
Map Matching Algorithm for Large-scale Datasets

David Fiedler1 a, Michal Čáp1 b, Jan Nykl2 and Pavol Žilecký2

1Faculty of Electrical Engineering, Artificial Intelligence Center, Czech Technical University, Prague, Czech Republic
2Umotional, Prague, Czech Republic

Keywords: Map Matching, GPS, Big Data, Graph Search.

Abstract: GPS receivers embedded in cell phones and connected vehicles generate series of location measurements that
can be used for various analytical purposes. A common preprocessing step of this data is the so-called map
matching. The goal of map matching is to infer the trajectory that the device followed in a road network from
a potentially sparse series of noisy location measurements. Although accurate and robust map matching algo-
rithms based on probabilistic models exist, they are computationally heavy and thus impractical for processing
large datasets. In this paper, we present a scalable map matching algorithm based on Dijkstra’s shortest path
method, that is both accurate and applicable to large datasets. Our experiments on a publicly available dataset
showed that the proposed method achieves accuracy that is comparable to that of the existing map matching
methods using only a fraction of computational resources. As a result, our algorithm can be used to efficiently
process large datasets of noisy and potentially sparse location data that would be unexploitable using existing
techniques due to their high computational requirements.

1 INTRODUCTION

With the current spread of GPS receivers, embed-
ded into almost all cell phones and connected cars,
a huge amount of GPS data from vehicular traffic is
produced. The data can be used to analyze various
properties of road network like traffic density, travel
time, or speed, or to uncover traffic-related behavioral
patterns. For all these applications, however, we need
to first perform the so-called map matching, a process
of mapping the GPS records to the road network to
obtain the real path driven by the vehicle.

The map matching problems can be divided into
two categories: online map matching and offline map
matching. The online map matching is a process of
determining the path of a driving vehicle, while the
offline map matching computes the path after all GPS
measurements have been recorded. As we study the
offline map matching problem, we will use the term
“map matching” to refer to the offline map match-
ing in the remainder of this paper. While online
map matching has a broader application, including
the consumer market, offline map matching is a key
component in traffic analysis. With the data about ve-
hicle movement in the road network, computed by of-

a https://orcid.org/0000-0001-5374-1089
b https://orcid.org/0000-0001-6450-7976

fline map matching, we can analyze traffic patterns
or even estimate the speed on individual road seg-
ments (Leodolter et al., 2015).

When the location data are sparse and affected
by significant measurement errors, the map matching
problem becomes challenging because there are typ-
ically multiple routes in the road network that could
be considered as a match for the measurements. In
an urban environment, in particular, the GPS signal
is often affected by multipath propagation, which, in
conjunction with other effects, can result in a mea-
surement error larger than 20 m (Merry and Bettinger,
2019). See Figure 1a for an example of measurement
error in an urban environment. Furthermore, to keep
energy consumption low, many devices produce data
at low frequency. For example, according to Yuan
et al. (2010), 66 % of the data generated by Beijing
taxis were sampled with a frequency lower than one
sample per minute. See also Figure 1b that illustrates
the low sampling frequency problem.

To enable the processing of low-frequency high-
noise GPS data, a number of map matching algo-
rithms have been proposed (see Section 1.1). A typ-
ical map matching algorithm is based on the 2-step
scheme. First, a set of candidate projections (road
segments) on the road network is computed for each
GPS record. Then, the most probable path is chosen

500
Fiedler, D., Čáp, M., Nykl, J. and Žilecký, P.
Map Matching Algorithm for Large-scale Datasets.
DOI: 10.5220/0010849100003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 500-508
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(a) (b)

Figure 1: Examples of GPS sampling problems. Each red
circle represents a single GPS record. On the left, we see
an example of measurement noise of GPS records. On the
right, we can see the low sampling frequency problem.

so that for each record, there is one candidate pro-
jection in the final path. We refer these algorithms as
global because they select the path that is globally op-
timal with respect to some model describing the map
matching problem (e.g., the minimal average distance
between a measurement and the corresponding can-
didate edge). Global map matching algorithms man-
age to match even very sparse GPS records with high
measurement errors. These algorithms are, however,
computationally heavy and thus they are impractical
for the processing of large datasets, possibly contain-
ing millions of GPS traces (see, e.g., the computa-
tional time results of Tang et al. (2016)). Other meth-
ods attempt to optimize the path locally, matching the
GPS measurements one by one. We refer to these ap-
proaches as local map matching algorithms. These
methods, however, achieve unsatisfactory accuracy,
especially on low-frequency high-noise datasets (see
the comparison in Lou et al. (2009)).

In this paper, we present a global map match-
ing algorithm that achieves accuracy comparable to
the state of the art methods using considerably less
computation time. In result, this method is suitable
for processing of large location datasets. Our con-
tribution can be summarized as follows: Firstly, we
created a map matching algorithm that is based on
graph search, a different principle than the state-of-
the-art map matching algorithms. After that, we per-
formed a theoretical analysis of the algorithm and
compared its computational complexity to two pre-
viously published map matching algorithms. Finally,
we experimentally compared the accuracy and com-
putational speed of all three algorithms on a standard
map matching dataset.

We found that the proposed algorithm has lower
computational complexity than the existing ap-
proaches, and the experimental evaluation has shown
that our approach is able to generate the underlying
route estimates with the same accuracy as existing
methods, but an order of magnitude faster.

1.1 Related Work

Early map matching algorithms, developed before the
advent of GPS-enabled smartphones, did not attempt
to recover the complete route of the vehicle, but in-
stead, they focused on finding the most likely road
segment for each measurement (White et al., 2000).
An incremental algorithm and a global optimization
approach based on Fréchet distance were later pro-
posed by Brakatsoulas et al. (2005).

Newson and Krumm (2009) formalized map
matching using Hidden Markov Model (HMM). In
the proposed model, the authors use the network con-
nectivity and measurement error to characterize the
emission and transition probabilities of the HMM.
The HMM-based map matching proved to be robust
and accurate. The matching accuracy showed to be
almost perfect even for location measurements with
a period of 30 seconds. A similar solution using dif-
ferent formalization for global optimization was pre-
sented by Lou et al. (2009), adding temporal consis-
tency as a transition criterion. A graph search based
approach that searches for a path in the road net-
work that resembles the GPS records was presented
by Wolfson (2004). The idea is similar to the ap-
proach we propose, however, the article lacks de-
tailed description and performance evaluation against
state-of-the-art methods. Other algorithms focused on
high accuracy matching of sparse GPS data were pre-
sented by Rahmani and Koutsopoulos (2013). Kui-
jpers et al. (2016) proposed a solution that added
the k-shortest path algorithm to compute the globally
optimal path. The work by Tang et al. (2016) fol-
lows a similar direction, presenting a time-expanded
road network graph as a formalization of the problem.
In Yin et al. (2016), the authors propose a novel so-
lution that improves the accuracy by incorporating a
behavioral model in the map matching process. More-
over, they show that trajectory simplification can be
used to speed up the map matching process. A map
matching method based on genetic algorithms was
studied by Nikolić and Jović (2017). They compared
the accuracy of their approach with seven map match-
ing methods and showed that it outperforms all of
them with the exception of the HMM map matching
by Newson and Krumm (2009). Finally, Zhang et al.
(2021) presented a turning point based map matching
method. This method that first splits the trajectory at
selected turning points into smaller segments and then
matches each segment separately proved to be better
both in accuracy and in matching speed than five se-
lected baseline algorithms, including works by Rah-
mani and Koutsopoulos (2013) and Kuijpers et al.
(2016).

Map Matching Algorithm for Large-scale Datasets

501

For a more comprehensive overview of existing
map matching algorithms, we refer the reader to the
existing surveys on the topic (Quddus et al., 2007;
Hashemi and Karimi, 2014; Kubicka et al., 2018;
Huang et al., 2021).

2 PROBLEM STATEMENT

We start by defining the necessary terms. Road net-
work is a directed graph, in which the arcs represent
the road segments and the nodes represent either the
intersections or simply connect two following road
segments. A location measurement contains a lat-
itude, longitude, and the time of the measurement.
Location measurements are typically obtained using a
GPS receiver. A sequence of location measurements
that covers a particular period of time is called a trace.
If we connect the measurements in the trace with line
segments, we get a sequence of lines, which we call
a trace linestring. When we talk about ground truth,
we refer to a sequence of consecutive road segments
that was driven by the vehicle, while it was collect-
ing location measurements. The ground truth is used
to measure the map matching accuracy. The match is
a sequence of consecutive road segments constructed
using a map matching algorithm.

In this paper, we are interested in the map match-
ing problem, i.e., we desire to determine the ground-
truth path traversed by a vehicle in a road network
from a given trace.

3 TOWARDS MAP MATCHING
ALGORITHM FOR LARGE
DATASETS

In this section, we briefly describe two existing
map matching algorithms that we used for compari-
son with our algorithm and discuss their limitations.
The Hidden Markov Model map matching algorithm
(HMM-MM) by Newson and Krumm (2009) is a
well-known example of the global map matching al-
gorithm that is both robust and accurate, outperform-
ing, in terms of accuracy, even recent map matching
methods (Nikolić and Jović, 2017). However, it is
also computationally heavy. On the other hand, the
incremental algorithm from Brakatsoulas et al. (2005)
is an example of a local map matching algorithm that
is fast but not as accurate.

The HMM-MM is a global map matching algo-
rithm that leverages Hidden Markov Models to find
the most probable path (sequence of road segments)

from all possible paths generated by projecting lo-
cation measurements to different edges in the road
network. The probability of each path is computed
using the emission probability (probability of visit-
ing a node) and transition probability (probability of
traveling between specific nodes). In this approach,
a measurement noise model is used to determine the
emission probability, while the transition probability
is inferred from the difference between Euclidean and
road network distance.

The incremental algorithm by Brakatsoulas et al.
(2005) first finds the initial edge by choosing it from a
set of candidate edges that lie within a given threshold
distance from the first location measurement. Then,
in each step, it tries to match the next measurement to
one of the road segments that are connected to the pre-
viously matched edge. The algorithm can also utilize
a look-ahead strategy: it tries to match a few location
measurements ahead and propagates the score back
in an attempt to avoid myopic choices that cannot be
reversed later on in the process.

4 THE GRAPH SEARCH BASED
MAP MATCHING

In this section, we present the proposed map match-
ing algorithm: the Graph Search Based Map Match-
ing (GSMM). In contrast to simple geometric algo-
rithms (White et al., 2000), the incremental algorithm,
or the HMM-MM (both described in the previous sec-
tion), the proposed algorithm does not iterate over the
location measurements in the trace. It searches the
road network graph using a standard graph search al-
gorithm, but instead of searching for the shortest path,
it searches for the path most similar to the location
measurements. In other words, the cost of each arc in
the search graph encodes the likelihood of the edge
being part of the ground truth path given the loca-
tion measurements. We use Dijkstra’s shortest path
algorithm for graph search as it is simple, well stud-
ied, and does not require any heuristic. While Dijk-
stra’s algorithm is outperformed by A* in most appli-
cations, it is hard to imagine to use it in our case, as
there is no straightforward heuristic with the required
properties (consistency and admissibility). However,
a bidirectional variant of our algorithm can be exam-
ined in the future.

The pseudocode of the proposed algorithm is in
Algorithm 1. We start by initializing the priority
queue Q and by adding the start node ns to it with
priority 0. Then, we continue by a standard Dijkstra-
style loop, during which we add every neighbor n of
current node nc into the queue. The algorithm ends

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

502

Algorithm 1: GSMM algorithm core.

add ns to Q with priority 0;
while Q is not empty do

nc← head of Q;
if nc not closed then

set nc as closed;
if nc = nd then

backtrack ;

for n ∈ neighbors of nc do
if n not closed then

c← compute cost(n);
add n to Q with priority c;

when the destination node nd is reached, or when the
queue is empty (which cannot happen unless the road
network is not a strongly connected graph). The criti-
cal part of the algorithm is the initialization discussed
in Section 4.1, and the node cost computation ex-
plained in Section 4.2.

4.1 Start and end Point Determination

Determination of the start and the destination node
is the essential part of the algorithm. Unlike many
other algorithms, our solution can recover from a bad
choice of the initial node, but a mistake in initializa-
tion can still affect the accuracy. The initial edge es is
chosen from the set of edges E as

es = argmin
e∈E

|r0,e|+ |ne
to, t|. (1)

where r0 is the first location measurement, ne
to is the

end node of the edge e and t is the trace linestring
built by sequentially connecting all location measure-
ments. Figure 2 visualizes the cost computation of a
candidate initial edge. For performance reasons, we
add to the set E only the edges that are closer to r0
than a given threshold. In our experiments, we use
the threshold of 100 m. When the initial edge is com-
puted, the start node of the edge is chosen as an initial
point ns.

An analogous process is performed when deter-
mining the destination point. Instead of the first mea-
surement, we use the last measurement, and instead of
the end point of the candidate edge, we use the start
point.

4.2 Computing Edge Costs

For each neighbor node n, the total cost is computed
as a sum of the cost of the current node and the cost of
the neighbor. The cost of each neighbor is computed

Figure 2: Initialization example. Green points represent the
location measurements, gray lines are the roads, currently
evaluated edge is highlighted in black. The initial edge is
chosen such that it minimizes the sum of the distance be-
tween the first measurement and the edge (blue dashed line),
and the distance between edge endpoint and the trace (red
dashed line).

as
c = (c1 + c2)le/α+ c3, (2)

where the cost c1 = |n, t| is the distance of the neigh-
bor node from the trace, and cost c2 = |pmid, t| is com-
puted as a distance between the middle point pmid of
the edge and the trace. These costs have to be multi-
plied by the length of the edge le to normalize them to
the edge length. The constant α controls the contribu-
tion of cost c3 that represents the difference between
the length of the edge and the distance between the
current and the neighbor node projections on the trace
linestring:

c3 = |le− ltrace|, (3)
where

ltrace = ||pnc,t , pn,t ||trace. (4)
The purpose of these costs can be explained in

the following series of examples. In Figure 3a, the
computation of cost c1 is illustrated. An important as-
pect that can be seen in this figure is that the cost for
nodes n3 and n4 is not the Euclidean distance to the
trace. The reason for this is that the algorithm always
projects the nodes on the trace chronologically and
consequently a neighbor node n cannot be projected
before the current node nc, that was already projected
to the trace in the previous step.

The cost c2 is computed analogously to the cost
c1, the difference being that we project the middle
point of the edge, pmid, instead of the neighbor node.
The purpose of the cost c2 is illustrated in Figure 3b,
where we can see a situation in which relying on
the cost c1 would not suffice to determine the correct
edge.

We could add more such control points as costs,
but our experiments suggest that this is not effective
as there were always cases for which the number of
control points was insufficient. Instead, we created
another cost c3 that is designed to cover the remain-
ing cases by comparing the length of the edge and the
length along the trace between the projection of the

Map Matching Algorithm for Large-scale Datasets

503

(a)
(b)

(c)

Figure 3: Illustration of computation of cost c1 (a), c2 (b), and c3 (c). The costs are represented by blue dashed lines, the green
points are the location measurements, the white circle is the current node, and the black circles and lines represent the road
network nodes and edges, respectively. Note that in Figure a), the cost for nodes n3 and n4 is not the Euclidean distance to
the trace because the neighbors have to be projected after the current point. On the second picture, we can see that the middle
points (grey circles) can determine the correct edges even if the incorrect neighbor point has the lowest cost c1 (gray dashed
line). Finally the cost c3 is computed for the neighbor node n1 as the absolute value of the difference between the edge length
(blue dashed line) and the length along the trace (red dotted line). We can see that both cost c1 and cost c2 (gray dashed lines)
would mistakenly chose n1 as the match.

Figure 4: The example of ambiguous projection of the
node. We can see the nearest projection and one alterna-
tive projection on the picture, depicted as the blue dashed
line.

current node nc on the trace (which was fixed in the
previous step of the algorithm) and the projection of
the neighbor node n. We can see the example where
this metric is essential to correctly match the trace in
Figure 3c.

Sometimes, the vehicle completely changes its di-
rection during a single trip. In this case, the projec-
tion of a specific edge on the trace linestring can be
ambiguous, i.e., multiple points in the trace can have
a similar distance to the edge, despite being very far
from each other along the trace (see Figure 4). We
solve such cases by providing alternative projections
that are in the same and in the opposite direction of the
nearest projection within a distance of 100 m. Then,
we compute the total cost c for each candidate projec-
tion and choose the projection with the lowest cost.

After choosing the best projection for the candi-
date neighbor node, we apply another cost c4 to the
cost sum, resulting in the equation

c f = c+ c4, (5)

where c is the neighbor cost defined above and c4 is
computed as

c4 =−β||pnc,t , pn,t ||trace. (6)

In the above equation, ||pnc,t , pn,t ||trace is the distance
along the linestring between current and neighbor

node projection and β is the forward heuristic coef-
ficient. The weight c4 is a heuristic that guides the
search and speeds up the computation, as the edges
that lead forward along the trace have a lower cost.
By assigning higher values for β, we can speed up the
computation significantly, but higher values can also
lead to less accurate results.

5 DISCUSSION

In this section, we discuss the computational com-
plexity, performance, advantages, and limitations of
the three compared algorithms.

5.1 Complexity

The worst-case asymptotic complexity of the GSMM
algorithm is identical to Dijkstra’s algorithm, O(|E|+
|N| · log |N|), where |E| is the number of road seg-
ments and |N| is the number of road network nodes.
The computational complexity of the HMM-based
method is dominated by the Viterbi’s algorithm,
O(|R| · |E|2), where |R| is the number of location mea-
surements in the trace. The complexity of the incre-
mental algorithm is O(|R|). In practice, however, such
worst-case complexities are never reached, partly due
to the structure of the input and partly due to the per-
formance optimization tricks that would be applied in
the case of practical deployment.

In HMM map matching, the complexity is reduced
by considering only nodes within a fixed radius from
the location measurement as candidates – this drasti-
cally reduces the number of edges |E| considered by
Viterbi’s algorithm. In GSMM, the worst case com-
plexity is also virtually never reached, because due to

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

504

the design of the cost function, the search is focused
on the vicinity of the trace.

Finally, real-world traces typically contain only
tens to hundreds of location measurements. In re-
sult, the time spent on computations that depends
on the dataset size |R| can be easily dominated
by constant-time computations. This can be easily
demonstrated in the incremental algorithm, where the
worst-case time complexity is exponential with re-
spect to the lookahead depth dl . For dl = 4, as used by
Brakatsoulas et al. (2005) and a conservative average
branching factor b = 4, the complexity of evaluation
of each step, which can be expressed as O(bdl), easily
dominates the measurement count.

An important difference between the GSMM and
other map matching algorithms regarding the com-
plexity is that the complexity of the GSMM is not
directly related to the number of location measure-
ments. In the case of other algorithms, both global
and local, the number of algorithm steps is linearly
dependent on the number of measurements. In re-
sult, these algorithms are not suitable for dense traces,
sometimes even removing a significant number of
measurements from traces is proposed to speed up the
algorithm (Yin et al., 2016).

5.2 Performance, Advantages, and
Limitations of Our Solution

The main shortcoming of the incremental algorithm
is that it can choose wrong edges for the match be-
cause the lookahead has only a constant depth and the
edge cannot be changed once chosen for a projection
of a location measurement. In contrast, the HMM-
MM and the GSMM search for a match with a glob-
ally optimal score. Yet, the probabilities in HMM-
MM and edge costs in GSMM are nothing more than
a model that uses the sensor data and network topol-
ogy. In addition, the optimality of the HMM map
matching is affected by the fact that it only searches
for measurement projection candidates below a given
distance threshold.

As it is clear from the Section 4.2 describing the
computation of the weights, GSMM tries to find the
path in the road network that is most similar to the
vehicle trace. This produces correct results most of
the time, but in sparse traces, sometimes, the path that
is more distant from the trace could be correct as it
is demonstrated in Figure 5. One of the techniques
that can be used to match these scenarios correctly
is described by Osogami and Raymond (2013) and
also by Yin et al. (2016). This technique could be
incorporated in the GSMM in the form of an addi-
tional cost. Other aspects of human behavior, such

Figure 5: An example case of a problematic matching re-
lated to sparse traces. The green path is closer to the trace,
but the ground-truth path is the blue path.

as temporal consistency, can be modeled as well, by
simply adding the respective costs. Another advan-
tage of the GSMM is that the edge costs are easy to
compute. In contrast, in the HMM-MM, the short-
est path needs to be computed to evaluate each transi-
tional probability. The need for such frequent shortest
path computation is a significant shortcoming. In fact,
we observed that in our implementation, the shortest-
path computations account for 98% of the runtime.
Moreover, due to the ability of the GSMM to do fast
matching, as demonstrated in Section 6.1, we believe
that the GSMM can be used for online map matching
too, simply by performing the map matching on all
location measurements available so far.

The only limitation of our method are cycles in
traces. Because the GSMM is based on Dijkstra al-
gorithm, it is not able to correctly match traces con-
taining cycles. In practice, however, we simply break
self-intersecting traces in parts and match each part
separately.

6 BENCHMARK

We experimentally compared the GSMM, the HMM-
MM, and the incremental approach using an exist-
ing benchmark dataset1 containing traces together
with road networks and ground truths (Kubicka et al.,
2018). The dataset does not contain “clean” traces,
but instead, the traces contain artifacts like gaps or
hives (a large number of measurements in a certain
area) that are challenging for map matching algo-
rithms. The traces in the dataset have the measure-
ment period of one second, longer periods were cre-
ated by our benchmark by subsampling the original
trace. Eleven period lengths between 1 second to 5
minutes length were tested. The period of 24 seconds
represents the average measurement period measured
on a real dataset of almost 10 thousand taxi trips in
Prague collected by a ride-hailing application Liftago.
The complete histogram of the delays between points
in the Prague dataset is in Figure 6. Because our al-

1https://zenodo.org/record/57731

Map Matching Algorithm for Large-scale Datasets

505

Figure 6: Histogram of delay between the traces from
Prague taxi trace dataset.

gorithm cannot handle traces containing cycles, only
a subset of traces without cycles was used for evalua-
tion.

To measure the map matching accuracy, we used a
metric called Route Mismatch Fraction (RMF) intro-
duced by Newson and Krumm (2009). The RMF is
computed as

RMF =
lgt

l++ l−
, (7)

where lgt is the ground truth length, l+ is the length of
the segments in the match that are not in the ground
truth (false positive length), and l− is the length of the
segments in the ground truth not present in the match
(false negative length).

All algorithms and the benchmark were imple-
mented in Python and ran on a desktop PC with In-
tel Core i5 4950S CPU and 24 GB of memory. The
HMM-MM algorithm was configured with parame-
ters σ= 50 and β= 2, edges in the radius of 15 meters
were considered as projection candidates. For the in-
cremental algorithm, the parameters were configured
as follows: µd = 10,nd = 1,a = 0.17,muα = 10,nα =
7. The look-ahead depth was set to 4, the start area ra-
dius was set to 100 m, and max allowed skipped edges
was set to 10. In the GSMM, the start area radius was
set to 100 m and the forward heuristic cost weight β

was set to 3.

6.1 Results

The comparison of the accuracy of the tested algo-
rithms is in Figure 7. As we can see, the accuracy of
the incremental algorithm is very low. Thus, we de-
cided to remove the incremental algorithm from other
comparisons, as it is clearly not able to produce rea-
sonable matches for the benchmark dataset. The ac-
curacy of the GSMM is comparable to HMM-MM up
to the period of 30 s, which is more than the aver-
age measurement period measured on the real-world

Figure 7: Comparison of the accuracy of the three evaluated
algorithms on traces with different sampling frequencies.

Figure 8: Comparison of speed of the GSMM and the
HMM-MM on traces with different sampling frequencies.

dataset (Section 6). For periods above 30 s, the ac-
curacy of both algorithms starts to degrade, with the
GSMM declining more rapidly. Concerning the speed
(Figure 8), the GSMM is faster than the HMM-MM
up to the period of two minutes, under one minute pe-
riod, our algorithm is more than ten times faster.

The first thing to explain is the failure of the in-
cremental algorithm to provide reasonable matches.
We investigated that the algorithm fails on the net-
work areas with very short road segments, where a
large number of road segments with similar costs can
be assigned to the location measurement. We believe
that authors of the algorithm measured the accuracy
on a simplified road network, where these problems
are rare and therefore obtained better results.

For traces with a sampling period of up to one
minute, the GSMM is significantly, often an order
of magnitude, faster. For longer periods, the HMM-
MM dominates in speed. This is not a surprise, as
for HMM-MM, the complexity depends on the num-
ber of records (see Section 5.1). The speed should,
therefore, increase with a decreasing sampling fre-
quency, which was confirmed by the results. Addi-

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

506

tionally, in global map matching algorithms, the run-
time is strongly affected by the number of projection
candidates. In the HMM-MM, the number of can-
didates is limited by the fixed radius (Newson and
Krumm, 2009), which was set to 15 m in the bench-
mark. However, in the case of a more noisy dataset,
this limit would have to be increased to obtain accu-
rate results, decreasing the speed as a result.

7 CONCLUSION

The cell phones and connected cars produce large
amounts of location data that can be used for various
analytical purposes. E.g., this data can be exploited
to estimate free-flow speeds or traffic densities in a
road network. A common preprocessing step is map
matching, where we desire to infer the path of the ve-
hicle through the road network from sparse and noisy
location measurements.

Many map matching algorithms have been pro-
posed that excel in accuracy or robustness with re-
spect to sparse and noisy GPS traces. Yet, with the
increasing size and availability of location measure-
ment datasets, the processing speed of map matching
algorithm becomes important.

We proposed Graph Search based map match-
ing (GSMM), a map matching algorithm based on
Dijkstra’s algorithm for the shortest path that is fo-
cused on reducing the computational complexity. We
compared the performance of the GSMM together
with a state-of-the-art global map matching algorithm
(HMM-MM) and one incremental map matching al-
gorithm on a standard, publicly available dataset.

The results show that the accuracy of the incre-
mental algorithm is unsatisfactory. Concerning the
HMM map matching, our algorithm is up to 10 x
faster and it achieves higher accuracy than the HMM
algorithm for records with a sampling period shorter
than one minute. For lower sampling frequencies, the
HMM-MM performs better, however, the real data
from a taxi company shows that such low sampling
frequencies are rare.

In the future, we would like to extend this method
with other costs that incorporate behavioral aspects.
Moreover, we plan to utilize the matched data to de-
liver a road speed model.

ACKNOWLEDGEMENT

The authors acknowledge the support of the OP
VVV MEYS funded project CZ.02.1.01/0.0/0.0/
16 019/0000765 ”Research Center for Informatics”.

REFERENCES

Brakatsoulas, S., Pfoser, D., Salas, R., and Wenk, C. (2005).
On Map-matching Vehicle Tracking Data. In Pro-
ceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 853–864, Trond-
heim, Norway. VLDB Endowment.

Hashemi, M. and Karimi, H. A. (2014). A critical review
of real-time map-matching algorithms: Current issues
and future directions. Computers, Environment and
Urban Systems, 48:153–165.

Huang, Z., Qiao, S., Han, N., Yuan, C.-a., Song, X., and
Xiao, Y. (2021). Survey on vehicle map matching
techniques. CAAI Transactions on Intelligence Tech-
nology, 6(1):55–71.

Kubicka, M., Cela, A., Mounier, H., and Niculescu, S. I.
(2018). Comparative Study and Application-Oriented
Classification of Vehicular Map-Matching Methods.
IEEE Intelligent Transportation Systems Magazine,
10(2):150–166.

Kuijpers, B., Moelans, B., Othman, W., and Vaisman,
A. (2016). Uncertainty-Based Map Matching: The
Space-Time Prism and k-Shortest Path Algorithm.
ISPRS International Journal of Geo-Information,
5(11):204.

Leodolter, M., Koller, H., and Straub, M. (2015). Estimat-
ing travel times from static map attributes. In 2015
International Conference on Models and Technolo-
gies for Intelligent Transportation Systems (MT-ITS),
pages 121–126.

Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., and
Huang, Y. (2009). Map-matching for Low-sampling-
rate GPS Trajectories. In Proceedings of the 17th
ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, GIS ’09,
pages 352–361, New York, NY, USA. ACM.

Merry, K. and Bettinger, P. (2019). Smartphone GPS ac-
curacy study in an urban environment. PLOS ONE,
14(7):e0219890.

Newson, P. and Krumm, J. (2009). Hidden Markov Map
Matching Through Noise and Sparseness. In Proceed-
ings of the 17th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Sys-
tems, GIS ’09, pages 336–343, New York, NY, USA.
ACM.

Nikolić, M. and Jović, J. (2017). Implementation of generic
algorithm in map-matching model. Expert Systems
with Applications, 72:283–292.

Osogami, T. and Raymond, R. (2013). Map Matching with
Inverse Reinforcement Learning. In Proceedings of
the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, pages 2547–2553,
Beijing, China. AAAI Press.

Quddus, M. A., Ochieng, W. Y., and Noland, R. B. (2007).
Current map-matching algorithms for transport appli-
cations: State-of-the art and future research directions.
Transportation Research Part C: Emerging Technolo-
gies, 15(5):312–328.

Rahmani, M. and Koutsopoulos, H. N. (2013). Path infer-
ence from sparse floating car data for urban networks.

Map Matching Algorithm for Large-scale Datasets

507

Transportation Research Part C: Emerging Technolo-
gies, 30:41–54.

Tang, J., Song, Y., Miller, H. J., and Zhou, X. (2016). Esti-
mating the most likely space–time paths, dwell times
and path uncertainties from vehicle trajectory data:
A time geographic method. Transportation Research
Part C: Emerging Technologies, 66:176–194.

White, C. E., Bernstein, D., and Kornhauser, A. L. (2000).
Some map matching algorithms for personal navi-
gation assistants. Transportation Research Part C:
Emerging Technologies, 8(1):91–108.

Wolfson, a. O. (2004). A weight-based map matching
method in moving objects databases. In Proceed-
ings. 16th International Conference on Scientific and
Statistical Database Management, 2004., pages 437–
438.

Yin, Y., Shah, R. R., and Zimmermann, R. (2016). A Gen-
eral Feature-based Map Matching Framework with
Trajectory Simplification. In Proceedings of the
7th ACM SIGSPATIAL International Workshop on
GeoStreaming, IWGS ’16, pages 7:1–7:10, New York,
NY, USA. ACM.

Yuan, J., Zheng, Y., Zhang, C., Xie, X., and Sun, G.-Z.
(2010). An Interactive-Voting Based Map Matching
Algorithm. In 2010 Eleventh International Confer-
ence on Mobile Data Management, pages 43–52.

Zhang, D., Dong, Y., and Guo, Z. (2021). A turning point-
based offline map matching algorithm for urban road
networks. Information Sciences, 565:32–45.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

508

