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Abstract: The cartographic representation is static by definition. Therefore, reading a map of the past can provide 
information, which corresponds to the accuracy, technology, as well as scientific knowledge of the time of 
their creation. Digital technology enables the current researcher to "copy" a historical map and "transcribe" it 
to today. In this way, a cartographic reduction from the past to the present is possible, with parallel 
visualization of new information (historical geodata), which the researcher has at his disposal, in addition to 
the background. In this work a deep learning approach is presented for the extraction of buildings within 
historical topographic maps. A deep convolution neural network based on the U-Net architecture is trained 
by a large number of images patches in a deep image-to-image regression mode in order to effectively isolate 
the buildings from the topographic map while ignoring other surrounding or overlapping information like 
texts or other irrelevant geospatial features. Several experimental scenarios on a historical census topographic 
map investigate the applicability of the method under various patch sizes as well as patch sampling methods. 
The so far results show that the proposed method delivers promising outcomes in terms of building detection 
accuracy. 

1 INTRODUCTION 

Automated retrieval of information from many 
different images is a very important task. Historical 
maps provide valuable information about the site, 
with a chronological reference to the time they were 
built. Thus, they may contain information on 
topography, toponyms, and in relation to urban space, 
streets, blocks, buildings, etc. It is therefore important 
that this information can be extracted and be available 
for analysis and identification of the urban landscape 
of the past.  

There are plenty of such maps (topographic, 
urban) in public services and which can be a useful 
source of information if one can take advantage of 
them. These maps can be studied by many scientists 
from a wide range of disciplines. This current study 
uses as object the digitized maps of the Hellenic 
Statistical Authority (ELSTAT) and was used for 
inventory purposes (pre-enumeration, enumeration, 
and post-enumeration). Such a sample map is 
presented in Figure 1 and depicts the Settlement of 
Petroupoli, which is a suburb of Athens, Greece, in 

the 1971 Housing and Population Census. Its initial 
size is 70 × 50 cm and its scale is 1:5000.  

There are many GIS software and not only, which 
provide the ability to vectorize an image. This process 
can be performed either (semi) manually under the 
supervision of a special user, or automatically. The 
product resulting from this process, however, does 
not differentiate the objects displayed on a map. That 
is, linear elements are not separated from polygonal, 
texts (letters, numbers) or point data. 

 

Figure 1: Sample historical topographic map. 
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Therefore, in order to achieve a distinct rendering 
of the objects, another approach must be implemented 
that aims at the specific recognition of the desired 
objects. The aim of this study is to extract the 
geometry of the buildings from the above-mentioned 
historical topographic maps that are initially in the 
form of an image. Figure 2 shows an example of this 
kind of conversion. Specifically, Figure 2(a) shows 
the original binarized form of the image, while Figure 
2(b) shows the footprints of the buildings, which is 
the desired result. Indeed, textual information as well 
as other irrelevant graphic information is effectively 
isolated. 

 

(a) 

 

(b) 

Figure 2: (a) Original binarized map subarea (b) Buildings 
footprints detection. 

Detecting a building footprint often becomes 
difficult, as various specific challenges arise that are 
usually related to the removal of background map 
noise (which is common), irrelevant graphics or 
textual information, etc. For example, building 
geometry is often overlapped with block’s number, as 
shown in Figure 3(a). In addition, there may be a 
dense display of text information on the map, e.g. 
street names adjacent to the lines of the building 
block, free text in the map space, or either in a variety 
of characters’ size, as shown in Figures 3(b) and 3(c), 
respectively. In addition, there may be an overlap of 
one edge of the building with the boundaries of the 
building block or even two edges of the building 
footprint overlapping with the block boundaries as 
shown in Figure 3(d). 

(a) (b) 

(c) (d) 

Figure 3: Building footprints detection challenges (a) Dense 
textual overlapping content (b) Free text over the map (c) 
Buildings footprints with varying shape, size and 
orientation (d) Overlapping issues between building block 
and building footprints. 

In terms of buildings extraction from high resolution 
aerial images, there is a variety of previous studies in 
the literature (Fischer et al., 1998; Peng et al., 2005; 
Dornaika and Hammoudi, 2009; Hecht et al., 2015). 
However, these methodologies have limited results 
on historical maps since they are considered as 
significantly lower quality. In this context, (Suzuki 
and Chikatsu, 2003) propose a technique for 
automatic building extraction that detects rectangular 
building footprints that are described by their four 
corner coordinates. In another work, (Laycock et al., 
2011) represent the extracted buildings as non-
intersecting closed polygons. Recently, deep learning 
approaches have attracted significant attention since 
they provide state-of-the-art results (Liu et al., 2017). 
Specifically, Convolutional Neural Networks 
(CNNs) are deep architectures that are able to find 
complicated inherent structures by transferring 
features through multiple hidden layers in a non-
linear fashion (Voulodimos et al., 2018). Uhl et al. 
designed an automatic sampling system, guided by 
geographic contextual data, for generating training 
images (Uhl et al., 2017). Using these automatically 
collected graphical examples, they trained a variant of 
the classical LeNet architecture (LeCun et al., 1998), 
for extracting building footprints and urban areas 
from historical sheets of the United States Geological 
Survey topographic map series. In another recent 
work, they present an improved framework for 
automatically collect training data, deploying 
locational information given in ancillary spatial data 
and sampling patches containing building symbols, 
from map images, by cropping them at those locations 
(Uhl et al., 2019). Consequently, they use these data 
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to train CNNs, which they use for subsequent semantic 
segmentation in a weakly supervised manner. Heitzler 
et al. presented a framework for extracting polygon 
representations of building footprints, that consists of 
training an ensemble of 10 U-Nets, for segmentation, 
using data from the Siegfried map series, and 
vectorizing using methods based on contour tracing 
and density-based clustering on transformed wall 
orientations (Heitzler et al., 2020). 

In this work we propose a Deep Convolutional 
Neural Network (DCNN) approach based on the U-
Net architecture (Ronneberger et al., 2015) that 
addresses the problem of extracting building 
footprints from historical digital maps represented as 
raster images. The DCNN is trained by a large 
number of images patches in a deep image-to-image 
regression mode in order to effectively isolate the 
buildings from the map while ignoring other 
surrounding or overlapping information like texts and 
other irrelevant geospatial features. The proposed 
method is tested on a historical topographic map 
dataset which is partially annotated by human 
experts. This annotation provides the ground truth 
which serves as the desired target response of the 
network. Several scenarios are considered that 
investigate the applicability of the method under 
various patch sizes as well as patch sampling 
methods. The efficiency of the method is 
quantitatively assessed by a set of metrics that 
compare the systems’ output to the annotated ground 
truth. The experimental results show that the 
proposed method provides promising results under 
several setup scenarios. The rest of this paper is 
organized as follows: Section 2 describes the 
proposed approach and provides details regarding the 

DCNN architecture and the overall training process. 
Section 3 describes the evaluation protocol and 
presents experimental results under various setups. 
Indicative examples are also provided and discussed 
that highlight the performance of the proposed 
method. Finally, section 4 draws the conclusions. 

2 PROPOSED METHOD 

In this work the problem of extracting building 
footprints from historical maps is addressed in a deep 
learning framework, where a DCNN is trained using 
as inputs patches extracted from the original 
topographic map image, as well as, patches extracted 
from the ground-truth image, as desired outputs. The 
network’s model is based on the U-Net architecture 
that implements a deep, pixel-wise regression. The 
network’s architecture consists of two basic parts. 
The first part is the encoder, which processes the 
input image through a contraction path, where down- 
sampling is being done by sequential convolutions, 
ReLUs and max poolings. The second part is the 
decoder, which processes the encoder’s result through 
an expansion path, where up-sampling is performed 
through sequential convolutions, ReLUs and 
transposed convolutions. A main feature of this 
architecture is its ability to find the right balance 
between locality and context. Indeed, for better 
localization accuracy, in every decoder’s step, skip 
connections are being used, joining the outputs of the 
transposed convolutions, with the feature maps from 
the corresponding layer of the encoder part.  Figure 4 
visualizes the proposed network’s architecture. 

 

Figure 4: U-net architecture of the proposed DCNN. 
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In the proposed DCNN, the goal is to predict, for 
each pixel of the input patch, a value that is as close 
as possible to the corresponding pixel value in the 
ground truth patch. Regarding the objective function 
employed to optimize the model the half-mean-
squared-error is applied, however not normalized by 
the number of patch pixels, that is, 

𝐶 ൌ
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ଶ
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 (1)

where 𝐻,𝑊  denote the height and width of the 
ground truth patch, 𝑦௚௧ is its binary pixel value and 
𝑦௣ is the predicted response, given as output from the 
DCNN. The above cost is backpropagated to all the 
hidden layers of the DCNN and the network’s 
parameters are updated iteratively using the Adam 
optimizer (Kingma and Ba, 2014). Considering that 
the output of the DCNN is a set of dense predictions, 
where each pixel corresponds to a continuous 
numerical value between 0 and 1, the output of the 
network is converted to a binary one in order to be 
compared to the corresponding ground-truth patch. 

Training the U-Net is based on a large number of 
images patches pairs extracted from the original and 
the ground truth image, respectively. The original 
image is a colored image map that depicts the 
topographic area under consideration while the 
ground truth is a binary image denoting only the 
building footprints. A patch from the original image 
is used as input to the network while the 
corresponding binary ground truth image patch is 
used as the desired network’s output. The patches are 
created using three different approaches named 
“Random”, “Grid-Random” and “Grid-Grid”, 
respectively. They differ in the way the patches cover 
the entire area of the original and ground truth 
images.  

In the “Random” case, patches from the original 
and ground truth images are extracted in a fully 
random fashion. The patch size is defined by the user 
and is a system’s parameter. In order to avoid patch 
overlapping the process keeps track of the patch 
coordinates already created and allows new patches 
whose coordinates differ from the previous ones by at 
least a minimum number of pixels. Moreover, a cover 
percentage parameter discards patches for which the 
ground truth counterpart contains insufficient number 
of active (black) pixels. This check ensures that the 
ground truth generated patches contain an acceptable 
minimum of valuable information, that is, pixels 
indicating building footprints. Figure 5 depicts an 
instance of the “Random” patches’ creation process.  

 

Figure 5: Snapshot of the “Random” patches process 
implementation. The overall number of requested patches 
is given by the user. 

Identical patches coordinates apply to the original 
color image and the ground truth image, respectively. 
Figure 6 shows a pair of training patches. The patch 
on the top is extracted from the original image and 
serves as input for the DCNN network. The patch on 
the bottom depicts the corresponding part of the 
ground truth image which is used as the training target 
of the network. 

 
(a)

 
(b) 

Figure 6: Example pair of training patches of size 224×224 
pixels. (a) Patch in the original image (b) Corresponding 
patch in the ground truth image. 

In the “Grid-Random” case, the patches from the 
original and the ground truth images, are created in a 
sequential sliding-window approach based on a user 
defined grid step. Figure 7 depicts an example of the 
process for patches of size 128×128 pixels. Again, a 
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cover percentage parameter prevents blank patches or 
those with extremely few active pixels to be included. 
While the patches are created in a sequential manner, 
they are shuffled by re-indexing in a random order. 
This sampling approach allows the DCNN to be 
trained with patches that systematically cover, in a 
grid fashion, the whole spatial range of the original 
input and ground truth images while assuring a 
certain percentage of patches diversity. 

Finally, in case of the “Grid-Grid” sampling, the 
patches are being extracted similarly to the “Grid-
Random” case, however the original sequential 
indexing is preserved. 

 

Figure 7: Snapshot of the “Grid-Random” and “Grid-Grid” 
patches process implementation. The sequential patches 
generation continues until the whole are is covered. 

The last sampling approach affects the training 
process since it does not allow the DCNN to be 
trained with patches from the whole spatial range of 
the original and ground truth images. Indeed, the 
patches datasets are divided during the training of the 
network into three parts: 50% of the dataset for 
training, 25% for validation and 25% for testing. It is 
important to notice that the splitting process is 
sequentially performed based on the patches index. 
Therefore, in the first two sampling scenarios 
“Random” and “Grid-Random”, the patches 
eventually cover the whole spatial range of the 
original and ground truth images. In contrast, in the 
third sampling case, “Grid-Grid”, only the first 50% 
of the patches are used for training, leaving the next 
25% and 25% for validation and testing, respectively. 

Clearly, the minimum pixel difference parameter 
for the “Random” sampling, the grid step parameter 
for both the “Grid-Random” and “Grid-Grid” 
sampling and the cover percentage parameter, for all 
three cases, affect the total number of the extracted 
patches pairs. Indeed, the lower the grid step or the 

cover percentage value, the higher the number of 
patches pairs that can be extracted. On the contrary, 
increasing the minimum pixel difference between the 
patches, decreases the number of extracted patches 
pairs in the “Random” case. 
After the patches are created, data augmentation 
techniques are also involved in order to enhance the 
size and quality of the training datasets facilitating the 
network to build better models. Specifically, every 
input and ground truth patch pair images are further 
augmented by rotation by 90, 180, 270 degrees  
in accordance with a horizontally flip leading to  
an augmented set of 8 patches pairs, as shown in 
Figure 8. 

(a) 

(b) 

Figure 8: Data augmentation example for (a) an original 
patch and (b) its corresponding ground truth instance. In 
both rows, the first image is the original patch while the 
following 7 patches are produced by the data augmentation 
process. 

3 EXPERIMENTAL RESULTS 

The proposed method for extracting building 
footprints from topographic map images is tested 
under several experiment scenarios. The experiments 
can be grouped into three different cases, according 
to the sampling approach that has been followed. In 
addition, for each sampling scenario three sub-
experiments were performed, using different patch 
sizes.  
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Table 1: Setup parameters used in the experiments. 

 
 

Specifically, the first dataset contains 16000 input 
and 16000 ground-truth patches of size 64×64 pixels 
(the 2000 of them extracted from the original input 
and ground-truth images, while the rest 14000 pairs 
as a result of data augmentation), the second dataset 
contains 8000 patches pairs of size 128×128 pixels 
(accordingly, 1000 original and 7000 augmented) and 
the third contains 4000 patches pairs of size 224×224 
pixels (accordingly, 500 originally extracted and 
3500 augmented). Table 1 summarizes the number of 
patches as well as the parameter values for each 
experiment dataset. Considering the DCNN, a 
stochastic gradient descent approach is followed, 
using Adam optimizer. The number of epochs is set 
to 100, using a mini-batch of 8, with an initial learning 
rate of 0.001, without learning rate scheduling. 
Regarding the other network parameters, the default 
values are applied as given in (Kingma and Ba, 2014). 
In Figure 9 three examples of networks predictions 
are given. In each case, the first image is the input 
patch from test data, the second image is the 
corresponding ground-truth patch, the third image is 
the network’s prediction and the fourth image is the 
corresponding binarized predicted patch. Figure 9(a) 
depicts a 224×224 “Grid-Random” sampling 
example. It can be seen that the network efficiently 
removed the building block number, the street lines 
as well as the street names. Figure 9(b) demonstrates 
a 224×224 “Random” sampling example where the 
building block number is correctly removed even if it 
overlaps several buildings. The graphical 
representation of the riverbed is also ignored as object 
of no interest. More interestingly, the buildings in the 
lower left part are correctly detected by the network 
even that they are missing from the ground truth. 
Figure 9(c) refers to a 128×128 “Grid-Grid” sampling 
example. The road lines are correctly ignored 
however the network does not fully remove the river 
graphics in the bottom left corner since similar 
graphical content was not part of the training set. 

The metrics used to evaluate the performance of 
the DCNNs in the various experiments are based on a 
pixel-by-pixel comparison between the ground truth 
patch and the predicted binarized patch, counting the 
true positives (TP), false positives (FP) and false 
negatives (FN), respectively. For the ground truth 
patches, as well as the predicted binarized images, the 
white pixels are considered as the background class 
while the black pixels denote the foreground class. 
The metrics analytically are: 

• Global Accuracy: The ratio of correctly 
predicted pixels, regardless of class, to the 
total pixels number of pixels. 

• Mean Accuracy: The average accuracy of all 
classes in all images, where for each class, 
accuracy is the ratio of correctly classified 
pixels to the total number of pixels in that 
class, according to the ground truth, i.e., 
accuracy score = TP / (TP + FN). 

• Mean Intersection over Union: The average IoU 
score of all classes in all images, where for 
each class, IoU is the ratio of correctly 
classified pixels to the total number of ground 
truth and predicted pixels in that class, i.e., 
IoU score = TP / (TP + FP + FN). 

• Weighted Intersection over Union: The weighted 
average IoU score of all classes in all images, 
where for each class, weighted IoU is the 
average IoU, weighted by the number of pixels 
in that class. 

• Mean Boundary F1 (BF) Score: The contour 
matching score that indicates how well the 
predicted boundary of each class aligns with 
the true boundary. For the aggregate data set, 
Mean BF Score is the average BF score of all 
classes in all images and for each class, Mean 
BF Score is the average BF score of that class 
over all images. 
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(a) 

 
(b) 

 
(c)

Figure 9: Visual results of the proposed method. In each row the first image is the input patch from test data, the second image 
depicts the corresponding ground-truth, the third image is the network’s prediction while the fourth image corresponds to the 
binarized predicted patch (a) 224×224 “Grid-Random” example (b) 224×224 “Random” example (c) 128×128 “Grid-Grid” 
example. 

Table 2: Evaluation metrics results for the various experiments. 

 
 

The results of the above metrics for all the 
experimental scenarios are summarized in Table 2. 
Regarding the class metrics, namely, Accuracy, IOU 
and Mean BF Score, the most representative are the 
ones that refer to the foreground class (black pixels) 
since it contains the geographical features of interest, 
i.e. the building footprints. It can be noticed that both 
“Random” and “Grid-Random” sampling cases 
increase their performance according to the patch size 

which however is not the case in most of the “Grid-
Grid” cases. Moreover, the “Random” and “Grid-
Random” sampling cases provide high detection 
accuracy, especially in the cases of 128×128 and 
224×224 patches sizes. The sampling method 
adopted in these two cases feeds the DCNN with 
patches from multiple areas of the original image, 
therefore providing the network with multiple 
representations of desired input-output pairs. In the 
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case of “Grid-Grid” sampling, the DCNN is not that 
high since it is trained with patches that do not cover 
the whole spatial range of the original image. The best 
global accuracy 99.1% is achieved for the “Grid-
Random” case for both patch sizes 128×128 and 
224×224. 

4 CONCLUSIONS 

In this work a deep learning approach is presented 
that tackles the problem of extracting buildings from 
historical topographic maps. For this purpose, a 
DCNN based on the U-Net architecture is trained in a 
deep image-to-image regression mode. Experiments 
on a historical topographic map demonstrate that the 
proposed method efficiently extracts the buildings 
from the map even when they are densely surrounded 
or even overlapped by text or other geospatial 
features. Evaluation under several sampling and patch 
size scenarios gives promising results in terms of 
building detection accuracy, especially when large 
patch sizes are involved and when training the 
network is based on randomly generated patches. 
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