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This paper introduces and evaluates a novel way of processing human activities based on unique combinations
of interpretable categorical high-level features with applications to classification, few-shot learning, as well
as cross-dataset and cross-sensor comparison, combination, and analysis. Feature extraction is considered as
a classification problem and solved with Hidden Markov Models making the feature space easily extensible.
The feature extraction is person-independently evaluated on the CSL-SHARE and UniMiB SHAR datasets
and achieves balanced accuracies up from 96.1% on CSL-SHARE and up to 91.1% on UniMiB SHAR. Fur-
thermore, classification experiments on the separate and combined datasets achieve 85% (CSL-SHARE), 65%
(UniMiB SHAR), and 74% (combined) accuracy. The few-shot learning experiments show potential with low
errors in feature extraction but require further work for good activity classification. Remarkable is the possi-
bility to attribute errors and indicate optimization areas easily. These experiments demonstrate the potential

and possibilities of the proposed method and the high-level, extensible, and interpretable feature space.

1 INTRODUCTION

When researchers get involved in Human Activity
Recognition (HAR), an important research topic to
facilitate today’s modern life, they will usually incor-
porate it into mature Machine Learning (ML) algo-
rithms for related tasks, such as automatic segmen-
tation, feature extraction and selection, activity mod-
eling technology, among others. In these, only the
research involving ML technology is considered, and
many early and subsequent works important to HAR,
such as equipment, signal acquisition, Digital Signal
Processing (DSP), system evaluation, customization,
and practical applications omitted. Therefore, the re-
search goals are often to answer these two questions:
Which ML approaches are applicable in HAR? How
to adjust the model topologies and parameters to im-
prove the recognition rate of certain tasks?

Many pieces of literature provide solutions to
the first question. For example, Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks
(RNN5s), Hidden Markov Models (HMMs), and other
well-known ML algorithms have shown their capa-
bility of solving problems for segmentation, feature
study, activity modeling, and other related aspects
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(Oniga and Siit6, 2014) (Ordéiiez and Roggen, 2016)
(Yang et al., 2015) (Singh et al., 2017) (Ronao and
Cho, 2014). Upgraded architectures for HAR based
on these fundamental algorithms, such as Residual
Neural Networks (ResNets) (Tuncer et al., 2020)
and Hierarchical Hidden Markov Models (HHMM)
(Youngblood and Cook, 2007), have also been emerg-
ing. Based on the above-listed methods, aiming
to improve research results via model improvement,
parameter adjustment, and experimental iterations,
more works have been proposed to solve the sec-
ond problem (Ronao and Cho, 2016) (Arifoglu and
Bouchachia, 2017) (Uddin et al., 2011) (Rebelo et al.,
2013) (Amma et al., 2010).

However, if comparing the rich outcomes of HAR
research so far to other ML-based recognition re-
search fields, an aspect of HAR that needs further
exploration emerges. In Automatic Speech Recogni-
tion (ASR), human vocalization is widely studied and
applied to modeling (Schultz, 2002). For example,
researchers apply the three-state HMM-based Bakis-
model, constructing phonemes by imitating phonetics
in segmenting the pronunciation (Bakis, 1976). Each
state (begin/middle/end), also called sub-phoneme,
models parts of a phoneme, not only enhancing train-
ing efficiency and recognition performance but also
endowing the model with phonetic and biologic sig-
nificance. Another well-known example is that in
the field of image and video recognition, many ap-
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proaches are inspired and analogized by the physi-
ological model of how human eyes deal with stereo
vision, i.e., from human vision to computer vision
(Dickinson et al., 2009) (Scheirer et al., 2014). In
contrast, HAR’s research so far seems to have been
gathering in Artificial Intelligence (Al) itself, and
there is very little literature extending the study to
somatology. In fact, the concept of “human activ-
ity” specifically is practical and essentially linked to
physiology and sports science. In order to integrate
related knowledge into the research field of computer
science, gaps need to be bridged. Once these bound-
aries are crossed, the HAR research will have a solid
foundation for theoretical modeling and experimen-
tal optimization than purely discussing the meaning
of the topology and parameters in ML models. One
such step has been made in the introduction of Mo-
tion Units, where human activities have been parti-
tioned into their distinct phases and states/sub-phases
based on gait analysis and sport science knowledge
(Liu et al., 2021b).

In this paper, we introduce a method to fur-
ther and more easily incorporate knowledge from
other fields into Human Activity Recognition by en-
abling non-machine learning experts to develop a
recognition system. We propose a setup where re-
searchers can define high-level properties of activities
with their respective possible values, such as Back-
wards/Neutral/Forwards on which the activity clas-
sification is performed. These features are initially
extracted with out-of-the-box classifiers and can later
be optimized or transformed into feature functions by
machine learning experts. One requirement of said
properties is that each activity differs from any other
activity in at least one of them, making final classifi-
cation straightforward, possible errors attributable to
the erroneous feature, and the extracted feature space
highly interpretable.

2 FEATURE SPACE

The proposed method transforms activities into a
high-level feature space with discrete, categorical fea-
tures, where each combination of features is unique
across activities. Thereby breaking the activity clas-
sification problem into several sub-problems and a
combination task. Instead of classifying a sequence as
“Walk” directly, it is recognized as a forward move-
ment (without Left/Right or Up/Down components)
at a low speed and includes a cyclic knee movement
and, therefore, is classified as “Walk™.

The classification problem to choose between, say
22 different activities, is reduced to multiple classi-
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fication problems with only a handful of discrete fea-
ture values and a final classification in this new feature
space. Note that these sub-problems have more data
available for each target class but are not necessarily
more straightforward to solve as they include vastly
different activity signals. Take “Stand” and “Falling
Forward”, while intuitively being very different, both
start in a standing position, have little to no muscle
activity, and have no movement to the left or right,
and, therefore, share surprisingly many features and
would be assigned the same target in several of them.

Setting these ideas into practice and evaluating
them requires specific activities and data. In this case,
two datasets, namely, CSL-SHARE (Liu et al., 2021a)
(called CSL19 in the earlier pieces of literature) and
UniMiB SHAR (Micucci et al., 2017). Both datasets
mainly contain Activities of Daily Living (ADL) like
“walk,” “go upstairs,” and “‘sit.” In addition, the CSL-
SHARE dataset includes several sport-related activi-
ties, such as “shuffle-Left/Right” and “V-cut”, while
the UniMiB SHAR dataset collects eight types of
falls. The CSL-SHARE dataset applies four types
of wearable sensors (two triaxial accelerometers, two
gyroscopes, four EMG sensors, and one electrogo-
niometer) integrated into a knee bandage, while the
UniMiB SHAR uses an accelerometer in an Android
smartphone to sense the signal. One particularly chal-
lenging aspect of the UniMiB SHAR data is that the
participants wore the smartphone in different orien-
tations, making it hard to distinguish directions and
other movements.

The initial high-level features are chosen based
on (Liu et al., 2021b) and are as follows: Class,
Left/Right, Up/Down, and Back/Front. Class de-
scribes the base activity, e.g., “walk”, “fall”, and
“lounge”. The other three are based on the Six-
Direction Nomenclature (Liu et al., 2021b) and de-
scribe entire body translational movement. In con-
trast to Motion Units, the assignment here is not on
sub-sequences but the whole activity level, thinking
of these properties more as phonetic features than as
phonemes as done with Motion Units. Furthermore,
in this paper the “anchored” aspect is replaced by
adding a “neutral” option to each of the three direc-
tional axes, e.g., Left/Neutral/Right. This neutral op-
tion is vital, as all features need to be extractable on
every activity for a well-defined feature space.

However, with these four features, the feature
combinations are not unique between activities and,
therefore, the feature space is extended. On the CSL-
SHARE dataset, three features are added: starting
Foot, muscle Force, and Knee angle. The Foot is
required to distinguish between “V-Cut left with the
left foot first” and “V-Cut left with the right foot

41



BIOSIGNALS 2022 - 15th International Conference on Bio-inspired Systems and Signal Processing

Activity Features

Back/Front -

Left/Right -
Up/Down -
Speed -

clse _

Class
Knee -
Impact -
Foot
Start
] ]
X QO 2T E E 0N 0 DN cE L
9] < a5 O O w S <
m&sﬂg.«:gg—g:mg?
S35 PgE823205 g3
.Sm.EEg%,Q s 28 E%’
S23582£% 2922 £5
w o= w L = € EE; mﬁ
2L L‘Eﬁ 2\3—!
= =

Sit -

o
[ I - S o S © N R ) B - S -~ 4 = 0 own
sPEPP2Sg8PErEgEELE
gEesew o S wwgz 28208
SEES§EVE3EgEgE g B
- C
n - o929=0° A EN—-2=0 mg;:
& & £ o ] & - 2 = S x
2§ ok L & o e T X U ®
s _ -2 =t D =g ==
& c £ ¢ 055 2 =g

a o -

nwaa .t 3005

n n a T 20

) >>>.

Activity

Figure 1: Assigned features per activity. Rows describe features with their respective categorical values per activity. Activities
with the same value in a row use the same color. For example, the “FallingBack™ and “FallingForward” activities have the
same Start position marked in dark blue, but differ in the Back/Front feature (dark blue and white). No further meaning or
order in color is intended, and the color value is solely maintained inside each row, e.g., dark blue does not refer to the same

value in the Start and Foot row.

first”, while “Jump with one leg” requires more mus-
cle force to lift the body’s weight compared to “Jump
with two legs”. Lastly, “Sit” and “Stand” can be
distinguished when comparing knee angles. On the
UniMiB SHAR side, a Speed feature to distinguish
between “Running” and “Walking” is added. Addi-
tionally, a Start position and Impact feature are added
to distinguish between “Stand up from sitting” and
“Stand up from laying” as well as “Hitting an obsta-
cle” and “Syncope”.

The activities are grouped on association and ac-
tivity description of the data publishers in each of the
high-level features. Figure 1 displays the assignments
for both datasets. The full assignment is required only
in the combination experiment (Section 6). The fol-
lowing extraction and classification experiments only
use the features developed for each dataset. Making
the feature space more concise and resulting in sim-
pler models. For the CSL-SHARE Class, Left/Right,
Up/Down, Force, Foot, and Knee are used. For
the UniMiB SHAR Activity, Back/Front, Left/Right,
Up/Down, Start position, Speed, and Impact are used.

The current choice of features can be improved
and should be developed for a broader range of ac-
tivities. As Table 1 indicates, the 6DN features help
distinguish activities across both datasets. The Speed,
and Force features also help distinguish several activ-
ities. However, the Impact, Foot, and Start feature
are developed mainly for specific datasets and do not
provide much information on activities of the other
dataset. Developing the features for a larger number
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of activities and datasets should prove helpful. Espe-
cially when paired with a procedure that minimizes
the number of features while maximizing activity dis-
tances. Clustering comes to mind, either with ma-
chine learning techniques or by manually recursively
splitting the activity pool. Furthermore, taking inspi-
ration from other fields like the Bewegungslehre from
sports science and education (Meinel and Schnabel,
1987) or the Labanotation from dance (Guest, 1977)
could provide powerful features.

Note that the Start position feature differs from
the other features because it requires knowledge of
the starting time of an activity. When extracting the
features, not into a vector but as a sequence, simply a
position feature (values Lay/Sit/Stand) would provide
the equivalent information by making Start a special
case of the Position feature.

These choices already demonstrate the extensibil-
ity and adjustment possibilities for and to new activ-
ities and datasets. However, they also show the diffi-
culty and importance of good feature choices. A poor
choice of features might lead to activities not being
discriminable in the feature space either due to the
same feature values or poor feature extraction. Fur-
thermore, a choice of features that each distinguishes
only a few activities will not scale as each feature adds
computational cost with little to no benefit in classi-
fication. The importance of feature choice also high-
lights the closeness between feature choice and activ-
ity definition. If no feature can distinguish two activ-
ities, are they indeed two different activities, and on



which granularity should activities be distinguished?
The proposed method makes modeling for human ac-
tivity recognition more accessible for non-machine
learning experts and easier to incorporate knowledge
from other fields, emphasizing feature choice and de-
sign while abstracting the machine learning aspect.

3 FEATURE EXTRACTION

High-level feature extraction here describes the pro-
cess of extracting attributes like Left/Neutral/Right
from a given motion data sequence. The attributes
are categorical and lend themselves to treating the ex-
traction as a classification problem. In the following,
three extraction methods are explored and evaluated
based on Hidden Markov Models, Random Forests,
and custom feature engineering. The main benefit of
treating feature extraction as a classification problem
is the easy extensibility. If a new feature is needed,
only annotation of each activity is required to train an
out-of-the-box classifier, like a Random Forest. How-
ever, Random Forests struggle with sequences of dif-
ferent lengths and, therefore, Hidden Markov Models
are configured to work similarly to an out-of-the-box
classifier.

The Random Forest is trained on the mean, sum,
max, and min low-level features for each channel’s
first thousand samples. The low-level feature fol-
lows the notion that trends like Left/Right or Up/Down
accumulate over time. The limitation to the first
thousand samples results in the fact that for UniMiB
SHAR, the whole sequence is used, while for CSL-
SHARE, the first second of an activity is used (mean
duration of most activities is around 1.7 seconds),
which should be enough data to extract the chosen
features and performed best in a cross-validation ex-
periment.

The Hidden Markov Models can automatically
learn to pay attention to essential segments of a se-
quence as well as channels by choice of topology and
Gaussian Mixture training, which helps given the cho-
sen features. For instance, not all parts of walking or
falling might be important to determine if the feature
value should be Left, Neutral, or Right. Additionally
to the one-hot-encoded prediction of each feature, the
HMM-based extraction also returns the HMMs con-
fidence in the prediction as additional information to
the combination task. Resulting in a feature space di-
mensionality of 39 (33 from feature values plus six
confidences per feature) on the CSL-SHARE dataset
and 37 on the UniMiB SHAR dataset (30 unique val-
ues plus seven confidences). The setup and hyperpa-
rameter choice follow the findings of (Hartmann et al.,
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2021), including mean-based rotation removal for the
UniMiB dataset. Accordingly, a sliding rectangular
window is used, the mean, RMS, slope, and max fea-
tures calculated, and the whole sequence normalized
afterward for both datasets. A grid search with a 10-
fold person-independent evaluation was performed to
determine the best window size, as the high-level
features are less time-sensitive compared to activi-
ties, and some longer trends, like a left curve, should
be more pronounced with longer windows. Accord-
ingly, for the CSL-SHARE dataset, 100ms windows
are used (exceptions are the Left/Right, Up/Down,
and Foot, where 200ms windows are used) while for
UniMiB SHAR, 200ms windows are used (exceptions
are Left/Right and Back/Front with 400ms windows).
Each activity is modeled with one of three predeter-
mined topologies: general-purpose, one step, several
steps. All three follow the same pattern where the first
and last states are called “Random” and are shared
across all activities. Thus, trimming the sequence
but not influencing the classification. The general-
purpose topology contains three consecutive states,
while the step topology uses five, and several steps
are modeled with three times five, i.e., three steps.
The inner three to fifteen states then learn the main
distinguishing aspects of the feature. Technically and
for future experiments, the best matching topology for
a sequence could be chosen automatically.

Feature Extraction Performance
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Figure 2: Balanced accuracies for feature extraction in a
10-fold person independent cross-validation.

The feature extraction with HMMs and Ran-
dom Forests are then evaluated in a 10-fold person-
independent cross-validation. The balanced accuracy
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is chosen, as the feature targets can be highly im-
balanced (see Figure 1). The results are depicted
in Figure 2. The HMM-based extraction outper-
forms the Random Forest one consistently. Accord-
ingly, the following will focus on the HMM-based
extraction. The features on the CSL-SHARE dataset
are extracted with balanced accuracies in the very
high ninety percent, with the lowest accuracy in the
Left/Right feature at 96.1% balanced accuracy. This
performance is encouraging, especially when com-
pared to the activity classification accuracy of 93.7%
in a leave-one-person-out cross-validation that is state
of the art (Hartmann et al., 2021). On the UniMiB
SHAR dataset, similar observations can be made. The
balanced accuracies are around eighty percent, with
Left/Right being an exception at 55.7% balanced ac-
curacy. While these accuracies are promising for the
overall classification, it is crucial to note that errors
on the feature level propagate and add up in the fi-
nal classification. Specifically, the extraction of the
Left/Right feature requires further attention.

A closer look into the Left/Right evaluation in Fig-
ure 3 reveals that while the features are correctly ex-
tracted for almost all activities, the three activities
“Walk”, “Walk 90° left”, and “Walk 90° right” are
causing problems. Note that “Walk 90°” refers to
walking a curve in three steps at which end a 90° turn
is finished, rather than walking in a straight line. As
Left/Right is the only feature distinguishing these ac-
tivities in the high-level feature space, this error will
propagate in the activity level classification (see Sec-
tion 4).

The classifier-based feature extraction allows for
effortless feature extension but adds a computational
cost. For this reason, it is imperative to investigate if
the features can also be extracted with hand-crafted
functions. Furthermore, investigating what the clas-
sifiers base their decision on is of interest. As seen
above, one of the main challenges and opportunities
on the CSL-SHARE dataset is correctly identifying
the direction in “Walk”, “Walk 90° left”, and “Walk
90° right”. Taking a closer look at the characteristics
of these three activities shows that they have very dis-
tinct slopes in the readings of the lower gyroscope in
the Left/Right direction, specifically during the swing
phase, which ought to be further exploited. There-
fore, a cross-channel feature was developed using the
goniometer to determine the swing phase combined
with extracting said slope from the lower gyroscope.
The cross-channel feature, named AvgSlopeSwing in
the following, is then classified by a random forest
requiring only five estimators and the whole setup
evaluated in a leave-one-person-out cross-validation
scheme where it performed on par with the HMM-
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Figure 3: Confusion matrix for the Left/Right feature bro-
ken down into errors per activity.

based extraction at 72.6% accuracy in the three-class
problem. While the observed behavior extracted with
this feature fits most participants, it mixes directions
with the neutral case for others. Figure 4 illustrates
this. The feature demonstrates that the computational
cost of classifier-based feature extraction can be re-
duced with feature engineering and should be further
pursued.

AvgSlopeSwing feature on lower gyro X for selected subjects

Activity
Subject 9 . .22 .-xﬂ;,%.“ o Walk
Walk 90 ° left
o Walk 90 ° right
F ]
Subject 11 -‘-'{.I{_-- o i o

-10.0 -75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
AvgSlopeSwing

Figure 4: Average slope during swing phase feature illus-
trated for Left/Neutral/Right walking with two select sub-
jects.

4 CLASSIFICATION

The discriminatory power of the extracted high-level
feature space combined with the Hidden Markov
Models confidences is investigated using a 10-fold
person-independent cross-validation. The feature ex-
tractors are trained on the same training data as
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Figure 5: CSL-SHARE confusion matrix and activity distance. Color indicates activity distance in high-level feature space
by the number of different feature values. The number in each cell denotes confusion in percent.

the combining classifier to avoid overestimating the
method’s actual performance. A Random Forest is
used for classification in the high-level feature space.

On the CSL-SHARE dataset, overall performance
of 85% is achieved, compared to 93.6% reported pre-
viously (Hartmann et al., 2021). The main prob-
lems in classification occur where there are few dis-
tinguishing features or the distinguishing features’ ex-
traction accuracy is lacking. Figure 5 shows that most
confusions occur, where the distance between activi-
ties is low. In that sense, the figure highlights areas
of attention where high confusion is expected due to
low distance in red and areas with high distance and
low expected confusion in blue. Confusion in low-
distance areas is further increased if the extraction of
features struggles, which can be taken from Figure 2
and 1. For instance, the difference between the four
“Spins” to their “V-Cut” counterparts is only in the
Force feature (also the Speed feature, which is omitted
here). Another example is the “Walk™ and “Walk 90°”
activities that differ in the Left/Right feature, which,
as shown in Figure 3, has problems with determining
the direction of these three activities.

A similar result is found in the UniMiB SHAR
dataset, with a 64% accuracy compared to 77.0% re-
ported previously (Hartmann et al., 2021). The confu-

sion matrix reveals that the different falls are hard to
discriminate due to only a few distinguishing features.
“FallingLeft” and “FallingRight”, for instance, are
mainly differing in the Left/Right feature from each
other as well as the other falls. However, as shown
in Figure 2, the Lefi/Right feature is not extracted
very well, possibly due to only one example activity
for each feature value in the UniMiB SHAR dataset.
Similarly, the Start feature has some problems, which
manifests when comparing “Stand up from sitting” to
“Stand up from laying” and again when comparing
“FallingBackSC” and “FallingBack”. A closer look
into the projected high-level feature space shows that
it errs 50% of the time in the Left/Right and 70% in the
Start feature, leaving the final classifier little chance
to correctly predict the activity.

These classification evaluations show that while
this setup trails the reported state-of-the-art perfor-
mances by ten points on both datasets, there is po-
tential in the method. Specifically, due to its high in-
terpretability, errors can be attributed and considered
when further developing the features and feature ex-
traction.
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UniMiB-SHAR - Confusion Matrix and Number of Features
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Figure 6: UniMiB SHAR confusion matrix and activity distance. Color indicates activity distance in high-level feature space
by the number of different feature values. The number in each cell denotes confusion in percent.

S IMBALANCED DATA AND
FEW-SHOT LEARNING

A significant advantage of the proposed method is that
data from different activities is combined in the high-
level feature extraction, resulting in a higher number
of data points for each feature value. This data shar-
ing allows features to be extracted from unseen activ-
ities and such with a low occurrence in the dataset
while at the same time maintaining interpretability.
Few-shot learning and imbalanced data are especially
interesting in human activity recognition as there is
a vast amount of different activities, which could be
picked up quickly with a few-shot learning algorithm.
Furthermore, some activities are hard to record and
have little training data available but require accurate
recognition. Falls are a common example, which in
current datasets are typically simulated but are crucial
to recognize accurately.

The following experiment evaluates the high-level
classifier on the full data, except for one activity, from
which only one sample is included in the training data
in a 5-fold person-independent cross-validation. This
procedure is repeated for each activity and with vary-
ing amounts of given samples. The activity occur-
rences in the CSL-SHARE dataset are mostly equally
distributed at roughly 20 recordings per activity and
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participant. Therefore, four sample sizes are evalu-
ated, namely: 1 sample (0.3% percent of otherwise
available samples in the 5-fold scheme), 8 (2.5%), 16
(5%), and 32 (10%). In the UniMiB SHAR dataset
the occurrences of each activity differ, ranging from
153 samples (“Standing up from sitting”) up to 1985
(“Running”), with the median at roughly 500 sam-
ples. Accordingly, the following numbers of sam-
ples were evaluated: 1 sample (0.25% mean), 10
(2.5% mean), 20 (5% mean), 40 (10% mean). As
the training data is highly imbalanced and includes
only a few training examples, the high-level classi-
fier is switched from a Random Forest to a Balanced
Random Forest utilizing undersampling (Chen et al.,
2004). All other parameters remain the same, includ-
ing the feature extraction. Four metrics are evalu-
ated: the overall accuracy, the f1 score of the low
sample activity, the percentage of samples with fully
correct extracted features, and the amount of errors in
the extracted features (calculated as mean difference
between the one-hot-encoded feature vectors without
confidences). The overall accuracy can be compared
with the classification results in Section 4 and indi-
cate the overall performance implication if one activ-
ity is low-resourced. The f1 score indicates how well
the low-resourced activity is recognized after train-
ing. The percentage of samples with correctly ex-
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Figure 7: Performance on CSL-SHARE and UniMiB SHAR with four evaluated metrics. Averaged across 5-fold person-

independent cross-validation and rotating low-resourced activity.

tracted features indicates how well the feature extrac-
tion works. This percentage might differ from the f1
score, as the activity-level classifier might compen-
sate for wrongly extracted features but might also ig-
nore correctly extracted features due to a bias learned
in training. The error metric complements this by in-
dicating how far off the feature extraction was from
the correct feature values.

Figure 7 shows the results of this evaluation. The
plot shows both the f1 score and correct extraction
increasing and the mean extraction error decreasing
with the number of shown samples, while the over-
all accuracy remains stable and is close to the scores
found in the classification experiments (see Section
4). The latter, combined with the low fl score, in-
dicates that all other activities perform well indepen-
dently of the low-resourced activity. The low f1 score
shows that this setup struggles with one-shot learning,
but can perform well with low-resourced activities be-
yond one-shot learning and can come close to full data
with only 10% of the original data.

Note that the mean error of the extracted feature
is at less than 20% for both datasets (CSL-SHARE
one-shot is at 14.2% and UniMiB SHAR at 19.5%).
Recall that the one-hot encoded feature space has 33
(CSL-SHARE) and 30 (UniMiB SHAR) dimensions,
meaning that on average less than three features are
extracted incorrectly (dimensionality times the error
divided by two, as an error in a feature results in
two errors in the one-hot encoding) in both datasets
in the one-shot experiment. Concluding, that while
the classification of low-resourced activities should be
improved, the feature extraction errs in few, but activ-
ity distinguishing features and improving these would
improve few-shot learning.

6 DATASET COMBINATION

Another major advantage of the proposed method is
the universality and independence of the extracted

features from the sensor setup. Opening up the oppor-
tunity to combine and compare datasets in this high-
level feature space. Of course, there are limitations,
and not every feature makes sense for each dataset.
However, this can be accounted for when choosing the
features. The following experiment is a proof of con-
cept and combines the aforementioned datasets CSL-
SHARE and UniMiB SHAR in a stratified person-
dependent evaluation. The scheme was chosen to en-
sure each activity occurring in the training and test set,
which is challenging in a person-independent evalua-
tion across datasets with different participants. The
features listed in Section 2 for each of the datasets
are combined as displayed in Figure 1. Therefore,
more but not necessarily information-increasing fea-
tures are extracted compared to the classification and
few-shot learning experiments. The feature extraction
is trained individually for the different datasets but
similar to the previous experiments within the evalu-
ation scheme. The activity-level classification is then
done in the resulting feature space. Not unlike an in-
terpretable equivalent to swapping the first layers of
a Neural Network depending on input while keep-
ing the last layers fixed. The activity-level classifica-
tion is, therefore, independent from the dataset, which
means, that now “V-Cuts” (CSL-SHARE) need to be
distinguished from “Falls” (UniMiB SHAR). At the
same time, both datasets have shared activities like
“Walk” resulting in more samples compared to each
individual dataset. The resulting 74% accuracy is in
the middle between the 85% on the CSL-SHARE and
the 64% on the UniMiB SHAR dataset (see Section
4). The confusion matrix is omitted here for brevity.
The errors made during classification are the same as
in the previous individual dataset experiments, except
the “Walk”™ activity. “Walk” is now less confused with
the “Walk 90°” activities and seems to have bene-
fited from the additional samples or the additional fea-
tures not present in previous experiments. The effects
and possible benefits of the data combination will be
investigated in future work. The dataset combina-
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tion demonstrates that combining datasets with this
method is possible, which creates a foundation to find
commonalities and suited features for activities across
different settings.

7 CONCLUSIONS

This paper introduces a novel way of classifying hu-
man activities based on unique combinations of in-
terpretable high-level features for each activity. The
extracted features are interpretable and easily exten-
sible, and allow comparison and combination of dif-
ferent datasets in the high-level feature space. The
three approaches using HMMs, Random Forests, and
custom high-level feature functions for feature ex-
traction were proposed and evaluated, of which the
Hidden Markov Model performed best across the two
datasets CSL-SHARE and UniMiB SHAR. Classifi-
cation experiments investigated how well the extrac-
tion combined with a Random Forest for final classi-
fication could perform. In a person-independent 10-
fold cross-validation, they performed well, at 85% on
the CSL-SHARE compared to 93.6% state-of-the-art
and 64% compared to 77.0% state-of-the-art on the
UniMiB SHAR dataset (Hartmann et al., 2021). Fur-
thermore, few-shot learning experiments were con-
ducted, where one-shot learning did not succeed, but
low extraction error rates and increasing fl scores in
few-shot learning are encouraging. Additionally, an
experiment combining the two datasets showed the
potential and promise of developing human activity
recognition systems across data sources. Remarkable
is that the errors in both classification experiments and
few-shot learning experiments are attributable, and
the next steps for increased performance are clear:
deepened development and choice of features along
with their extraction methods.

Furthermore, the next two major steps are clear:
further investigate and develop high-level features and
extract these as sequences rather than as vectors to
enable online recognition. High-level features will
be developed borrowing from previous HAR work,
sports knowledge, and even utilizing findings and
criteria from dance from decades of previous work.
The main challenges for sequence extraction are cre-
ating the ground truth and addressing varying sam-
pling rates across datasets. The ground truth creation
likely requires manual data annotation and might only
be possible for certain high-level features and if the
dataset provides video examples. A sliding window
approach could address the sequence problem when
extracting features for a single dataset, but it does not
scale easily across datasets due to different sampling
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rates. The slow nature of high-level features might en-
able re-sampling and should be investigated in future
work. These and other topics, including estimating
a performance ceiling with Neural Networks and ex-
tending to further datasets and modalities, are future
work for these high-level features.
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