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Abstract: The article substantiates a generative model for autoencoders, learning by the input image representation 
based on a sample of random counts. This representation is used instead of the ideal image model, which 
usually involves too cumbersome descriptions of the source data. So, the reduction of the ideal image concept 
to sampling representations of fixed (controlled) size is one of the main goals of the article. It is shown that 
the corresponding statistical description of the sampling representation can be factorized into the product of 
the distributions of individual counts, which fits well into the naive Bayesian approach and some other 
machine learning procedures. Guided by that association the analogue of the well-known EM algorithm – the 
iterative partition–maximization procedure for generative autoencoders is synthesized. So, the second main 
goal of the article is to substantiate the partition–maximization procedure basing on the relation between 
autoencoder image restoration criteria and statistical maximum likelihood parameters estimation. We succeed 
this by modelling the input count probability distribution by the parameterized mixtures, considering the 
hidden mixture variables as autoencoder’s internal (coding) data. 

1 INTRODUCTION 

Machine learning methods have been attracting the 
attention of researchers for more than half a century. 
The first methods and approaches were largely 
borrowed / adapted from the statistical theory, whose 
foundations were established about a hundred years 
ago, primarily by the works of R. Fisher. Discoveries 
in related fields in the middle of the XX-th century, 
primarily in neuropsychology, greatly influenced the 
development and originality of machine learning. We 
note in this connection the McCulloch and Pitts 
model of the neuron (1943) and the Hebb’s rule for 
the perceptron (1949). This was followed by a 
relatively long period of experience accumulation and 
analysis of the possibilities of implementing network 
learning methods on computers. A breakthrough in 
this direction was the invention in the mid-1980s by 
Rumelhart, Hinton, and Williams of the error 
backpropagation algorithm for training neural 
networks (1986). 

Over the past 30-40 years, the evolution of neural 
networks has come a long way. Along with the 
supervised approaches, unsupervised ones began to 
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develop, deep learning is gaining more importance. 
Under the influence of these trends, several new 
classes of neural networks have appeared and 
developed. Note here DBNs (Deep Belief Networks), 
CNNs (convolutional neural networks), RNNs 
(recurrent neural networks), as well as LSTMs (Long 
Short-Term Memory) and AEs (autoencoders). 

Without exaggeration, autoencoders are at the 
forefront of unsupervised learning. This is partly due 
to the symmetry of their architecture, which is a 
coupled codec pair. In non-AE approaches, where 
either an encoder or a decoder is absent, expensive 
optimization algorithms should be used to find the 
code or sampling techniques to achieve restoration. In 
contrast to them, AE contains both elements in its 
structure, moreover, encoder and decoder actively 
influence the solution of each other's problems. 

In this work, we propose a new approach to 
learning AE by the images presented in a special way 
– by special sampling representations. The first half 
of the paper discusses in detail the relation of 
sampling representation with the ideal image model. 
The second part of the paper is devoted to learning 
AE in generative model using the sampling 
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representations at the input. The questions of 
generative model formalization, encoding/decoding 
procedures optimization and their connection to the 
method of maximum likelihood estimation in 
statistical theory are considered in detail. 

2 IMAGE SAMPLING 
REPRESENTATION 

In several previous papers (Antsiperov, 2021 a, b) we 
proposed the representation of images by the samples 
of random counts (basing on counting statistics (Fox, 
2006)). This approach was partially substantiated in 
(Seitz, 2011) by the physical mechanisms of the real 
image formation and detection. 

Today’s relevance of the proposed representation 
is due, on the one hand, to progress in the SPAD 
(single photon avalanche diodes) video matrixes, that 
register radiation in the form of a discrete set of 
photocounts (Fossum, 2020), (Morimoto, 2020). On 
the other hand, it is due to the ever-increasing trends 
in the adaptation of human visual perception 
mechanisms for digital image processing (Beghdadi 
2013), (Rodieck, 1998).  

Both of the tendences mentioned incorporate 
several common features. The SPAD-matrixes, as 
well as human retina include some sensitive 2D-
surface, which consists of a very large number of 
detectors/receptors. These detectors are so small, that 
each of them can detect the individual photon of the 
incident radiation. The detailed, comprehensive 
review of these trends in modern photon-counting 
sensors can be found in the book (Fossum, 2017). The 
use of visual perception mechanisms for digital image 
processing is widely discussed in (Gabriel, 2015). So, 
the listed features can be taken as the basis of the 
concept of the ideal imaging device, generalizing 
besides the photon-counting sensors mentioned also 
the photographic plates with gelatin-silver emulsion, 
etc. 

Formally, the definition of an ideal imaging 
device is as follows. It is a two-dimensional surface 
𝛺 with coordinates 𝑥⃗ ൌ ሺ𝑥ଵ, 𝑥ଶሻ, on which identical 
point detectors are allocated close to each other. Point 
detectors, or in terms of (Fossum, 2020) "jots", have 
by a definition a vanishingly small area 𝑑𝑎 of light-
sensitive surfaces. Accordingly, if the total number of 
detectors is 𝑁, then the total area of surface 𝛺 is equal 
to 𝐴 ൌ 𝑁𝑑𝑎 . Under the assumption that 𝐴  is fixed 
and 𝑑𝑎 → 0 , the number 𝑁  is assumed to be 
arbitrarily large: 𝑁 → ∞.  

When the ideal imaging device registers the 
stationary radiation with intensity 𝐼ሺ𝑥⃗ሻ, 𝑥⃗ ∈ 𝛺, some 
of point detectors generate the counts – random 
events that in the case of SPAD matrixes are the 
releases of an electron from p-n junction of the 
photodiode, in the case of retina  activations of 
rhodopsin molecules in photoreceptors and in the case 
of photographic plates  appearing of metallic silver 
atom clusters in or on a silver halide crystal. Within 
the framework of the semiclassical theory of 
interaction between radiation and matter, the counts 
are associated with incident photons captured by 
atoms / molecules of the detector's material. At the 
limit 𝑑𝑎 → 0  the probability of a count (in any 
interpretation) for a given point detector is the 
product 𝛼𝑇𝐼ሺ𝑥⃗ሻ𝑑𝑎 , where 𝛼 ൌ 𝜂ሺℎ𝜈̅ሻିଵ , ℎ𝜈̅   the 
average energy of the incident photon (ℎ  Planck's 
constant, 𝜈̅   characteristic frequency of radiation), 
the dimensionless coefficient 𝜂 ൏ 1 is the quantum 
efficiency of the detector’s material (Fox, 2006), 𝑇 is 
exposure time. Thus, when the incident radiation of 
intensity 𝐼ሺ𝑥⃗ሻ  is registered, the state of each point 
detector  𝑥⃗ ∈ 𝛺  can be described by a binary random 
variable 𝜎௫⃗ ∈ ሼ0, 1ሽ , taking the values 𝜎௫⃗ ൌ 1  and 
𝜎௫⃗ ൌ 0 , depending on whether has the detector 
generate a count. The conditional (at a given intensity 
𝐼ሺ𝑥⃗ሻ) probabilities of 𝜎௫⃗ have the form of Bernoulli 
distribution: 

𝑃ሺ𝜎௫⃗ ൌ 1|𝐼ሺ𝑥⃗ሻሻ ൌ 𝛼𝑇𝐼ሺ𝑥⃗ሻ𝑑𝑎,   
𝑃ሺ𝜎௫⃗ ൌ 0| 𝐼ሺ𝑥⃗ሻሻ ൌ 1 െ 𝛼𝑇𝐼ሺ𝑥⃗ሻ𝑑𝑎.

 (1)

Note that, according to (1), formally, the mean 
number of counts for given point detector 𝑥⃗ is equal 
to 𝜎ത௫⃗ ൌ 𝛼𝑇𝐼ሺ𝑥⃗ሻ𝑑𝑎  (it is assumed, that 𝜎ത௫⃗ ൏ 1 ). 
Accordingly, the integral 𝑛ത ൌ ∑ 𝜎ത௫⃗௫⃗∈ఆ ൌ
𝛼𝑇 ∬ 𝐼ሺ𝑥⃗ሻ𝑑𝑎

ఆ
 defines the mean number of all 

registered over time 𝑇 counts.  
Based on the concept of an ideal imaging device 

and considering the main features of its registration 
mechanism (1), it is possible to formulate a model of 
an ideal image as a resultant set of counts, generated 
during the registration process. Namely, under the 
ideal image we mean the (ordered) set 𝑋 ൌ
ሺ𝑥⃗ଵ, … , 𝑥⃗௡ሻ,  𝑥⃗௜ ∈ 𝛺  of 𝑛  random counts registered 
(𝜎 ௫⃗೔

ൌ 1) by the ideal imaging device during the time 
𝑇. Thus, an ideal image is a kind of random object, a 
random set of count coordinates  𝑥⃗௜ ∈ 𝛺 , which 
should be distinguished from any of its realization. 
We use the name "ideal image" for the proposed 
construction, following the authors of (Pal, 1991), in 
which they introduced this term for the first time in 
the early 90s. It is worth noting that the randomness 
of the ideal image is related not only to the random 

Generative Model for Autoencoders Learning by Image Sampling Representations

355



nature of count coordinates 𝑥⃗௜ , but also it is 
determined by the random value of 𝑛 – the number of 
counts in the set. 

A complete statistical description of ideal image 
𝑋  in the form of finite-dimensional probability 
distribution densities ൛𝜌൫𝑥⃗ଵ, … , 𝑥⃗௡, 𝑛|𝐼ሺ𝑥⃗ሻ൯ൟ,  𝑥⃗௜ ∈
𝛺, 𝑛 ൌ 0,1, . ..  can be obtained by assuming 
conditional independence of all counts 𝑥⃗௜ (under the 
condition of the given 𝐼ሺ𝑥⃗ሻ and 𝑛). It is well known 
(Poisson’s theorem, (Gallager, 2013)), that under 
such assumptions, asymptotically, with 𝑁 → ∞  the 
probability distribution of Bernoulli process (trial) 
ሼ𝜎௫⃗ሽ, 𝑥⃗ ∈ 𝛺  (1) converges to the Poisson process 
distributions (Streit, 2010) on 𝛺: 

𝜌൫𝑥⃗ଵ, … , 𝑥⃗௡, 𝑛|𝐼ሺ𝑥⃗ሻ൯ ൌ

∏ 𝜌൫𝑥⃗௜|𝐼ሺ𝑥⃗ሻ൯௡
௜ୀଵ ൈ 𝑃௡ሺ𝑊ሻ

  , 
 

(2)

where  

𝑃௡ሺ𝑊ሻ ൌ
ሺఈ்ௐሻ೙

௡!
expሺെ𝛼𝑇𝑊ሻ ,

𝜌൫𝑥⃗௜|𝐼ሺ𝑥⃗ሻ൯ ൌ
ூሺ௫⃗೔ሻ

ௐ
, 𝑊 ൌ ∬ 𝐼ሺ𝑥⃗ሻ𝑑𝑎

ఆ

  

where 𝑃௡ሺ𝑊ሻ is the Poisson probability distribution 
(Gallager, 2013), (Streit, 2010) of 𝑛  – number of 
counts in ideal image 𝑋, 𝑛ത ൌ 𝛼𝑇𝑊 is its mean, 𝑊 is 
the overall registered radiation power. Conditional  
𝜌൫𝑥⃗|𝐼ሺ𝑥⃗ሻ൯ is the density of single count probability 
distribution. In connection with (2), it is interesting to 
note that the (statistical) intensity of 2D point Poisson 
process 𝜎ത௫⃗ 𝑑𝑎⁄  coincides with the physical intensity 
𝐼ሺ𝑥⃗ሻ of the recorded radiation up to the constant 𝛼𝑇. 

From the theoretical point of view the concept of 
an ideal image is a very attractive statistical object 
due to the simplicity of its statistical description (2) 
and its interpretation as an inhomogeneous point 
Poisson process that had been well studied for a long 
time. However, in practical tasks it is not always 
possible to use this concept directly in the form in 
which it is formulated. Namely, for common recorded 
radiation intensities 𝐼ሺ𝑥⃗ሻ, the direct use of the ideal 
image realization 𝑋 ൌ ሺ𝑥⃗ଵ, … , 𝑥⃗௡ሻ  would require 
enormous computational resources when the number 
of counts 𝑛 is big enough. So, considering that on a 
clear day the flux of photons from the sun falling on 
a surface with 𝐴 ~ 1 𝑚𝑚ଶ  per second is of order 
~ 10ଵହ െ  10ଵ଺ photons (Rodieck, 1998), the devices 
in a photon counting mode will generate the 
information flow of the value of 𝑛ത ~ 10ଵହ(1 Pbit/sec). 
Obviously, it is very problematic to process such 
information with the modern computing technique.  

To avoid the "curse of dimension" of ideal image 
representation, we propose the following solution 

(Antsiperov, 2021 a). Let us represent the image not 
by the complete sets of ideal image counts 𝑋 ൌ
ሺ𝑥⃗ଵ, … , 𝑥⃗௡ሻ , but only by some subset 𝑋௞ ൌ
൫𝑥⃗௝భ, … , 𝑥⃗௝ೖ

൯, 𝑗௜ ∈ ሼ1, … , 𝑛ሽ of acceptable fixed size 
𝑘 , where 𝑥⃗௝೔

 are randomly selected counts from 𝑋 . 
Formally, considering 𝑋  as a general population of 
counts, we propose to use only a random sample 𝑋௞ 
of them to represent the image. Obviously, in full 
agreement with the classical statistical paradigm, 
such a "sample" representation will still represent the 
ideal image 𝑋 . Let us name such a sample 𝑋௞ 
"representation by a sample of random counts" or, in 
short, the sampling representation. 

The statistical description of sampling 
representation follows easily from (2) by integrating 
density 𝜌൫𝑥⃗ଵ, … , 𝑥⃗௡, 𝑛|𝐼ሺ𝑥⃗ሻ൯ over the not selected in  
𝑋௞ count coordinates and summing the result over the 
number 𝑙  of not selected counts. In the actual case 
1 ≪ 𝑘 ≪ 𝑛ത  the statistical description of sampling 
representation 𝑋௞ is given with high accuracy by the 
probability distribution density of the form: 

𝜌൫𝑋௞|𝐼ሺ𝑥⃗ሻ൯ ൌ ∏ 𝜌 ቀ𝑥⃗௝|𝐼ሺ𝑥⃗ሻቁ௞
௝ୀଵ ,

𝜌 ቀ𝑥⃗௝|𝐼ሺ𝑥⃗ሻቁ ൌ
ூ൫௫⃗ೕ൯

ௐ
, 𝑊 ൌ ∬ 𝐼ሺ𝑥⃗ሻ𝑑𝑎

ఆ
.
  (3)

Regarding description (3), it should be noted that 
it has very simple structure, depending only on the 
shape (normalized version) of the registered intensity 
𝐼ሺ𝑥⃗ሻ 𝑊⁄ . This immediately leads to some attractive 
representation properties. First, it reveals the 
conditional independence of all 𝑘 counts 𝑥⃗௝ and their 
identical conditional distribution (iid property). 
Second, the density of the individual count 
𝜌൫𝑥⃗௝ |𝐼ሺ𝑥⃗ሻ൯ is very simply related to intensity 𝐼ሺ𝑥⃗ሻ of 
radiation – they are proportional to each other. Third, 
the description satisfies the following universality 
property: it does not depend either on the quantum 
efficiency of the detector material 𝜂 , or on the 
incident radiation average frequency 𝜈̅ , or on frame 
time 𝑇 . These sampling presentation properties 
provide a convenient, suitable input data for many 
well–developed statistical and machine learning 
approaches, including the naive Bayesian approach 
(Barber, 2012).  

A consequence of the universality property is also 
the fact that statistical description of the sampling 
representation (3) does not depend on physical units 
of intensity 𝐼ሺ𝑥⃗ሻ. So, if, for example, the intensity 
𝐼ሺ𝑥⃗ሻ  is given by pixels of some bitmap image, 
obtained by digitization with a quantization 
parameter 𝑄 ൌ Δ𝐼 , then description (4) will not 
directly dependent on 𝑄, but it will depend only on 
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the pixel color depth 𝜐.  This remark allows to 
generate sampling representations not only for the 
source data of the photon counting sensors, but also 
for common digital images obtained by traditional 
camera. To do this, one should use the all-image 
pixels ሼ𝑛௜ሽ  to form an approximation 
𝑛௜ ∑ 𝑛௜ ൎ 𝐼ሺ𝑥⃗௜ሻ 𝑊⁄⁄  of the original normalized 
intensity and then simulate the process of sampling 
independent counts from it according (3). Regarding 
the computational organization of sampling, 
fortunately, in the field of machine learning, there is 
a large arsenal of methods, collectively called Monte 
Carlo methods (Murphy, 2012), that can do this very 
efficiently.  

It should be noted that for some methods even 
pixels ሼ𝑛௜ሽ normalization is not required at all – it is 
sufficient that all pixels are bounded from above by 
the constant 2జ , where 𝜐  is the color depth of the 
image. For example, Figure 1 shows count 
representations of the picture “cameraman” 
(distributed by the MathWorks, Inc. with permission 
from the MIT), presented in subfigure A. The 
sampling representations with sizes 500 000, 
1 000 000 and 5 000 000, 1 000 000 and 5 000 000 
counts – B, C and D were carried out by one of the 
simplest sampling procedures – acceptance-rejection 
method using a uniform proposal distribution. 

3 LEARNING AE BY SAMPLING 
REPRESENTATIONS 

Usually, autoencoders (AE) are considered as a 
special class of artificial neural networks (ANNs) 
(Hinton, 1994), but for our purposes it is desirable to 
define them from a more general point of view. 
Namely, we will consider AEs as a special class of 
information systems, understood as an "integrated set 
of components for collecting, storing and processing 
data" (Information system. In Encyclopedia 
Britannica, 2020). In current context, the processing 
data means the images. As usual, AEs have a 
symmetric three-tier input-code-output structure, as 
shown in Figure 2, where the middle tier is for 
encoding the input data. Pairs of adjacent tiers make 
up two reciprocal components: input-code as an 
encoder and code-output as a decoder (Goodfellow, 
2016). The goal of AE is to restore the input data to 
the output, while observing certain restrictions 
imposed on the internal encoding. Because of these 
restrictions, it is not allowed to simply copy data from 
input to output. Typical restrictions are related to a 
dimensionality reduction of intermediate (coding) 
 

 

Figure 1: Representation of the “cameraman” image by 
samples of random counts: A – the original image in TIF 
format, B, C, D – sampling representations of the sizes, 
respectively, 500 000, 1 000 000 and 5 000 000 counts. 

data, which excludes input-output bijection. The 
presence of such a bottleneck on the one hand and the 
main AE task on the other hand implies some optimal 
coding for intermediate data. 

In the light of modern approaches, such a coding 
can be synthesized basing on unsupervised AE 
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learning. Note that although the term "autoencoder" 
is currently the most popular term, due to the very 
broad scope of given definition, it can also be used 
synonymously with auto-associative memory 
networks (Kohonen, 1989), replicator ANN (Hecht-
Nielsen, 1995), etc.  

 

Figure 2: Schema of a basic Autoencoder. 

To formalize the AE problem, let us present its 
general mathematical frame (Baldi, 2012). We 
assume the following. First, the sets 𝒢  of images 
𝐼ሺ𝑥⃗ሻ, 𝑥⃗ ∈ 𝛺 and ℱ of internal images representations 
(code) ℎሬ⃗  are given (see Figure 2). Second, the classes 
of operators 𝑓: 𝒢 → ℱ  (encoders) and 𝑔: ℱ → 𝒢 
(decoders), agreed in dimensions with ℱ  and 𝒢 and 
with the given restrictions are specified. Third, a 
numerical measure of distortion between the image 
𝐼ሺ𝑥⃗ሻ and some of its reconstruction 𝐼௥ሺ𝑥⃗ሻ is available 
– the so-called loss function 𝐿ሺ𝐼ሺ𝑥⃗ሻ, 𝐼௥ሺ𝑥⃗ሻሻ 
(Goodfellow, 2016). Within this framework, the main 
problem of AE is to minimize the loss function with 
respect to the encoder 𝑓 and decoder 𝑔 operators:  

ሼ𝑓∗, 𝑔∗ሽ ൌ 𝑎𝑟𝑔 min
௙,௚

𝐿ሺ𝐼ሺ𝑥⃗ሻ,   𝑔 ∘ 𝑓ሺ𝐼ሺ𝑥⃗ሻሻሻ. (4)

Any solution 𝑓∗ (5) would be considered as the 
desired coding for the optimal restoration 𝑔∗of the 
image. Unfortunately, solving (4) in its most general 
form is an unrealistic task. Therefore, in the study of 
practical problems, it is necessary to specify the 
elements of the general AE framework. Different 
kinds of AEs can be derived depending on the choice 
of sets 𝒢 and ℱ, special classes of operators 𝑓 and 𝑔  
and the explicit form of loss function 𝐿 . If, for 
example, 𝒢 and ℱ are linear spaces of dimensions 𝑛 
and 𝑝  respectively, 𝑓  and 𝑔  are appropriate linear 
operators ( ሺ𝑛 ൈ 𝑝ሻ and  ሺ𝑝 ൈ 𝑛ሻ matrixes) and 𝐿 is a 
𝐿ଶ  norm  ‖𝐼ሺ𝑥⃗ሻ െ 𝐼௥ሺ𝑥⃗ሻ‖ଶ

ଶ  in 𝒢 , we get a linear 
autoencoder. It is interesting to note that a linear 
autoencoder results in the same internal data 
representation ℎሬ⃗  as the principal component analysis 
(PCA) (Plaut, 2018). Moreover, it is easy to 

generalize the PCA to nonlinear NLPCA, if weaken 
the linearity condition for the encoder 𝑓: 𝒢 → ℱ . 
Such (nonlinear) AEs can learn a non-linear 
manifolds for coded data instead of finding a low 
dimensional approximating hyperplane.  

In our case, the images are specified by sampling 
representations 𝑋௞ ൌ ሺ𝑥⃗௜ሻ , 𝑖 ൌ 1, … , 𝑘 , generated 
according to the probability distribution density of the 
counts 𝜌൫𝑥⃗|𝐼ሺ𝑥⃗ሻ൯, which is uniquely related to the 
registered intensity 𝐼ሺ𝑥⃗ሻ (3). So, it is quite reasonable 
to consider the set 𝒢 as the set of probability densities 
ሼ𝜌ሺ𝑥⃗ሻሽ on the image surface 𝑥⃗ ∈ 𝛺. This immediately 
brings us to the generative models for autoencoders 
(Goodfellow, 2016). In contrast to the traditional AE, 
which are most naturally interpreted as the 
regularization schemes, autoencoders in generative 
paradigm consider the internal encoded data ℎሬ⃗  as 
latent variables and the coding operation 𝑓: 𝒢 → ℱ as 
inference procedure (computing latent representation 
for given 𝑋௞). In this regard, generative models learn 
to maximize the likelihood of 𝐼ሺ𝑥⃗ሻ  conditioned by 
input data (representation) 𝑋௞ , rather than copying 
inputs to outputs. So, regularization issues don't 
matter much for generative AE. As an example, a 
couple of generative modeling approaches to 
autoencoders can be mentioned here – the variational 
autoencoder (VA) (Kingma, 2014) and the generative 
stochastic network (GSN) (Alain, 2015). 

To formalize the generative model for sampling 
representations 𝑋௞ ൌ ሺ𝑥⃗௜ሻ, let us consider the first set 
𝒢 as some parametric family 𝒢 ൌ ൛𝜌൫𝑥⃗ | 𝜃⃗൯ൟ, 𝑥⃗ ∈ 𝛺,
𝜃⃗ ∈ 𝛩 ⊂ ℝ௣  of probability distribution densities of 
individual count 𝑥⃗ . The parameters 𝜃⃗ ∈ 𝛩  of 
representation are associated with the unknown 
normalized intensity 𝐼ሺ𝑥⃗ሻ  and are intended for its 
parametric approximation. Parametrization of the 
distributions under study ൛𝜌൫𝑥⃗|𝐼ሺ𝑥⃗ሻ൯ൟ is a common 
technique that simplifies the problem of functional 
optimization to a problem of optimal parameters 
estimation. The unsupervised learning for generative 
model AE consists in fitting 𝜌൫𝑥⃗ | 𝜃⃗∗൯ ∈ 𝒢 for some 

𝜃⃗∗, considering as AE output, to a training data 𝑋௞. 
Note, that formally, sampling representation 𝑋௞ is not 
an element of 𝒢 and it can’t be considered as the input 
of AE. Instead of it, we should utilize conditional 
probability density 𝜌൫𝑥⃗ | 𝑋௞ ൌ ሺ𝑥⃗௜ሻ൯.  Assuming, in 
the spirit of the Bayesian approach, that the 
parameters 𝜃⃗  are random variables with any prior 
probability distribution density 𝑃ሺ𝜃⃗ሻ , similarly to 
how it was done in (Antsiperov, 2021b), we can write 
the following expression for the conditional density: 
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𝜌൫𝑥⃗ | 𝑋௞ ൌ ሺ𝑥⃗௜ሻ൯ ൌ
ఘሺ௫⃗,௫⃗భ,...,௫⃗ೖሻ

ఘሺ௫⃗భ,...,௫⃗ೖሻ
ൌ

∬ ఘ൫௫⃗,௫⃗భ,...,௫⃗ೖ|ఏሬሬ⃗ ൯௉ሺఏሬሬ⃗ ሻௗఏሬሬ⃗೭

ఘሺ௫⃗భ,...,௫⃗ೖሻ
ൌ

∬ ఘ൫௫⃗|ఏሬሬ⃗ ൯ఘቀሺ௫⃗೔ሻ|ఏሬሬ⃗ ቁ௉ሺఏሬሬ⃗ ሻௗఏሬሬ⃗೭

ఘሺ௫⃗భ,...,௫⃗೙ሻ
ൌ

∬ 𝜌൫𝑥⃗|𝜃⃗൯𝜌 ቀ𝜃⃗|𝑋௞ ൌ ሺ𝑥⃗௜ሻቁ 𝑑𝜃⃗
௵

 ,  (5)

where we used the property of the conditional iid of 
all samples 𝑥⃗, 𝑥⃗ଵ, . . . , 𝑥⃗௞  (for a given 𝜃⃗  or, which is 
the same, for a given 𝐼ሺ𝑥⃗ሻ). As it is known, density 

𝜌 ቀ𝜃⃗|𝑋௞ ൌ ሺ𝑥⃗௜ሻቁ is, at least asymptotically 𝑘 ≫ 1, a 

much narrower function than 𝜌൫𝑥⃗|𝜃⃗൯ . Since the 

maximum of 𝜌 ቀ𝜃⃗|𝑋௞ ൌ ሺ𝑥⃗௜ሻቁ  coincides with the 

maximum likelihood estimate 𝜃⃗ெ௅ , the density 
𝜌൫𝑥⃗|𝜃⃗൯ can be taken out from the integral in (5) as the 

independent of 𝜃⃗ factor 𝜌൫𝑥⃗|𝜃⃗ெ௅൯. This immediately 
leads to the following (see also (Antsiperov, 2021b)):  

𝜌൫𝑥⃗ | 𝑋௞ ൌ ሺ𝑥⃗௜ሻ൯ ≅ 𝜌൫𝑥⃗|𝜃⃗ெ௅൯ .  (6)

Coming back, we can use at the input of AE the 
density 𝜌൫𝑥⃗|𝜃⃗ெ௅൯ ∈ 𝒢 , which accumulates all the 
necessary information of the representation 𝑋௞ ൌ
ሺ𝑥⃗௜ሻ by means of a statistic 𝜃⃗ெ௅ሺ𝑥⃗௜ሻ, that is a solution 
of R.A. Fisher’s maximum likelihood equation 
(Aldrich, 1997): 

𝜃⃗ெ௅ ൌ 𝑎𝑟𝑔 max
ఏሬሬ⃗ ∈௵

𝐿൫𝜃⃗; 𝑋௞൯ ,

𝐿൫𝜃⃗; 𝑋௞൯ ൌ 𝜌൫𝑋௞| 𝜃⃗൯ ൌ ∏ 𝜌൫𝑥⃗௜| 𝜃⃗൯ .௡
௜ୀଵ

 . (7)

Considering the developed generative model 
formalization, it seems, that conceptually the solution 
of the AE main problem becomes straightforward. 
Namely, this solution consists in forming the density 
𝜌൫𝑥⃗|𝜃⃗ெ௅൯ ∈ 𝒢 at the input of the autoencoder, using 
the sample representation 𝑋௞ (by generating sample 
statistics 𝜃⃗ெ௅ሺ𝑋௞ሻ) and transmitting it in some coded 
form to the output. Obviously, formed in such a 
manner the input and output densities provide the 
minimum for any suitable loss function 
𝐿ሺ𝜌൫𝑥⃗|𝜃⃗ெ௅൯, 𝜌൫𝑥⃗ | 𝜃⃗∗൯ሻ, if the appropriate encoding-

decoding procedures guarantee 𝜃⃗∗~𝜃⃗ெ௅.  
The seeming elegance of solving AE problem 

within the generative model framework is associated 
with the replacement of the input data coding problem 
by the problem of calculating maximum likelihood 
estimate (7). However, the problem (7), which has 

been known for a hundred years, starting with Fisher's 
works (see (Aldrich, 1997)), in real applications turns 
out not much simpler, than the coding problem. 
Moreover, the development of such modern direction 
as machine learning (including autoencoders) was 
largely due to the needs of an approximate solution of 
the maximum likelihood problem. For this reason, to 
further refine the generative model, we will develop 
the "proper autoencoder" method for solving the main 
problem of the AE, considering it as a special class of 
methods for solving the maximum likelihood 
equation (7). 

The main assumption for our special generative 
model is that the parametric family 𝒢 ൌ ൛𝜌൫𝑥⃗ | 𝜃⃗൯ൟ 
admits latent (hidden) variables. Let us consider the 
simplest case, where each count 𝑥⃗ is associated with 
a single latent variable 𝑗, that takes only a finite set of 
discrete values: 𝑗 ∈ ሼ1, … , 𝐾ሽ . Let us denote the 
density of joint probability distribution of 𝑥⃗ and 𝑗 by 
𝜌൫𝑥⃗, 𝑗 | 𝜃⃗൯. In what follows, we implicitly assume that 

𝜌൫𝑥⃗, 𝑗 | 𝜃⃗൯ is more tractable than 𝜌൫𝑥⃗| 𝜃⃗൯, since the 
latter is a marginal distribution of the former: 

𝜌൫𝑥⃗ | 𝜃⃗൯ ൌ ∑ 𝜌൫𝑥⃗, 𝑗 | 𝜃⃗൯௄
௝ୀଵ   (8)

and the sum in (8) can contain a large number 𝐾 of 
terms. The density (9) is generally called the finite 
mixture of components and traditionally components 
are written in the form 𝜌൫𝑥⃗, 𝑗 | 𝜃⃗൯ ൌ 𝑤௝𝜌௝൫𝑥⃗ | 𝜃⃗൯ , 

where 𝑤௝ ൌ 𝜌൫𝑗 | 𝜃⃗൯ is the weight (probability) of the 

𝑗 –component, and 𝜌௝൫𝑥⃗ | 𝜃⃗൯  is the conditional 
distribution of the count coordinates 𝑥⃗  for the 
component 𝑗 . As a rule, component weights are 
considered as a subset of a parameters: ሼ𝑤௝ሽ ⊂ 𝛩. 

In accordance with (8), the density of the joint 
distribution of the sampling representation 𝑋௞ ൌ ሺ𝑥⃗௜ሻ 
(3) can be written in the form: 

𝜌൫𝑋௞| 𝜃⃗൯ ൌ ∏ ൣ∑ 𝜌൫𝑥⃗௜, 𝑗௜ | 𝜃⃗൯௄
௝೔ୀଵ ൧ ൌ௞

௜ୀଵ

∑ ൣ∏ 𝜌൫𝑥⃗௜, 𝑗௜ | 𝜃⃗൯௞
௜ୀଵ ൧௛ሬሬ⃗ ൌ ∑ 𝜌൫𝑋௞, ℎሬ⃗  | 𝜃⃗൯௛ሬሬ⃗

 .  (9)

where the ordered set (vector) ℎሬ⃗ ൌ ሺ𝑗ଵ, … , 𝑗௞ሻ, 𝑗௜ ∈
ሼ1, … , 𝐾ሽ  represents the latent variables of 
autoencoder, i. e. the inner representation of 
𝜌൫𝑋௞| 𝜃⃗൯, defined on the 𝑛-cube  ℱ ൌ ሼ1, … , 𝐾ሽ௞. It 
is easy to see that the density (6) is also a finite 
mixture of components with component weights 
𝑊௛ሬሬ⃗ ൌ ∏ 𝑤௝೔

௡
௜ୀଵ and conditional distributions 

𝜌 ௛ሬሬ⃗ ൫𝑋௞ | 𝜃⃗൯ ൌ ∏ 𝜌௝೔
൫𝑥⃗௜ | 𝜃⃗൯௡

௜ୀଵ  of 𝑋௞  for given 

component with multi-index ℎሬ⃗ .  
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For densities representable in the form of mixtures 
(9), there is an important relation between their so-
called score 𝑠൫𝜃⃗, 𝑋௞൯ ൌ ∇ఏሬሬ⃗ ln 𝜌൫𝑋௞ | 𝜃⃗൯  and 
corresponding scores for a joint distributions 
𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯ ൌ ∇ఏሬሬ⃗ ln 𝜌൫𝑋௞, ℎሬ⃗  | 𝜃⃗൯:  

𝑠൫𝜃⃗, 𝑋௞൯ ൌ
ଵ

ఘ൫௑ೖ | ఏሬሬ⃗ ൯
∇ఏሬሬ⃗ 𝜌൫𝑋௞ | 𝜃⃗൯ ൌ

ଵ

ఘ൫௑ೖ | ఏሬሬ⃗ ൯
∑ ∇ఏሬሬ⃗ 𝜌൫𝑋௞, ℎሬ⃗  | 𝜃⃗൯௛ሬሬ⃗ ൌ

∑ ఘ൫௑ೖ,௛ሬሬ⃗  | ఏሬሬ⃗ ൯

ఘ൫௑ೖ | ఏሬሬ⃗ ൯

ଵ

ఘ൫௑ೖ,௛ሬሬ⃗  | ఏሬሬ⃗ ൯
∇ఏሬሬ⃗ 𝜌൫𝑋௞, ℎሬ⃗  | 𝜃⃗൯௛ሬሬ⃗ ൌ

∑ 𝜌൫ℎሬ⃗  |𝑋௞, 𝜃⃗൯𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯௛ሬሬ⃗

 .  (10)

The importance of scores in the statistics is 
associated with the fact that sufficient conditions for 
solution 𝜃⃗ெ௅ of the maximum likelihood problem (7) 
can be written in the form: 𝑠൫𝜃⃗, 𝑋௞൯ ൌ 0ሬ⃗ . 
Accordingly, the importance of the relation (10) lies 
in the fact that it allows one to express these 
conditions in an alternative form:  

∑ 𝜌൫ℎሬ⃗  |𝑋௞, 𝜃⃗൯𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯௛ሬሬ⃗ ൌ 0ሬ⃗  .  (11)

Insofar as 

𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯ ൌ ∇ఏሬሬ⃗ ln 𝜌൫ 𝑋௞, ℎሬ⃗  | 𝜃⃗൯ ൌ

∑ ∇ఏሬሬ⃗ ln 𝜌൫𝑥⃗௜, 𝑗௜ | 𝜃⃗൯௞
௜ୀଵ

 .  (12)

and if 𝜌൫𝑥⃗, 𝑗 | 𝜃⃗൯ is more tractable than 𝜌൫𝑥⃗| 𝜃⃗൯ (8), 

then the score 𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯ (12) will be more tractable 

than 𝑠൫𝜃⃗, 𝑋௞൯ and it turns out that the solution of (11) 

is much easier to find than solution of 𝑠൫𝜃⃗, 𝑋൯ ൌ 0ሬ⃗ . 
In addition, it is easy to see that (11) is very 

similar to the gradient optimization equations for the 
well–known EM–algorithm (Gupta, 2010), or its hard 
clustering variant, known as K–means segmentation. 
Indeed, approximate solution of (11) can be carried 
out by iterations containing two main steps. The first 
step consists in calculating the latent variables ℎሬ⃗   that 
maximize the posterior distribution 𝜌൫ℎሬ⃗  |𝑋௞, 𝜃⃗൯ ൌ

൫𝑋௞, ℎሬ⃗  | 𝜃⃗൯ 𝜌൫𝑋௞ | 𝜃⃗൯ൗ  for obtained in the previous 

iteration parameters 𝜃⃗. And the second step is to find 
a solution 𝜃⃗  of the equation 𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯ ൌ 0ሬ⃗  with ℎሬ⃗   
found at the first step.  

 

Figure 3: Reconstructions of “cameraman” image 
(1 000 000 counts) by various number of components 𝐾 in 
intermediate representation: A – the original image in TIF 
format, B, C, D –reconstructions, corresponding to 𝐾  = 
1002,2502, 3002 components. 
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Putting together all the conclusions obtained 
above, the final encoding 𝑓 and decoding 𝑔 operators 
of autoencoders in a generative model with latent 
variables ℎሬ⃗  (in a finite mixture model) can be 
formulated as follows: 

Encoding: 𝑓: 𝒢 → ℱ ∶  𝜌൫ 𝑋௞ | 𝜃⃗൯ → ℎሬ⃗ : 

ℎሬ⃗ ሺ𝑋௞, 𝜃⃗ሻ ൌ

𝑎𝑟𝑔 max
௝∈ሼଵ,…,௄ሽ

ቀ𝜌൫𝑥⃗ଵ, 𝑗 | 𝜃⃗൯, … , 𝜌൫𝑥⃗௞, 𝑗 | 𝜃⃗൯ቁ . (13)

Decoding: 𝑔: ℱ → 𝒢 ∶  ℎሬ⃗ → 𝜌൫𝑋௞ | 𝜃⃗൯: 

𝑠௛ሬሬ⃗ ൫𝜃⃗, 𝑋௞൯ ൌ 0ሬ⃗  .  (14)

The developed approach to learning generative 
autoencoders by image sampling representations can 
be naturally implemented in the form of a recurrent 
computational procedure. Some examples of 
reconstruction of sampling representation shown in 
Figure 1 C (1 000 000 counts) are shown in Figure 3. 

4 CONCLUSIONS 

In the framework of generative model, a new 
approach is proposed It provides the synthesis of 
learning methods for autoencoders by images, 
presented as samples of random counts. The issues of 
simplicity of interpretation of the approach and the 
immediacy of its algorithmic implementation are the 
main content of the work. They make it attractive in 
both theoretical and practical terms, especially in the 
context of modern machine learning-oriented trends. 
In a sense, the proposed method is an adaptation of R. 
Fisher's maximum likelihood method for 
autoencoders, which is widely used in traditional 
statistics. The fruitful use of the latter has led to a 
huge number of important statistical results. In this 
regard, the author expresses the hope that the 
proposed approach will also be useful in solving a 
wide range of modern machine learning problems. 
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