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Abstract: Rapid growth in vehicular congestion increases the challenges of traffic management concerning pollution 
and infrastructure. Efficient traffic governance can have a significant impact on a country’s economy. To 
alleviate these challenges, we propose an intelligent integrated traffic management system that manages 
congestion through cost pricing models to achieve smooth traffic flow. We propose a novel rerouting 
algorithm and ensemble architecture for vehicle detection and classification, tested on live traffic captured in 
several Indian cities. The ensemble architectures are designed on a combination of existing pre-trained 
models. Choice of the ensembles is based on accuracy, model interpretability, and energy efficiency.  We 
show that the second-best ensemble produced operates with significantly less energy and better explainability 
than our best performer and is still within 3% accuracy of the best performer.  Based on predefined road 
priorities, these ensemble models provide traffic and individual vehicle counts, further fed to our proposed 
rerouting algorithm as input. The rerouting algorithm then recommends alternative routes and estimated 
journey time to the user. The paper also presents the results obtained by testing the models on real-time traffic 
videos from Aurangabad (India) on a GPU/CPU cluster consisting of machines incorporating different GPU 
hardware. 

1 INTRODUCTION 

Vehicle rerouting is emerging to be a very effective 
solution for managing congestion resulting from 
vehicular traffic movements on roads. Our previous 
work, GREE-COCO (Kshirsagar et al., 2021) 
provides solutions to congestion control through the 
design of cost pricing models. This paper presents an 
ensemble architecture that divides traffic into five 
classes (car, truck, motorcycle, bicycle, bus). 
Classifying Motorcycle and bicycle are prominent in 
this situation because the dataset is of an Asian 
country, where the majority of vehicles includes 
motorcycles. Thus, making this first to give a major 
focus on classification of motorcycles.    Based on the 
traffic counts obtained from the ensembles, the 
rerouting algorithm displays optimal routes based on 
the user selection from a choice of options that 
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includes minimal cost, distance, or time. Our dataset, 
named as GREECOCO, consists of around 1,101 
videos of real-time traffic data of Aurangabad city, 
generated specifically for this work. Building high-
quality ensembles requires significant expertise, such 
as choosing the suitable base models (Casado-García 
and Heras, 2020),    and knowing how to train them 
and combine their outputs, because ensembles may 
result in lower accuracy than individual models. The 
contributions for the paper are: 
1. Ensemble architectures based on a combination of 

pre-trained models for object detection. 
2. The GREECOCO dataset having more live traffic 

instances for the motorbike class. This is the first 
time, a dataset is trained on a large number of 
instances for the vehicle motorbike class. 

3. The Vehicle Assistance Rerouting System (VARS) 
algorithm to recommend alternative routes to 
users at the start of a journey.  
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2 RELATED WORKS  

Vehicular route guidance is responsible for assigning 
an optimal route to every vehicle from source to 
destination. Various criteria like shortest path, 
minimal travel time, and most minor usage of local 
paths are considered for finding the optimal route. 
The traditional routing algorithms focused only on 
road network features rather than real-time data or 
predictive analysis. The literature experiments to 
create route guidance strategies that effectively find 
shortest paths for given source-destination pairs with 
consideration of maintaining stability even when road 
networks are extensive and dynamic. 

The authors proposed an ensemble model with 
transfer learning and training using the YOLOv3 
algorithm and transfer model on a pre-trained COCO 
dataset. The ensemble bagging technique is used as 
the final classifier to choose the best model, which 
results in the reduction of the training dataset and 
training time(Liu et al., 2017). (Lee et al., 2018) 
studied different CNN models for object detection, 
and, have proposed model selection and box voting 
methods in an ensemble approach of two-stage 
detectors for enhancing the accuracy in the object 
detection.(Pan et al., 2013) presents five traffic 
rerouting strategies. The proposed strategies 
dynamically compute customized routes based on the 
traffic congestion present on the road. 

3 ARCHITECTURE OF 
INTELLIGENT 
TRANSPORTATION SYSTEM 

This research work is an extension to previous work 
for improving the deployability of the GREE-COCO 
system (Kshirsagar et al., 2021) through the design of 
a Vehicle Assistance Rerouting System (VARS). The 
VARS will allow a user to get a route from point A to 
point B, considering the three factors: distance, 
congestion charge and traffic count. The GREE-
COCO system outputs the two deciding factors, i.e., 
Congestion charge and traffic count, which act as 
inputs to the VARS. The vehicle count for each 
vehicle type is stored in a database. Based on this 
vehicle count, congestion charge is calculated, which 
the user has to pay to use the particular road. The 
authors have revised the vehicle classification model 
with ensemble models to support the VARS for 
receiving accurate vehicle count. The VARS will 
display two optimal routes to the user. These routes 

can be fetched using a web or a mobile application. 
The entire system can be observed in Figure 1.   

3.1 Ensemble Model Building 

This section will illustrate the process of building and 
selecting the ensembles used in our experiments. 

3.1.1 Transfer Learning 

Transfer learning uses features learned by a model 
that is trained on a massive dataset. In this work, we 
have used pre-trained models with ImageNet weights. 
By incorporating transfer learning, we save training 
time and eliminate the need for a massive dataset 
required for training a neural network. 

3.1.2 Model Selection for Ensemble 

An ensemble is made up of discretely trained 
classifiers (such as neural networks or random forest) 
whose predictions are merged when classifying 
unique instances. In our proposed work, the 
ensembles consist of pre-trained models for learning 
features of the input data. Here, 8 pre-trained models, 
namely, VGG16 (Simonyan and Zisserman, 2014), 
VGG19 (Simonyan and Zisserman, 2014), 
MobileNetV2 (Mohapatra et al., 2021), ResNet152 
(Mohapatra et al., 2021), InceptionResNetV2 
(Szegedy et al., 2017), DenseNet121 (Huang et al., 
2017), Inception V3 (Szegedy et al., 2016) and 
Xception (Chollet, 2017), with imageNet pre-trained 
weights are used as learners in different 
combinations. We tested three Ensembles, namely, A, 
B, and C, where Ensemble A was the combination of 
VGG16, VGG19, and MobileNetV2; Ensemble B 
consisted of ResNet152, InceptionResNetV2, and 
DenseNet121, and Ensemble C consisted of VGG16, 
Inception V3, and Xception. The Ensemble A model 
consists of relatively fewer layers than those in 
Ensembles B and C. This was considered to compare 
the results and the effect due to the increased number 
of layers. The ensemble model’s selection depends on 
the accuracy and efficiency of the model in terms of 
energy. To preserve the initially learned features, 
70% of the layers were frozen in each model and 
merged. This, in turn, reduces the computational time 
and energy required while training the model. The 
second last layer of the model’s output was integrated 
into one layer and then fed to an output layer with the 
Softmax activation function (Goodfellow et al., 2016) 
with the five output neurons as described in Figure 2. 
Softmax is a mathematical function that converts a  
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Figure 1: Architecture of the Smart Transportation System. 

numeric vector into a probability vector. Adam 
(Kingma and Ba, 2014) is a stochastic gradient 
descent replacement optimization algorithm for 
training deep learning models. The Adam optimizer 
was initiated with a learning rate of 0.0001 to compile 
the model. 

3.2 Dataset Details 

To produce a model that can successfully classify the 
vehicles in different seasons and at different time 
periods, it is necessary to train a model with a large 
number of images, as well as with images that signify 
the various traffic volumes. Moreover, sufficient 
validation images are essential to test the model and 
adjust its weights. To train the ensemble model, we 
primarily used two significant datasets; firstly, the 
MIO- TCD dataset: Vehicle classification dataset 
available at kaggle.com and secondly, the Car dataset 
provided by the University of Stanford. Altogether, 
the total number of images for the vehicle’s classes 
were Bus: 10,316, Car: 10518, Motorbike: 8082, 
Bicycle: 7995 and Truck: 8500.   In this paper, we 
introduce a real-time video dataset, GREECOCO 

(https://github.com/tanishq-1011/Rethinking-
Traffic-Management-with-Congestion-Pricing-and- 
Vehicular-Routing) that includes 1011 videos of 
varying time duration such as 350 videos of 5 
seconds, 268 videos of 10 seconds, 184 videos of 15 
seconds, 149 videos of 30 seconds, 49 videos of 1 
minute, five videos of 5 minutes, five videos of 10 
minutes and two videos of 20 minutes. In each sample 
of 20 minutes, approximately 1385 cars, six buses, 58 
trucks, 1212 motorcycles and 32 bicycles were 
detected. Similarly, in a video sample of 10 minutes, 
on average, 374 cars, 31 buses, 76 trucks, 272 
motorbikes, and six bicycles were detected. The 
videos from the dataset are shot on different priority 
roads from Aurangabad city, such as Jalna road (A 
Priority - heavy traffic), Kalda corner road (B priority 
- moderate traffic), and Shreya Nagar road (C priority 
- low traffic). The videos are shot at various times 
during the afternoon and evening to ensure fair 
learning in periodic intervals of the day. These 
samples had 300 raw night time videos and 40 natural 
daytime videos, further augmented to get our dataset 
of 1011 videos. 
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Figure 2: Architecture of Ensemble models. 

3.3 Hyperparameter Tuning for the 
Ensembles 

The hyperparameter which initially needs to be tuned 
is the neuron count, which was experimented in the 
range [32,1024]. The activation function for the final 
output layer was Softmax consisting of the five 
neurons depicting each vehicle class. Whereas, 
between the layers, the Relu activation function was 
used. In the proposed system, we make use of the 
Adam optimizer. The learning rate was initially set to 
0.001 and eventually decayed by a value of 0.5 after 
every ten epochs. The models were trained for 50 
epochs each. The layer count varied as per the pre-
trained models from 4 to 600. Two levels of 
regularization were used to avoid overfitting; one at 
the batch normalization layer to normalize the value 
for each batch. The second regularization was at the 
dropout level. Depending upon the number of 
neurons, the value of the dropout rate was varied 
from [0.2, 0.5] 

3.4 Ensemble Results 

In this section, we will discuss the performance of 
our ensembles. 

 

Figure 3: Validation accuracy of the ensembles on the 
GREECOCO dataset. 

 

Figure 4: Validation loss of the ensembles on the 
GREECOCO dataset. 

3.4.1 Model Validation on GREECOCO 
Dataset 

First, the dataset was split into three ratios, which are 
70:30, 80:20, and 90:10 for training and testing the 
individual learners and the ensemble models. This 
strategy was essential to determine the effect of the 
dataset’s split on the model’s accuracy and loss. It is 
crucial to provide a model with sufficient testing 
images to test its performance on unseen data 
adequately. This plays a critical role when models are 
to be deployed in real-world scenarios. The 
validation accuracy and loss results of the ensembles 
are shown in Table 1. Here, we can infer that, overall, 
Ensemble B performed better than other ensembles 
when the data split ratio was 80:20. Also, it can be 
determined that all ensemble models performed 
better when the dataset was divided in the proportion 
80:20. Therefore, ensemble models trained on this 
splitting strategy are considered for the further 
testing purposes. Table 2 compares the individual 
model of Ensembles A, B, and C, along with their 
individual learners in terms of validation accuracy. It 
is noticeable that all three ensembles performed  
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Figure 5: LIME results on the predictions of Ensembles A, B and C on the classes (a): Car, (b): Truck, (c): Bus, (d): Motorbike, 
(e): Bicycle. 

better than the individual learners. This validates 
using an ensemble model over a single model. Figure 
3 shows all the three ensembles’ training and 
validation accuracy, while Figure 4 gives the training 
and validation loss for all. 

3.4.2 Model Validation on Benchmark 
Dataset 

The ensemble models were tested on two real-world 
benchmark dataset: CIFAR10 and CIFAR100 
(Krizhevsky et al., 2009) in addition to the 
GREECOCO dataset. The CIFAR-10 dataset 
comprises 60,000 colour images spread across ten 
classes with 6000 images per class. The photos are of 
the size 32x32. This dataset contains 50,000 training 
images and 10,000 test images. The test batch 
contains exactly 1000 randomly selected images from 
each class. In this dataset, only two classes overlap 
with the current work, i.e., car and truck. For testing 
the ensembles, images from these two classes were 
used. 

The CIFAR-100 dataset has similar structure to 
that of the CIFAR-10 dataset in that it has 100 classes 
with 600 images each. Each class has 500 training 
images and 100 testing images. The CIFAR-100’s 
100 classes are divided into 20 super-classes. Each 
image is labelled “fine” (the class to which it belongs) 

and “coarse” (the super-class to which it belongs). We 
have used four classes from the CIFAR-100 dataset 
for testing purposes, as shown in Table 3 with the 
respective class’s accuracy. Table 3 shows the 
ensemble models’ accuracy results tested on 
GREECOCO dataset, CIFAR10 and CIFAR100. The 
values in the Table represent the percentage accuracy. 
It can be inferred that, overall, Ensemble B performs 
the best when compared to other models. 

3.4.3 Model Interpretability with LIME 

In many cases, a model may have good accuracy, may 
have learned irrelevant features. In this work, we 
make use of a framework called LIME (Locally 
Interpretable Model-Agnostic Explanations) (Ribeiro 
et al., 2016) which attempts to understand the model 
by perturbing the input of data samples and 
understanding how the predictions change. LIME 
provides local data model interpretability. This 
technique approximates any black box machine 
learning model with a local, interpretable model to 
explain each individual prediction. Predictions of 
thirty instances of each class given by each of 
Ensemble A, B, and C were tested using the LIME 
framework as seen in Figure5. Figure 5 shows the 
heat maps generated by the LIME framework. 
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Table 1: Ensemble results on training data with different data split ratio. 

Ensemble 
Model 

Dataset split ratio 
90:10 80:20 70:30 

Acc Loss Acc Loss Acc Loss 
Ensemble A 0.968 0.116 0.953 0.141 0.968 0.163 
Ensemble B 1.0 0.021 0.984 0.056 0.968 0.094 
Ensemble C 1.0 0.08 0.953 0.087 0.96 0.15 

Table 2: The performance of Ensemble A, B and C with its individual learners. 

Model Acc Model Acc Model Acc 
Ensemble A 0.953 Ensemble B 0.984 Ensemble C 0.953 

VGG16 0.953 Densenet 0.906 Xception 0.687 
VGG19 0.945 Resnet 0.93 Inceptionv3 0.952 

MobileNet 0.875 I-Resnetv2 0.35 VGG16 0.943 

Table 3: Comparative analysis of proposed dataset and Cifar 10 & Cifar 100 datasets. C: Car, T: Truck, B: Bus, BI: Bicycle 
and, M: Motorbike. 

 GREECOCO dataset CIFAR 10 CIFAR 100 
C T B BI M C T T B BI M 

A 82%% 78% 75% 84% 65% 75% 71% 70% 65% 75% 84% 
B 70% 89% 75% 84% 65% 54% 75% 76% 81% 62% 69% 
C 70% 65% 75% 84% 65% 74% 70% 71% 72% 74% 77% 

 

The heat maps demonstrate the regions which help 
the models to predict a particular class. Here, the blue 
areas positively contribute towards making 
predictions while the red areas contribute negatively. 
Thus, after analyzing the heat maps, we conclude that 
Ensemble C outperformed Ensembles B and A on 
classes Car, Bus and Truck, while Ensemble A 
performed better for Motorbike and Bicycle class. 

4 VEHICLE ASSISTANCE 
REROUTING SYSTEM 

The Vehicle Assistance Rerouting System Algorithm 
1 considers three aspects while finding the optimal 
routes, i.e., traffic count, congestion charge & 
distance. These aspects also work as filters. The 
rerouting algorithm outputs two optimal ways for the 
user. The user can then choose any one of the routes 
to travel. The rerouting algorithm was tested on a 
database (shown in Figure 6), which consists of a 
portion of Aurangabad city’s road network. The 
rerouting algorithm satisfies the following 
constraints: 1) If traffic count for a particular edge 
exceeds 1500, that edge will not be considered. 2) The 
traffic of high-priority roads must not be directed 
towards low-priority roads. Out of the three filters 
(traffic count, price & distance), six combinations are 
 

 

Figure 6: Rerouting dataset. 

made: TPD, TDP, DTP, DPT, PDT, and PTD, 
where T, P, and D stand for traffic count, congestion 
charge and distance, respectively. Out of these six 
combinations, the user can select the most 
appropriate combination for their requirements. 
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Algorithm 1: Priority based optimal path finder. 

 

 

Figure 7: Connected Road Network Based on Road Priority 
Edges (red): A Priority, (blue): B Priority, (green): C 
Priority.  

 

Figure 8: Road Network Showing inactive edges. 

 

Figure 9: Adaptive routes based on traffic count. 

4.1 Rerouting Model Dataset 

In Figure 7, 8 and 9, the nodes signify the locations, 
and the edges indicate the path between the two 
locations. Each edge has four attributes: road 
priority, distance, congestion charge, and traffic 
count. Our system dynamically updates the traffic 
count and congestion price attributes every thirty 
minutes. 

4.2 Rerouting Model Results 

We tested our model on 45 road instances of 
Aurangabad city. Figure 7 depicts the connected 
road network of the central Aurangabad region, 
where the red edge represents A (high) priority 
roads, a blue edge represents B (medium) priority 
roads, and the green edge represents C (low) priority 
roads. In Figure 8 the road network is transformed 
into a graph. Where the dashed line indicates static 
road routes. If the traffic count for a particular edge 
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exceeds 1500, that edge will not be considered for 
rerouting. The graph in Figure 9 displays the two 
optimal routes shown in the colour red and green for 
Railway Station to Mondha Naka, which can 
adaptively be changed to different routes based on 
the traffic count. 

5 CONCLUSION 

The research work proposes an integrated intelligent 
traffic management system for traffic congestion 
management through the design of ensemble 
architectures. Three different ensemble 
architectures incorporating a combination of pre-
trained models are designed for vehicle detection 
and classification. The ensembles are made up of 
three pre-trained learners selected to differ in the 
number of layers significantly. For diverse hardware 
platforms, the pre-trained models of varying sizes 
can be altered. This drastically narrows the energy 
needed to train each specialized neural network for 
novel platforms.  

The layer count difference provides valuable 
insights for comparing the ensembles concerning the 
accuracy and the computational energy required to 
train them. Furthermore, the ensembles are judged on 
three criteria: accuracy, interpretability, and energy 
efficiency. Although Ensemble B has greater 
accuracy than the others, the results depict it fails to 
learn relevant features, and it incurs much 
computational overhead during training. On the other 
hand, the accuracy of Ensemble C is only 2.9% less 
than that of Ensemble B. However, the explainability 
results prove that Ensemble C has learned the 
essential features needed to classify the objects 
correctly. Moreover, Ensemble C consumed the least 
computational power during training. Therefore, we 
conclude that Ensemble C is the best model among 
the three ensembles. The traffic count from the 
ensemble models facilitates the VARS system to 
make recommendations of alternative routes to the 
user before starting a journey. The route’s choice is 
based on the user’s priorities from a set of parameters 
comprising distance, time, and trip cost. 
Implementing such an intelligent traffic management 
system can lead to improved mobility, safety, air 
quality, productivity, and information in the future 
resulting from large-scale analysis of real- time traffic 
data. Moreover, we reduce the carbon footprint of the 
neural network through our ensemble architecture, 
thus aiming for greener neural networks. 
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