented item. As assessment measures,
mIoU was employed.

Figure 5: Our custom dataset.

4.3 Own Architecture Evaluation

The results of the evaluation of the proposed PV-
CNN-based algorithm are shown in Table 3. The tests
were carried out using the own and the shapenet pub-
lic datasets. Because the IR field is missing from the
shapenet dataset and estimating it without knowing
the camera specifications is impossible, we utilized
the Red channel as IR, as it is the closest to IR. As a
clear conclusion, we can see how the fusion between
the IR and Depth image improves the design. As a
visual validation, we can see how adding an IR image
as a feature alongside the depth image improves the
results in the video1.

Table 3: Results obtained on own and shapenet dataset
with/without IR using a Jetson NX.

mIoU Depth mIoU Depth + IR
Own dataset 94.82 95.27
Shapenet dataset 83.69 83.87

4.4 Performance Evaluation and
Comparison

The results obtained for the presented three methods
(PointNet, Point Transformer, PV-CNN) evaluated
on different platforms (GTX 1060, Jetson NX, Co-
lab) with different datasets (S3DIS, NYU, ShapeNet,
Own) are shown in Table 2 and Table 3. We have
been measuring the time for training and evaluating
the image as well. During this time, the parsing of the
configuration file and loading of the model are also
calculated. For a better view of the results, best val-
ues across models for each dataset was outlined.

Our conclusions after analyzing the training and
evaluation outcomes are as follows: Point Trans-
former outperforms all other platforms and datasets
in terms of mIoU rankings. In terms of training time

1https://youtu.be/IrsOzx3VYXY

per image, PointNet is the most efficient, followed
by Point Transformer. For image evaluation time,
PointNet thrives on GTX 1060 and Colab platforms,
whereas PV-CNN performs best on the Jetson NX de-
vice with 18 FPS.

4.5 Training Details

The training was performed using the same batch size,
number of points, epochs and the same platform to
train and assess models for each method, even if we
could have trained the model on a high-performance
computer and subsequently assessed it on platforms
with lower computing capability (Jetson Xavier NX).
This technique was chosen because it allowed us to
observe the training and the evaluation times for each
platform at the same time.

5 SUMMARY

In this paper, we presented a comparison for the most
popular methods for embedded point cloud process-
ing at the moment, more precisely PointNet, Point-
Voxel CNN and Point Transformer. We tested these
approaches on a variety of datasets and platforms,
ranging from high-performance computers to embed-
ded devices. The tests were performed for object clas-
sification covering a wide range of datasets and al-
gorithms for embedded devices. Alongside, we pro-
posed a novel architecture for the Point-Voxel CNN
for pulse-based Time of Flight (ToF) cameras by com-
bining depth imaging with IR ones. The method was
tested on custom dataset as well as public datasets.

ACKNOWLEDGMENTS

The authors are thankful for the support of Ana-
log Devices GMBH Romania, for the equipment list
and NVidia for the DGX grade server offered as
support to this work. This work was financially
supported by the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project num-
ber PN-III-P2-2.1-PTE-2019-0367 and PN-III-P3-
3.6-H2020-2020-0060 and European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement No. 871295.

REFERENCES

Armeni, I., Sax, S., Zamir, A. R., and Savarese, S.
(2017). Joint 2D-3D-Semantic Data for Indoor Scene

3D Object Recognition using Time of Flight Camera with Embedded GPU on Mobile Robots

855

Understanding. Computing Research Repository,
abs/1702.01105.

Blaga, A., Militaru, C., Mezei, A.-D., and Tamas, L. (2021).
Augmented reality integration into mes for connected
workers. Robotics and Computer-Integrated Manu-
facturing, 68:102057.

Fooladgar, F. and Kasaei, S. (2020). A survey on indoor
RGB-D semantic segmentation: from hand-crafted
features to deep convolutional neural networks. Mul-
timedia Tools and Applications, 79(7):4499–4524.

Frohlich, R., Tamas, L., and Kato, Z. (2021). Absolute pose
estimation of central cameras using planar regions.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(2):377–391.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In International conference on ma-
chine learning, pages 448–456. PMLR.

Jiao, Y. and Yin, Z. (2020). A Two-Phase Cross-Modality
Fusion Network for Robust 3D Object Detection. Sen-
sors, 20(21).

Le, T. and Duan, Y. (2018). PointGrid: A Deep Net-
work for 3D Shape Understanding. Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 9204–9214.

Liu, Z., Tang, H., Lin, Y., and Han, S. (2019). Point-Voxel
CNN for Efficient 3D Deep Learning. In Conference
on Neural Information Processing Systems (NeurIPS).

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rec-
tifier nonlinearities improve neural network acoustic
models. In in ICML Workshop on Deep Learning for
Audio, Speech and Language Processing.

Nathan Silberman, Derek Hoiem, P. K. and Fergus, R.
(2012). Indoor Segmentation and Support Inference
from RGBD Images. In ECCV.

Oleksiienko, I. and Iosifidis, A. (2021). Analysis of voxel-
based 3D object detection methods efficiency for real-
time embedded systems.

Ophoff, T., Van Beeck, K., and Goedemé, T. (2019). Ex-
ploring RGB+depth fusion for real-time object detec-
tion. Sensors (Switzerland), 19(4).

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. Computing Research Repository,
abs/1706.02413.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medi-
cal image computing and computer-assisted interven-
tion, pages 234–241. Springer.

Shi, S., Jiang, L., Deng, J., Wang, Z., Guo, C., Shi, J., Wang,
X., and Li, H. (2021). PV-RCNN++: Point-Voxel Fea-
ture Set Abstraction With Local Vector Representation
for 3D Object Detection. pages 1–17.

Tamas, L. and Cozma, A. (2021). Embedded real-time peo-
ple detection and tracking with time-of-flight camera.
In Proc. of SPIE Vol, volume 11736, page 117360B.

Tamas, L. and Goron, L. C. (2014). 3D semantic inter-
pretation for robot perception inside office environ-
ments. Engineering Applications of Artificial Intel-
ligence, 32:76–87.

Tamas, L. and Jensen, B. (2014). Robustness analysis of 3d
feature descriptors for object recognition using a time-
of-flight camera. In 22nd Mediterranean Conference
on Control and Automation, pages 1020–1025. IEEE.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. (2015). 3D ShapeNets: A deep repre-
sentation for volumetric shapes. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
oral presentation.

Xu, Y., Tong, X., and Stilla, U. (2021). Voxel-based rep-
resentation of 3d point clouds: Methods, applications,
and its potential use in the construction industry. Au-
tomation in Construction, 126:103675.

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H.,
Lu, C., Huang, Q., Sheffer, A., and Guibas, L. (2016).
A scalable active framework for region annotation in
3d shape collections. SIGGRAPH Asia.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. (2021).
Point transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
pages 16259–16268.

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

856

