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Abstract: Microcalcification clusters (MCs) are one of the most important biomarkers for breast cancer and Digital 
Breast Tomosynthesis (DBT) has consolidated its role in breast cancer imaging. As there are mixed 
observations about MCs detection using DBT, it is important to develop tools that improve this task. 
Furthermore, the visualization mode of MCs is also crucial, as their diagnosis is associated with their 3D 
morphology. In this work, DBT data from a public database were used to train a faster region-based 
convolutional neural network (R-CNN) to locate MCs in entire DBT. Additionally, the detected MCs were 
further analyzed through standard 2D visualization and 3D volume rendering (VR) specifically developed for 
DBT data. For MCs detection, the sensitivity of our Faster R-CNN was 60% with 4 false positives. These 
preliminary results are very promising and can be further improved. On the other hand, the 3D VR 
visualization provided important information, with higher quality and discernment of the detected MCs. The 
developed pipeline may help radiologists since (1) it indicates specific breast regions with possible lesions 
that deserve additional attention and (2) as the rendering of the MCs is similar to a segmentation, a detailed 
complementary analysis of their 3D morphology is possible.  

1 INTRODUCTION 

Breast cancer is the type of cancer with higher 
incidence, among all cancers and both sexes, and it 
still represents the biggest cause of cancer mortality 
among women (Sung et al., 2021). The mortality rate 
from this disease has been decreasing is the last 
decades due to the new therapies and the 
implementation of screening programs for early 
detection (Tabár et al., 2019). 

The use of Digital Breast Tomosynthesis (DBT) 
has been confirming its potential to address the tissue 
overlapping limitations of Digital Mammography 
(DM), the gold standard for breast screening until 
recently. In fact, by including synthetic 
mammographies generated from DBT data, DBT 
alone is now used as a stand-alone modality to replace 
DM (Bernardi et al., 2016; Food and Drug 
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Administration (FDA) U.S. , 2013; Freer et al., 2017; 
Gilbert et al., 2015; Hofvind et al., 2018; Lång et al., 
2016; Zackrisson et al., 2018). DBT volume data can 
be analyzed in depth through several 2D slices 
(standard visualization slice-by-slice). This multi-
slice inspection leads to a longer analysis time 
(because instead of two images, radiologists have to 
inspect an average of sixty images per patient), which 
represent a problem in daily practice and screening 
environment (Caumo et al., 2018; Good et al., 2008; 
Gur et al., 2009). 

Computer-Aided Detection (CAD) systems based 
on DBT have been implemented and evaluated in an 
attempt to shorten the reading time while maintaining 
the radiologist performance. However, despite the 
efforts and improvements already achieved, due to 
the high false positive (FP) rates and low specificity, 
these CAD systems have not reached a level of 
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performance that can be translated into a true 
improvement in the real screening of breast cancer 
(Fenton et al., 2007; Katzen & Dodelzon, 2018; 
Lehman et al., 2015; Sechopoulos, Teuwen, & Mann, 
2020). 

On the other hand, a different type of 
visualization, such as 3D volume rendering (VR), 
may play an important complementary role in breast 
cancer diagnosis (Venson et al., 2017). With a 
visualization of the object through multiple angles, 
one of the advantages of VR is to provide an intuitive 
understanding of the underlying data at once. In 
addition, as VR yields a true depth perception 
(Suetens, 2009), it can help in the analysis of lesions 
such as microcalcification clusters (MCs), sometimes 
referred as harder to detect in DBT. These MCs are 
often spread across several slices in the slice-by-slice 
visualization, making the interpretation difficult. In 
this way, a better understanding of its true 3D 
morphology is important to differentiate between 
benign and malignant microcalcifications. 

In recent years, the increase in computational 
power and bigger datasets have allowed the 
development of algorithms for automatic object 
detection with deep learning. The region-based 
convolutional neural networks (R-CNNs) are one of 
the main current focuses of research and development 
of these methods (Girshick, Donahue, Darrell, & 
Malik, 2014). As R-CNN and its descendent “fast R-
CNN” (Girshick, 2015) are computationally 
expensive and extremely slow, another method has 
emerged: “Faster R-CNN” (Ren, He, Girshick, & 
Sun, 2015). With this object detection network, both 
the CNN-based regional proposals and the regional 
classification module are trained together with 
significant weight sharing, led to increased sensitivity 
for object detection and faster speed.  

The published studies that use deep CNNs to 
detect and localize lesions in DBT are still very 
limited. In fact, the few works that exist are related 
with the detection of soft tissue lesions (Buda et al., 
2020; Fotin, Yin, Haldankar, Hoffmeister, & 
Periaswamy, 2016; Lai, Yang, & Li, 2020; Samala et 
al., 2016). Regarding the use of Faster R-CNN in 
particular, (Fan et al., 2019) developed a CAD system 
for masses detection in DBT using a Faster R-CNN, 
which is later compared to a framework of a 3D-Mask 
R-CNN for mass detection and segmentation (Fan et 
al., 2020). (Li et al., 2021) propose a Faster R-CNN 
that uses mammary gland distribution as a prior 
information to detect architectural distortions in DBT. 

In this paper, a Faster R-CNN was trained for 
detecting MCs in DBT. The aim is to input a whole 
DBT image into the network and have a direct answer 

about the localization or absence of MCs. This 
information about the location is then introduced into 
a 3D VR visualization software so that a 3D volume 
of interest containing the predicted MCs can be 
obtained. A public simulated database was used and 
the preliminary results obtained are presented. To the 
best of our knowledge, this is the first study of 
automatic localization of MCs in whole DBT images 
and the first time the DBT output of a deep CNN is 
rendered and presented as a 3D volume of interest. 

2 MATERIALS AND METHODS 

This work was implemented on the MATLAB 
R2020a and a NVIDIA Quadro P4000 GPU computer 
was used. 

2.1 Database and Pre-processing 

The public database of Virtual Imaging Clinical Trial 
for Regulatory Evaluation (VICTRE) project which 
contains a total of 2986 virtual realistic patients 
imaged with DBT was used (Badano et al., 2018; 
VICTRE, 2018). This database contains cases 
without lesions (absent) and with malignant masses 
and MCs. For training, only cases with MCs were 
considered (915 in total: 665 complete breast images 
and 250 images containing only MCs) and for the 
testing, absent and MC cases were included (280 and 
284 complete breast images, respectively). Each case 
with lesion contains four MCs consisting of 5 
calcified lesions modelled as 195, 179, and 171 μm of 
solid calcium oxalate. 

In addition to the information about the presence 
or absence of MCs, in cases where MCs were present, 
information about the corresponding bounding boxes 
(BBs) was also given to the network. This 
information, in the form of x, y and z coordinates as 
well as width and height, is s in the VICTRE database. 

We adopted the usual distribution of breast 
density in the general population: 10% fatty, 40% 
scattered, 40% heterogeneous and 10% dense. The 
reconstructed cases have different dimension in x, y 
and z, depending on breast density: 1624 × 1324 ×62 , 1421 × 1024 × 57 , 1148 × 753 × 47  and 1130 × 477 × 38 for fatty, scattered, heterogeneous 
and dense breasts, respectively, with a voxel size of 0.085 × 0.085 × 1 𝑚𝑚ଷ. 

The data intensity was first normalized between 0 
and 1 and then squared to highlight the higher 
intensity values belonging to the MCs, while 
attenuate the lower ones. With this pre-processing 
step our aim was to specifically increase the contrast 
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of regions of higher intensities. In addition, through 
binarization and region growing operations, binary 
masks that keep information belonging to the breast 
and make everything else zero were created 
(background suppression).  

2.2 Faster R-CNN Object Detector 

Faster R-CNN is based on a CNN and a region 
proposal network (RPN) for detecting, localizing and 
classifying objects in an image. The CNN module 
(typically a pre-trained CNN), outputs a set of feature 
maps and, for that reason, it is also called feature 
extraction network. In our work, we used the ResNet-
18 model, trained on more than a million images from 
the ImageNet database ("ImageNet," 2021). The RPN 
is on top of the last convolutional layer of the CNN 
and it uses default bounding boxes (anchors) with 
different sizes and aspect ratios over the feature maps 
generated from pre-trained CNN in order to find 
objects with varying sizes and shapes. It is trained to 
output a set of object proposals on the image, each 
with an “objectness” score, regardless of the class of 
the object (it only looks if it is an object or 
background). The boxes with the highest score are 
called region proposals and are introduced in another 
branch of the network were they are resampled to a 
fixed size (ROI Pooling) and, typically using few 
fully connected layers, the class of the object present 
in the boundary boxes is determined. Further details 
about Faster R-CNN can be found in the original 
paper (Ren et al., 2015). The main parameters used to 
define our Faster R-CNN are presented in Table 1. 

Table 1: Parameters used to design the Faster R-CNN. 

Input size 224x224x3 
Anchor Boxes 42x27; 63x45; 45x41 
Pre-trained CNN ResNet-18 

2.3 Faster R-CNN Training 

The Faster R-CNN was trained using the end-to-end 
method, where the RPN and the region classification 
networks were trained simultaneously along 660k 
iterations. Table 2 presents the main training options 
defined for this work.  

During training, several regions of the image are 
processed from the training database. The positive 
and negative overlap range properties control which 
image regions are used for training. This overlap ratio 
is defined as the Intersection over Union (IoU) metric 
that describes the extent of overlap between two 
boxes (ground truth and predicted BB). The greater 

the region of overlap, the greater the IOU. The model 
was trained to minimize the mean square error loss 
between the predicted BBs and the ground truth using 
the Stochastic Gradient Descent optimizer 
(MathWorks, 2021).  

Table 2: Options used to train the Faster R-CNN. 

Solver Stochastic Gradient 
Descent w momentum

Momentum 0.9 
Size of mini-batch 1 
Learning rate 1e-3 
Factor for L2 regularization 5e-4 
Training method End-to-end
Positive Overlap Range [0.3 1] 
Negative Overlap Range [0 0.1] 

To prevent overfitting, each image in the training 
set was augmented by random reflection in the left-
right direction and rotation between -20º and 20º. In 
addition, a L2 regularization term for the weight decay 
was introduced in the loss function. 

2.4 Evaluation Metrics 

The network's ability to accurately detect and locate 
the MCs was evaluated through the Free-response 
Receiver Operating Characteristic (FROC) curve 
(Bunch, Hamilton, Sanderson, & Simmons, 1977). 
To obtain a point on the FROC curve, a threshold 
value is fixed and only the findings that have scores 
above that threshold are selected. Then the sensitivity 
(true positive fraction) and mean number of FPs per 
image are determined. 

2.5 Data Visualization 

Figure 1 shows the scheme followed during and after 
Faster R-CNN training. A testing set is evaluated for 
the detection of MCs using the trained Faster R-CNN 
and the output results (predicted BBs) are visualized. 
In addition to the standard 2D visualization, the output 
detection was also analyzed through 3D visualization 
with VR. The 2D visualization was performed by 
calculating the 2D maximum intensity projection 
(MIP) considering the slice where the cluster was 
detected and the four adjacent slices (two down and 
two up). The 3D visualization was performed through 
VR with 3D MIP considering the same slices. 

The Visualization Toolkit library (VTK) version 
7.1.0. (Kitware, New York, EUA) (Schroeder, 
Martin, & Lorensen, 2006; VTK, 2020) was used to 
develop 3D specific software in order to visualize 
DBT data through VR. The opacity/color transfer 
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Figure 1: Pipeline followed for connection between the output of the trained Faster R-CNN and the volume rendering 
visualization of the detected object. 

functions for an adequate rendering of these data were 
calculated accordingly to previous work (Mota, 
Clarkson, Orvalho, Almeida, & Matela, 2020). 

In VR, changing the azimuth of a camera rotates 
its position around the focal point (Schroeder et al., 
2006) allowing an immediate notion of the entire 
volume in 3D. In this way, the volume of interest 
containing the detected MCs is presented from 
several angles (from 0º to 90º). 

3 RESULTS 

The training of 660k iterations was performed during 
12 days. The analysis of one test image was done in 
0.6 seconds (mean time) and for an entire DBT 
volume our Faster R-CNN needed, on average, 29 
seconds (depending on the size). 

3.1 Faster R-CNN Detection 

Figure 2 presents the FROC curve for the performance 
of the training model to accurately detect and locate the 
MCs for several thresholds. In addition, the 
discriminative sensitivity values obtained for less than 
8 FP /image are detailed in the Table 3. 

3.2 Data Visualization 

Four examples of detection output, including the FPs 
(yellow) and true positives (green) BBs, obtained 

with a threshold of 0.9 are presented in Figure 3. The 
corresponding score is also shown. As described, 
each detected MC is presented through two 
visualization modes: 2D slice-by-slice and 3D VR. 
As 3D VR is inspected through several angles (0, 
22.5º, 45º, 67.5º and 90º), 2D MIP slice-by-slice is 
presented using xy and xz representations for 
comparison with VR 0º and 90º, respectively.  

 
Figure 2: The FROC curve for the test dataset. 

Table 3: The sensitivity values for less than 8 FP/image. 

Sensitivity 
(%) FP/image # MCs 

detected 
# MCs 

undetected 
40 0.1 125 159
47 0.2 146 138
51 0.8 158 126
54 1.8 170 114
57 2.7 178 106
59 3.2 184 100
61 4.8 186 98
62 5.7 194 90
66 7.8 206 78
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Figure 3: Example of four detection outputs obtained with a threshold of 0.9. Green: Ground truth BB; Yellow: predicted BB 
(without score: FPs, with score: true positives). The predicted results are visualized with 2D slice-by-slice represented through 
xy and xz planes and 3D VR with five different angles (0º, 22.5º, 45º, 67.5º and 90º). 
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In Figure 4 (a) are presented four examples of 
missed detections (false negatives) and on Figure 4 
(b) four incorrect detections (FPs). The detection 
results are then visualized through 2D slice-by-slice 
and 3D VR at xy and 0º, respectively. 

Visualization with 3D VR is very flexible and 
includes parameters that can significantly change its 
appearance, as is the case of transfer functions. The 
Figure 5 shows the displays of four detected MC 
obtained with 2D visualization and 3D VR using two 
different transfer functions. 

4 DISCUSSION AND 
CONCLUSIONS 

In this work, a Faster R-CNN detector was trained to 
detect MCs in DBT data and the preliminary results 
obtained were analyzed through two different forms 
of visualization: standard 2D slice-by-slice and 3D 
VR specifically developed for DBT. VR is presented 
as a supplementary visualization of the detected MCs, 
providing a more detailed and high quality 
complementary information. 

A DBT dataset from the publicly available 
database at The Cancer Imaging Archive website 
(VICTRE, 2018) was used. The train dataset 
consisted in entire DBT images and also some regions 
of interest containing only the MCs. These smaller 
regions were included because the DBT images are 

much bigger than the ground truth boxes of MCs, 
reaching ratios of 30:1. As the size of the images was 
not changed in order keep the necessary spatial 
resolution to see the small microcalcifications, it was 
important to have training inputs with an emphasis on 
the object to be detected. Nevertheless, the test 
dataset only contains entire images, as happens in 
clinical or screening practice. 

In this type of lesion detection task, the time 
required for the detector to give an answer about the 
input data is very important because it should be 
useful in real time clinical practice. 29 seconds to 
analyze a volume of DBT data (which can comprise 
~130 million voxels) is reasonable but this value can 
be improved using computers with greater power. 
Also, this time is highly influenced by the feature 
extraction network. For this reason, in this 
preliminary work, we chose a network with a 
reasonable balance between time and accuracy 
(ResNet-18). However, other pre-trained networks 
that may show better results and different detection 
times should be studied. 

The most used metric to analyze the performance 
of this type of detector is the FROC curve. The results 
obtained with this curve in Figure 2 and Table 3 reveal 
that it was possible to achieve a sensitivity of around 
60% with 4 FP/image. These preliminary results are 
promising but need further improvement by adding 
more training data, optimizing some network parame-
ters, training over a greater number of iterations and, as 
already mentioned, using different pre-trained CNNs. 

 

 
Figure 4: Example of four missed detections (false negatives) and four incorrect detections (FPs). The BB are visualized 
thourgh 2D slice-by-slice in xy and 3D VR ar 0º. 
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Figure 5: Example of four detection outputs. Green: Ground truth BB; yellow: predicted BB. The predicted results are 
visualized with 2D MIP slice-by-slice represented through xy and xz planes and 3D VR with two different angles (0º and 90º). 
Each 3D VR was obtained using two different transfer functions, allowing different levels of MC segmentations. 
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The output results of Figure 3 were obtained by 
using a threshold of 0.9 (i.e., only scores above 0.9 
were considered), which corresponds to a sensitivity 
of about 50% for 0.8 FP/image. Four examples of 
output from the Faster R-CNN were presented. The 
number of FP found for this threshold (yellow BBs 
without a score) varies from three (in the first case) to 
zero (in the third and fourth case). The correctly 
detected MCs by the yellow BBs with scores that 
overlap the true BBs (green) were observed using the 
two mentioned visualization methods. In general, the 
MCs have a reasonable visibility in the xy plane with 
the 2D MIP slice-by-slice over five adjacent slices but 
are distorted in xz, losing some definition due to the 
larger voxel size in z. The 3D VR at 0º and 90º can be 
directly compared with the 2D visualization in the xy 
and xz planes, respectively. For all cases, there is 
better contrast and less noise in the VR at 0º, with 
better discernment of the MCs. This superior 
definition is noticeable when comparing the VR at 90º 
with the xz plane of the 2D visualization. In the VR at 
90º there is a clear discrimination of the MCs, and it 
is possible to observe quite clearly the calcifications 
individually and with some degree of reality. 

It is also important to analyze some situations 
where the detection was not correct (Figure 4). In the 
case of false negatives, there were prominent lesions 
that the algorithm did not detect (Figure 4 (a) last 
column) and others where the MCs were somehow 
masked, making their detection difficult (Figure 4 (a) 
third column). In the case of FPs, in fact, there were 
some situations where, even to the human eye, doubt 
could be raised (Figure 4 (b) second and third 
column). But, in the remaining situations, there is 
essentially a spiculated noise that was interpreted as 
MC. It is therefore important to further improve the 
quality of detection. 

On the other hand, the flexibility of visualization 
using VR is demonstrated with the images in Figure 
5. In addition to have the spatial distribution in the 
three directions (x, y and z), with different transfer 
functions we can filter the data to a greater or lesser 
extent and, thus, segment better some lesions, such as 
MCs. The transfer functions used in this work have 
the opacity/color on the y-axis and the intensity 
values on the x-axis. For intensities below a "A" value 
the object data is transparent, while intensity values 
above "B" (A<B) correspond to completely opaque 
voxels. Between A and B the opacity values follow a 
linear distribution. From transfer function 1 to 
transfer function 2 (Figure 5) the value of B has been 
increased to reduce the contribution to the 
visualization of objects with lower intensities, making 
those with higher intensities stand out, such as MCs. 

In his way, it was possible to obtain a "cleaner" 
visualization, as seen in Figure 5 in column of the 
transfer function 2. This rendering parameter is a 
great advantage in noisy data as can be seen in the last 
case of Figure 5. 

During training, no distinction was made between 
the different types of breast density. However, 
different densities correspond to data with slightly 
different histograms. In the detection/analysis step, it 
is important to understand if the detector behaves in 
the same way for different densities (for example, it 
is known that some lesions are more difficult to detect 
in dense breasts than in fat breasts). From the 
comparison made between the detection and 
visualization of the four density groups, we can infer 
that there were no differences between them. 

As already mentioned, as far as we know, this is 
the first work about MCs detection and localization in 
a whole DBT image using deep learning CNNs such 
as Faster R-CNN. Of the few published works found 
in this area, all refer to soft tissue as masses. (Fan et 
al., 2019) developed a CAD system for the 
prescreening of ROIs and discrimination of true 
masses and FPs in DBT using a Faster R-CNN. For 
lesion-based mass detection, the sensitivity of their R-
CNN based CAD was 90% at 1.54 FP/volume. Later, 
the same group, compared this work to a framework 
of a 3D-Mask R-CNN for mass detection and 
segmentation (Fan et al., 2020). For lesion-based 
mass detection, the sensitivity of the 3D-Mask R-
CNN based CAD (segmentation) was 90% with 0.8 
FPs/lesion, whereas the sensitivity of the Faster R-
CNN based CAD was 90% at 2.37 FPs/lesion. (Buda 
et al., 2020) developed a single-phase deep learning 
detection model for masses and architectural 
distortions and achieved a sensitivity of 65% at 2 
FPs/breast. (Li et al., 2021) propose a very interesting 
work on Faster R-CNN that uses mammary gland 
distribution as a prior information to detect 
architectural distortions in DBT and achieved a 
sensitivity of 80% at 1.85 FPs/volume for all 
architectural distortions types. 

A fair and direct comparison between our results 
and these published data is not possible because they 
analyze completely different lesions, those are 
already optimized studies and of different 
characteristics (for example, some use ROIs and not 
the whole image to locate the lesions). Furthermore, 
although architectural distortions are quite difficult to 
locate, masses are more reasonable. Although masses 
have densities similar to the rest of the breast tissue 
and are often camouflaged, they are larger than 
microcalcifications, facilitating training and learning. 
It is possible to use images with less resolution and 
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train more complex networks faster. Thus, we cannot 
make a comparison between our results and those 
already published, but we can conclude that, despite 
our high FP values in this preliminary study, there is 
potential to improve and achieve results similar to 
those of the masses. 

In conclusion, taking into account the preliminary 
results presented, we conclude that detection and 
location of MCs in DBT can be automatically 
achieved using Faster R-CNN and visualization of 
these results can benefit from another approach such 
as 3D VR. 
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