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Abstract: In this paper, we pay our attentiontwp-down distance_CA-preserving distancandbottom-up distancéor
rooted labeled caterpillargcaterpillars, for short), as the variations of the edit distance. Here tdip-down
distance is the edit distance that the deletion and thetioseare allowed to just leaves, the LCA-preserving
distance is one to just either leaves or vertices with onle @md the bottom-up distance is one to just the root.
Then, we show that the top-down and the bottom-up distararesaferpillars can be computed@(n) time
and the LCA-preserving distance for caterpillar&im?) time. Furthermore, we give experimental results of
computing these variations for caterpillars in real data.

1 INTRODUCTION anLCA-preserving mappin(Zhang et al., 1996) and
a bottom-up mappingdKuboyama, 2007; Valiente,

Comparing tree-structured data such as HTML and 2001) respectively.

XML data for web mining or RNA and glycan data for As operational, the top-down distance is the edit
bioinformatics is one of the important tasks for data distance that the deletion and the insertion are allowed
mining. The most famous distance measure (Dezato just leaves, the LCA-preserving distance is one to
and Deza, 2016) betweeanoted labeled unordered just either leaves or vertices with one child and the

trees (trees for short) is theedit distancerr,, (Tai, bottom-up distance is one to just the root. Yoshino

1979). The edit distance is formulated as the mini- and Hirata (Yoshino and Hirata, 2017) have summa-

mum cost ofedit operationsconsisting of asubstitu- rized and characterized the other variations of the Tai

tion, adeletionand aninsertion applied to transform  mapping as a Tai mapping hierarchy.

a tree to another tree. For trees, we can compute the top-down and
It is known that the edit distance is always a met- the LCA-preserving distances @®(n’d) time (Ya-

ric and coincides with the minimum cost ®&i map- mamoto et al., 2014; Zhang et al., 1996), where

pings(Tai, 1979). Unfortunately, the problem of com- n is the maximum number of vertices andis the
puting the edit distance between trees is MAX SNP- minimum degree in two trees. On the other hand,
hard (Zhang and Jiang, 1994), even if trees are binarythe problems of computing the bottom-up distance is
or the maximum height of trees is at most 3 (Akutsu MAX SNP-hard (Yamamoto et al., 2014).
et al., 2013; Hirata et al., 2011). A caterpillar (cf. (Gallian, 2007)) is a tree trans-
Whereas the edit distance is the standard mea-formed to a rooted path after removing all the leaves
sure for comparing trees, it is too general for sev- in it. Whereas the caterpillars are very restricted and
eral applications. Therefore, more structurally sen- simple, there are some cases containing many cater-
sitive distances of the edit distance such asttye pillars in real datasetf., (Muraka et al., 2018; Ukita
down (or degreel) distancetto, (Chawathe, 1999; etal., 2021)). Recently, Muralet al. (Muraka et al.,
Selkow, 1977), th&CA-preservingor degree?) dis- 2018) have proposed the algorithm to compute the
tancet, ¢, (Zhang et al., 1996) and thmttom-updis- edit distance between caterpillars@in?A) time un-
tancetgor (Valiente, 2001) required for these applica- der the unit cost function, whereis the maximum
tions. Such distances are formulated as the minimumnumber of leaves in caterpilldrs
cost of the variations of the Tai mapping such as a
top-down mappingChawathe, 1999; Selkow, 1977), IThis time complexity is different from the result in
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Computing the Variations of Edit Distance for Rooted Labaled Caterpillars

Hence, in this paper, we pay our attention to the
top-down, the LCA-preserving and bottom-up dis-

tances for caterpillars as the variations of the edit dis-

by ullv, if u<w, v<w and there exists n&/ such
thatu <w, v<w andw < w. A complete subtree of
T at v, denoted byT'|v], is a rooted tred’ = (V',E’)

tance. Then, we design the algorithm to compute such thatr(T’) =v, V' ={ueV |u<v} andE' =
them and show that the top-down distance and the {(u,w) € E |u,we V'}.

bottom-up distance for caterpillars can be computed

in O(n) time and the LCA-preserving distance for
caterpillars inO(n?) time, see Table 1.

Table 1: The time complexity of computingra, TTop,
TLca andtgor for trees and caterpillars. Hemejs the max-
imum number of verticeg] is the minimum degree andis

the maximum number of leaves in two trees or caterpillars.

distancé tree | caterpillar
TTa MAX SNP-hard O(n?\)
(Zhang and Jiang, 1994)(Muraka et al., 2018)
Tror | O(n?d) o(n)
(Yamamoto et al., 2014) Theorem 4
Tea | O(nPd) o(?)
(Yamamoto et al., 2014) Theorem 5
TBoT MAX SNP-hard O(n)
(Yamamoto et al., 2014) Theorem 6

Also, we give experimental results of computing
these variations for caterpillars in real data. In partic-
ular, we compare the running time of the algorithms
in this paper with the previous algorithms of comput-
ing the top-down and the LCA-preserving distances
for trees (Yamamoto et al., 2014).

2 PRELIMINARIES

A treeis a connected graph without cycles. For a tree
T = (V,E), we denote/ andE by V(T) andE(T).
We sometimes denotec V(T) by ve T. A rooted
tree is a tree with one vertex chosen as itsoot,
which we denote by(T).

For each vertex in a rooted tree with the roat
let UP, (v) be the unique path fromto r. Theparent
of v( r), which we denote bypar(v), is its adjacent
vertex onUP; (v) and theancestorof v(+ r) are the
vertices orlJP, (v) — {v}. We say thati is achild of
v if vis the parent ofi, andu is adescendantf v if
vis an ancestor af. We denote the set of all children
of v by ch(v). Two vertices with the same parent are
calledsiblings A leaf is a vertex having no children.
We denote the set of all leaves in a tfieéy Iv(T).

We denoteu < v if vis an ancestor ofi, and we
denoteu < vif eitheru < voru=v. Also we say that
w is theleast common ancestaf u andv, denoted

Theheight {v) of vis defined asUP; (v)| — 1 and
theheight (T) of T is the maximum height for every
vertexv € T. Thedegree dv) of v is the number of
the children ofv € T. and thedegree dT) of T is the
maximum degree for every vertexin

We say that a rooted tree deredif a left-to-
right order among siblings is givetynorderedoth-
erwise. Also we say that a tree lgbeledover X if
each vertex is assigned a symbol from a fixed finite
alphabet, where we denote the label of a vertelzy
[(v), and sometimes identifywith I (v). In this paper,
we call a rooted labeled unordered tree axertree
simply.

As the restricted form of trees, we introduce a
rooted labeled caterpillacaterpillar, for short).

Definition 1. We say that a tree is a&aterpil-

lar (cf. (Gallian, 2007)) if it is transformed to a rooted
path after removing all the leaves in it. For a caterpil-
lar C, we call the remained rooted pattbackboneof

C and denote it byb(C).

It is obvious thatr(C) = r(bb(C)) andV(C) =
bb(C) Ulv(C) for a caterpillarC, that is, every ver-
tex in a caterpillar is either a leaf or an element of the
backbone.

Next, we introduce dree edit distancend aTai
mapping
Definition 2 (Edit operations (Tai, 1979))The edit
operationf a treeT are defined as follows, see Fig-
ure 1.

1. Substitution Change the label of the nosén T.

2. Deletion Delete a noder in T with parentV,
making the children o’ become the children of
V. The children are inserted in the placevdds a
subsequence in the left-to-right order of the chil-
dren ofV'. In particular, ifv is the root inT, then
the result applying the deletion is a forest consist-
ing of the children of the root.

. Insertion The complement of deletion. Insert a
nodev as a child of/ in T makingv the parent of

a consecutive subsequence a subset of the children
of v.

Lete ¢ 2 denote a specislanksymbol and define
> =2 U{e}. Then, we represent each edit operation
by (11— 12), where(l1,12) € (2 x Ze —{(¢,€)}). The
operation is a substitution if # € andl, # €, a dele-
tion if I, =€, and an insertion ify = €. For nodew

(Muraka et al., 2018), because it contains some errors. Seeandw, we also denoté (v) — | (w)) by (v — w). We

(Ukita et al., 2021) in more detail.

define acost functiory: (Z¢ x Z¢ \ {(g,€)}) — R on
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Substitution ¢ +— w)
jﬁx .

Deletion {+— ¢€)

N S 3
AT

Insertion € — V)

Figure 1: Edit operations for trees.

pairs of labels. We often constrain a cost functydaa
be ametrig thatis,y(l1,12) > 0,y(I1,12) =0iff 11 =15,
y(l1,12) = y(I2,11) andy(l1,13) <y(l1,12) +y(l2,13). In
particular, we call the cost function thefis,l2) =1
if 11 £ |2 aunit cost function

Definition 3 (Edit distance (Tai, 1979))For a cost
functiony, the costof an edit operatior =11 — I,
is given byy(e) = y(I1,12). The costof a sequence
E =e,...,e of edit operations is given by(E) =
X ,y(e). Then, anedit distancetry (T1,T2) be-
tween treed; andT; is defined as follows:

E is a sequence
Trai (T1, T2) = min< y(E) |of edit operations
transformingTy to To

Definition 4 (Tai mapping (Tai, 1979))Let T; and
T, be trees. We say that a trip(d,T1, T,) is a Tai
mapping(a mapping for short) fromT; to T, if M C
V(T1) x V(T2) and every paifvi,wi) and(vz,wz) in
M satisfies the following conditions.

1. vi = vp iff wy =w, (One-to-one condition).
2. vi < v iff wi < wp (ancestor condition).

We will useM instead of(M, T1, T2) when there is no
confusion denote it byl € M (Ty, T2).

Let M be a mapping fronT; to To. Letly andJy
be the sets of nodes iR andT, but not inM, that is,
IMm={veT|(vyw) gM}andy ={we T | (v,w) &
M}. Then, thecosty(M) of M is given as follows.

yM)= 5 vvww)+ Z y(v,e) + Z y(E,W).
(vw)eM velm wedm

TreesT; and T, are isomorphic without labels
denoted byT; = Ty, if there exists a mappiniyl €
M1a (T1,T2) such thaty = Iu = 0, andisomorphi¢
denoted byT; = Ty, if there exists a mappiniyl €
M+1a (T1,T2) such thaty = Iy = 0 andy(M) = 0.
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Theorem 1. (Tai, 1979)It holds that:

T1al (Tl,Tz) = mln{y(M) ‘ M e MTN (Tl,Tz)}.
Furthermore, we introduce the variations of the

Tai mapping and the edit distance, which are main

topics in this paper.

Definition 5. Let T andSbe trees and suppose that

M € M1n (T,S). We defineM— asM\ {r(T),r(S}.

1. We say thaM is atop-down mappingChawathe,
1999; Selkow, 1977), which we denote M/ e
M+1op(T,S), if (par(v),par(w)) € M for every
(v,w) e M™.

2. We say thaM is anLCA-preserving mappinfpr
degree2 mapping (Zhang et al., 1996), which we
denote byM € M ca(T,S) if (vUV,wLUW) e M
for every(v,w), (V,w) € M.

3. We say thaM is abottom-up mappingValiente,
2001), which we denote bW € Mpor(T,S), if
the following condition holds for everfy, w) € M.

W e TIV3wW € Siw] ((\/,W) € M)
A (YW € Swjav e TV ((\/,W) € M)

Furthermore, for € {TopP,LcA,BoT}, we define the
distancet, (T,S) betweenT and S as the minimum
cost of all the mappings i/, (T,S), that is:
T.(T,S) =min{y(M) | M € M, (T,9)}.

Here, we callttop, TLca @andTgor a top-down dis-
tance an LCA-preserving distancand abottom-up
distancerespectively.

As the time complexity of the variations of the edit
distance in Definition 5, the following theorem holds,
also see Table 1 in Section 1.

Theorem 2. Let T and S be trees, wheren =

max{|T|,|S} andd = min{d(T),d(S)}

1. The problem of computingtrs(T,S) is
MAX SNP-hard (zZhang and Jiang, 1994).
This statement also holds even if bdttandSare
binary trees or the maximum height of trees is at
most 3 (Akutsu et al., 2013; Hirata et al., 2011).

2. We can computares(T,S) and T ca(T,S) in
O(n?d) time (Yamamoto et al., 2014).

3. The problem of computingtee:(T,S) is
MAX SNP-hard. This statement also holds
even if bothT andSare binary trees (Yamamoto
et al., 2014).

It is know the following theorem for caterpillars.
Theorem 3. (Muraka et al., 2018)Let C and
D be caterpillars, where n= max|C|,|D|} and
A = min{|lv(C)|,|lv(D)|}. Then, we can compute
T1a (C,D) in O(n?\) time under the unit cost func-
tion.
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3 COMPUTING THE
VARIATIONS FOR
CATERPILLARS

Let C and D be caterpillars. We regard a back-
bonebb(C) as a sequencpy,...,vn], wherevy =
r(C) and (vi,vi+1) € E(C), and a backbonéb(D)
as a sequenc@wy,...,Wny|, wherew; = r(D) and
(Wj,Wj1) € E(D).

LetL; (1 <i<n)denote the set of leavesdh(v;),
thatis,Lj = ch(vi) \ {vi41} for1<i<n—21andL,=
ch(vn). Also LetKj (1 < j < m) denote the set of
leaves inch(w;), that is, letk; = ch(w;) \ {wj41} for
1< j <m-1andKy = ch(wp).

Recall thatC|v] denotes the (complete) subcater-
pillar of C rooted atv. Also C(v) denotes the forest
obtained by deleting the roetin C[v]. For a Cater-
pillar C and a subcaterpillat’ of C, we denote the
caterpillar obtained by deleting fromC by C\ C'.

When designing the algorithm to compute the
variations of edit distance for caterpillars, we use a
multisetof labels on an alphab&t A multisetonZ is
a mappingS: ~ — N. For a multisetSon X, we say
thata € Z is anelemenbf Sif S(a) > 0 and denote it
by a € S(like as a standard set). Tlardinality of S,
denoted byS, is defined asy S(a).

ac

Let S and S be multisets onX. Then, we
define theintersection $M'S;, the union S US,
and the difference 3\ S as multisets satisfying
that(S1MS) () = min{S(a), S(a)}, (SILUS)(a) =
max{S(a), S(a)} and (S \ S)(a) = max{Si(a) -
S(a),0} foreveryac X. Note that5\ S =5\ (1M
$) and[S)\ S| =[S\ (S1S)| = [S1] - [S 1 S).

We can compute the edit distangbetween mul-
tisetsSandS in O(|S + |S|) time, sinceu(S,S) =
max{|S\ S|,|S \ §} under the unit cost functioref,
(Ukita et al., 2021)).

Let Sbe a set of vertices. Then, we denote the
multiset of labels ork occurring inShy S. Also, we
denotezsy(v, €) by del(S) and Z y(g,w) by ins(S).

ve

weS

3.1 Top-down Distance

First, we consider the equation to compute the top-
down distancearos(C,D) between caterpillar€ and
D, illustrated in Figure 2.

Theorem 4. Let C and D be caterpillars, where-a
max{|C|,|D|}. Then, we can computges(C,D) in
O(n) time under the unit cost function.

Proof. First, we show that the equations in Figure 2
is correct. Suppose th&l € M+10(C,D). Note
that bb(C) = [v1,...,vs] and bb(D) = [wa, ..., Wn].

TTOP(Cv D) =

min{n,m}—2 o
3 (¥04w)+ WK )+ com(C,D),
dnAn!I?C7 D) =
Y(Vm-1,Wm-1)-+ .
V(i W)+ (G Ko) + GEIC (v 1)
(Ch(Vir 1), Ch(Wry 1)) + BeI(C(vm)) +inS(Ke)
if n>m,
Y(Vn—1,Wn_1)+ L
V(Y W) + (L, GP(W)) -+ inS(D (W 1))

Y(Vn—1,Wn_1)+ o
1 J YUn,Wn) +U(Ln, Kn),

p(ch(vn_1),ch(wy_1)) +ins(D(wn)) +del(Ln)

ifn<m.

M(ch(Vn—1), Ch(Wn_1)) +del(Ln) +ins(Kn)
Figure 2: The equations of computingop.

min

}

ifn=m,

min

}

It is obvious that(vi,wq) € M. Also, if (vi,w) €
M (resp, (v,wj) € M), then it holds thatw = w;
(resp, v = vj). Hence, there exists an indéxsuch
that 1< h < min{n,m} and M contains the pairs
(V1,W1),..., (Vh,Wh). Furthermore, ifM is the mini-
mum cost, theM contains the pairém, wn) as many
as possible, so such &ris min{n,m} and such ai
impliestrop(C, D).

For everyi (1 <i < h-—2), we can compute the
correspondences N between the leaves ib; and
the leaves irk; asp(L;, K;), whereL; MK; implicitly
represents such correspondences. Then, it holds that

h—-2

tres(C\CIN.DA\DIN) = 5 (v w) + W(EiK),

which is computed in the formula afrop(C,D) ex-
ceptdnm(C,D) in Figure 2.

Consider the case that= h— 1, that is, consider
the formuladn m(C, D).

If n m, then we can compute
T1op(C[Vn-1],D[Vn-1]) as the sum OfV(~Vn11/7Wn—1)
and the minimum value of{(vn,Wn) + p(Ln, Kn) (if vq

is corresponding tev,) andp(ch(vn—1),ch(Wn-1)) +
del(Ly) +ins(Ky,) (otherwise), which is realized as
the second formula id, m(C, D) in Figure 2.

Suppose thah > m. Then, we can compute
T1op(C[Vn-1],D[Vn-1]) as the sum of/(Vm-1,Wm-1)
and the minimum value of the upper and the lower
formulas in the first formula i, m(C, D) in Figure 2.

If v is corresponding towvm, then its cost is
¥(Vm,Wm) and the leaves iy, are possible to cor-
respond to not only the leaves i, but alsovy, 1,
that is,ch(vm). Such correspondences are computed

as p(ch(Vm),Km). Furthermore, the remained ver-
tices in C(vmy1) are deleted, which is realized as
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del(C(vm+1)). Hence, the upper formula is correct.
Otherwise, that is, iy, is not corresponding to

W, then the vertices ioh(vy_1) are corresponding to

the vertices inch(wn_1). Such correspondences are

computed agu(ch(Vm-1),ch(wm-1)). Furthermore,
the remained vertices @(vy) are deleted and the re-
mained vertices iy, are inserted, which is realized
asdel(C(vm)) +ins(Km). Hence, the lower formula is
correct. Therefore, the first formula is correct.

Similarly, for the case that < m, the third for-
mula indn m(C, D) in Figure 2 is also correct.

andw € bb(C). If ve Iv(C) andw € Iv(C), then it
holds thatLiw = par(v) Lpar(w), which implies that
vUw e bb(C). O

Theorem 5. Let C and D be caterpillar, where &
max{|C|,|D|}. Then, we can computgc.(C,D) in
O(n?) time under the unit cost function.

Proof. The first recurrence in Figure 3 computes that,
forM € M ca(C,D), (1) if (v.,w,) € M, then(v,w) €

Li x K such that,w € L KJ are added tdv and

Since the equations traverse at most once for everynext it computest; ca(C[Vi11], D[wj11]), (2) if v; is

vertex inC andD with traversing(vi,w;) and the pro-
cessing fofvi,w;) runs inO(1) time, the total running
time isO(|C| + |D|) = O(n). O

3.2 LCA-preserving Distance

deleted, then all the leaves lin are deleted and next

it computest ca(C[Vit1],D[w;j]), or (3) if w; is in-
serted, then all the leaves iy are inserted and next

it computest ca(C[vi], D[wj41]), for 1 <i < nand

1< j <m. Then, the pairs added 1d are obtained
from just the case (1), and the pairs consist of some

Next, we consider the recurrences of computing the (W) € Li x Kj and (vi,w;). Sincepar(v) =v; and

LCA-preserving distance c.(C,D) between cater-
pillars C andD illustrated in in Figure 3. Here, we

regardC|vi,1] andD|wj,1] in the recurrences as the
multisets of labels occurring in all the vertices in
C[Vit1] andD[w;j1].

TLca(CVi], Dlwj]) =

Vi, WJ)+|~J~(LI7K])+TLCA(C[VI+1] D[wj11]), }
€) +del(Li) + tLca (Clvit1], Dlwj]),
i) +ins(Kj) + Trca(C[Vi], D[Wj.1])
i<nand 1< j<m,

¥(
min < y(vi,
y(g,w
if1<i

Tica(Clvn], Dlwj]) =
y(e, W])+|n5(K1)+TLcA( [Vn], D[Wj1]),
_ Y(Vn, Wj)
min

- min {(Ca\ (v}, K) + (v} Dwj 2] .
\ V(VmW]) + U(Lm K]) +ins(D[wj1])
ifl<j<m,
Tea(Clvil, D[Wm])
Y(vi,€) +del(Li) +TLca (ClViia], Dwi]),
Y(Vi, Wm) o o
-+ min {u(G. K\ (W) + 1(Clyica]. (w)) .
Y(Vi, W) + (L, Kim) + del(Clvi +1])
if1 <i<n, o
Teca(C[vn), D[Wm]) = Y(Vn, Wm) + H(Ln, Km).
Figure 3: The recurrences of computmg:,.

min

We start the following simple lemma.

Lemma 1. Let C be a caterpillar. For distinct vertices
v,w € C, it holds that vJw € bb(C).

Proof. If ve bb(C) andw € bb(C), then it holds that
vUw = v or w, which implies thatvLiw € bb(C). If
v € bb(C) andw € Iv(C), then it holds thavLiw =
vL par(w), which implies thavLUw € bb(C). By the
same reason, it holds thatiw € bb(C) if v € Iv(C)
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par(w) =w; and by Lemma 1M is LCA-preserving.

By the same reason, the mapping obtained from
the last recurrence in Figure 3 is LCA-preserving.

Consider the second recurrence in Figure 3, that
is, the case that_ ca(C[vn],D]w;]) for 1 < j <mand
M € M ca(C,D). The first formula means to insert
w;j andL j, and next comput®_ca (C[Vn|,D[Wj+1]), N0
pairs are added tivl.

The second and third formulas mean to add
(Vn,wj) to M. Then, the second formula means that
somev € L, is corresponding to some vertex €
D{wj+1] (and (v,w) is added taVl and the remained
vertices inD{wj1] are inserted), and thdm, \ {v} is
corresponding t&; as possible (and the correspond-
ing pairs are added td). On the other hand, the
third formula means that ne< L,, is corresponding
to D[wj.1]. In this casel., is corresponding t&; as
possible (and the corresponding pairs are addé#l)to
and the vertices iD|w;j1] are inserted.

For both formulas, by Lemma 1, it holds that
(viUVvo, Wi UWs) = (Vn,Wj4+1) € M for distinct pairs
(v1,Wi), (V2,W2) € MN(C[Vn] x D[Wj41]). ThenM is
LCA-preserving.

By the same reason, the mapping obtained from
the third recurrence in Figure 3 is LCA-preserving.

Hence, the mapping obtained from the recurrences
in Figure 3 is LCA-preserving.

By traversingC andD at once inO(n) time, we
can obtain the information of, w;, Li andK;. Then,
in computingt, ca (C[vi], D[w;]) for a fixedi andj, the
running time isO(1). Since the recurrences compute
TLea(ClVi],Dlwj]) for L<i<nand 1< j <m, the
total running time iO(n?). O
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3.3 Bottom-up Distance

When considering the algorithm of computing the
bottom-up distancesor (C, D) between caterpillarg
andD, we deal with the reversal of backbones, that
is, bb(C) = [v1,...,vy] for andbb(D) = [wx,...,Wn),
wherer(C) = vp, (Vi,Vi+1) € E(C), r(D) = wm and
(wj,wjt1) € E(D). Then, we design the algorithm
BOTCAT in Algorithm 1.

procedure BOTCAT(C,D)
/* C,D: caterpillars */
[* bb(C) = [v1,...,Vn], (C) =vn ¥/
* bb(D) = [w1,...,Wm], r(D) = wm */
for h=1to min{n,m} do
| if [Ln| # [Kn| then break;
h--; /% |Li| = |Ki| for L<i<h?*
A<+ bb(C); B+ bb(D); L < Iv(C); K + Iv(D);
d < p(L,K) + del(A) +ins(B);
if h> 0then
do < d; Lj + L; Ky« K;
fori=1tohdo
L+ L \Lis K « K{_; \ Ki;
di —
di1 —V(Vi,€) — Y(&, W) +V(Vi, W) —
H(Li,71> Mi/fl) + u(LI s KI) o u(L|/7 K|/)v
d <+ min{d,di};

© 0N O Ul b~ W N

[
o

11

return d;
Algorithm 1: BOTCAT.

12

Theorem 6. Let C and D be caterpillars, wheresa
max{|C|,|D|}. Then, we can computg.(C,D) in
O(n) time under the unit cost function.

Proof. SinceC andD are caterpillars, ifLi| = |K;]

for 1 <i <h but|Lni1| # |Knhta|, then it holds that
C[vn] = D[wn] but C[vhi1] # DWh+1]. The algo-
rithm BOTCAT first finds such ar in lines 1, 2 and

are corresponding t&;, by addingu(L;,K;) instead
of u(Li_;,K{ ;). Thisis realized at line 11, that is, by
using the following formula.

di ¢ diia—y(vi,&) —y(e.Wi) +y(vi, W)
—H(L_, M) + (L, Ki) + (L K.

In other words, for K i < h, the bottom-up mapping
M € Mpor(C,D) is updated by addingvi,w;) and
the correspondence betwelgrandK; to M for every
i, after removing the correspondences betwiegn
---ULj andKy U---UK; in M. Hence, the algorithm
BOTCAT is correct.

By traversingC andD at once inO(n) time, we
can obtain the information dib(C), bb(D), Iv(C) and
Iv(D) (sovi, wi, Lj andK;). Then, each of lines 2, 4,
5, 7 and 9 to 11 runs i®(1) time. Hence, the total
running time of the algorithm BTCAT isO(n). O

4 EXPERIMENTAL RESULTS

In this section, we give the experimental results of
computingTrep, TLca @andTgor. Here, the computer
environment is that OS is Ubuntu 14.04.6, CPU is In-
tel Xeon E5-1650 v3(3.50GHz) and RAM is 15GB.
We deal with caterpillars for N-glycans from
KEGG?, the largest 5,154 caterpillars (0.1%) in dblp
(refer to dblp 19), SwissProt and non-isomorphic
caterpillars in TPC-H (refer to TPC-H from UW
XML Repository*. Also we deal with caterpillars
obtained by deleting the root in Auction (refer to
Auction™) and non-isomorphic caterpillars obtained
by deleting the root in Nasa (refer to NASA
Protein (refer to Protefn) and University (refer to
University;) from UW XML Repository. Table 2 il-
lustrates the information of such caterpillars. Here,

#,n, d, h, A andp are the number of caterpillars, the
average number of vertices, the average degree, the
average height, the average number of leaves and the
average number of labels.

3. In this case, we can obtain bottom-up mapping
M € Mpor(C,D) betweenClwy] and Djwy] by (1)
adding(vi,w;) to M, (2) adding(v,w) toM for v € L;,
w € K; andl(v) = I(w) and (3) addindv,w) to M for
the remained € L; andw € K; for 1 <i < h. We can Then, we use all the pairs in the caterpillars in Ta-
cor;p:l;te theLNd:Zstan;etcot?]c?rtr;]ed with_tht(aj abot\_/e (2 ble 2, of which the number Ex-D e s
%nc e(m)a 321(;('3’(1 gﬁd tﬁ :seﬁ; areeirzgg;?elge vertices illustrates the number (#pairs) of all the pairs in cater-
After obtaining the abové, the algorithm BT- pIIIaTerIIn ij'llle 2t. tes th ing ti ¢ N
CAT computes the bottom-up distance whose bottom- aple 4 tllustrates the running ime 1o compute
up mappingM € Mpor(C,D) contain no pair in TTor, TLca AN Tgor, @S COMparing witftr, by the
bb(C) x bb(D) asd in line 6. Then, in for-loop in algorithm in (Muraka et al., 2018).
lines from 7 to 12, the algorithm &rCAT updatesd
as the minimum value of the curretshiand the newly
obtainedd; such thatvi,w;) € M. Here,d; is the dis-
tance that; € bb(C) is corresponding tey; € bb(D),
by addingy(vi,w;) instead ofy(v;, €) + y(g,w; ), andL;

2Kyoto Encyclopedia of Genes and Genomes,
http://lwww.kegg.jp/

Shttp://dblp.uni-trier.de/

4http://aiweb.cs.washington.edu/research/projectisitm
xmldata/www/repository.html
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Table 2: The information of caterpillars. Table 5: The number (#cases) of cases that < Ttop,
Ttal < TLca @NdTr, < Tor With their ratios (%) in all the
data # n d h A B pairs (#pairs) with the maximum difference (max.)
N-glycans 514 6.40 1.84 422 2.18 4.50 Tra < Trop
dblpp19% 5,154 41.74 40.73 1.01 40.73 10.61 data #pairs #cases % max.
SwissProt 6,804 35.10 24.96 2.00 33.10 16.79 N-glycans 131,841 64,467 48.90 10
TPC-H, 8 8.63 7.63 1.00 7.63 8.63
Auction~ 259 4.29 3.00 0.71 3.57 4.29 dblpo1o 13,279,281 0 000 0
uction - 0 - : SwissProt 23,143,806 5,933,179 25.64 30
Nasg 33 7.27 5.151.64 5.64 3.18 TPC-H, 28 0 0 0
Proteinr, 5,150 4,97 3.63 1.16 3.81 4.57 L
University, 26 1.35 0.35 019 115 1.35  A-ction 33411 0 0 0
niversity, : =9 0. : : Nasa 528 104 19.70 9
Proteiry 13,258,675 697,697 5.26 50
Table 3: The number (#pairs) of all the pairs in caterpillars ~ University; 325 0 0 0
in Table 2.
Tral < Tica
data #pairs  data #pairs data #pairs  #cases % max.
N-glycans 131,841 Auction™ 33,411 N-glycans 131,841 5,490 4.16 2
dblpo.1os 13,279,281 Nasg 528 SwissProt 23,143,806 5,933,179 25.64 29
SwissProt 23,143,806Proteirny 13,258,675 Nasa 528 56 10.61 1
TPC-H, 28 University, 325 Proteirr  132,586,75 348,119 2.63 10
) . T1a < TBor
Table 4: The running time (sec.) to computg,, TTop, data #pairs #cases % max.
TLca @NdTgor.
N-glycans 131,841 117,657 89.24 16
data T T1op Tica TBor dblpo1o, 13,279,281 12,667,501 95.39 4
N-glycans 753.33 1.23 2,804.82 2.57 SwissProt 23,143,806 23,019,607 99.46 4
dblpo.19% 7,525.28 343.70 1,505.05 737.96 TPC_-l-L 28 27 96.43 2
SwissProt  82,031.10 1,594.42 9,819.62 2,138.54 Auction” 33,411 4,107 12.29 1
TPC-H, 5.7803 0.64103 1.77103 1.43103 Nasg 528 403 76.33 4
Auction™ 4.55 0.23 0.87 0.94  Proteiry 13,258,675 8,828,524 66.59 5
Nasg 20.93102 0.34<102 4.91102 0.5%102 University, 325 5 154 1

Proteiry 2,055.77 118.20 433.22 327.66

University, 14.22a02 0.40.0° 2.84a0° 6.58102°  other caterpillars. Furthermoregor is insufficient

to approximate tat,, since the number of cases that
Table 4 shows that, whereas the time complexity Tra < Tgor are much larger than the number of cases
of computingttep is same as that of computinger, thatTta < Ttoe.
the running time of computingree is slightly smaller On the other hand, by focusing on the maxi-
than that of computinggor. On the other hand, the  mum difference, for caterpillars in SwissProt and
running time of computing, ¢, is smaller thanthatof  Proteiry, the maximum difference ofgor — T1a iS
computingtr,, except N-glycan. The reason is that much smaller than that afrop — T1a @NdT ca — Ta; -
the depth of caterpillars in N-glycan is much larger Then, for these caterpillars, whereas the number of
than other caterpillars. cases thatrt, < Tgor is larger than the number of
Table 5 illustrates the number (#cases) of casescases thatry < Ttop @aNdTra < Tica, Tor IS MOre
thatTra, < Ttop, TTa < TLca aNdTa < Tgor With their appropriate to characterize the forms of caterpillars
ratios (%) in all the pairs (#pairs), where “max.” is the thantree andti ca.

maximum difference fromir,,. Since it always holds In order to improve the results in Table 5, Table 6

TLea < T1op, We omit the cases that, < TLca in Ta- summarizes the case that {iifiop, Tsor }-

ble 5 when the number of cases that < Trop is 0. By comparing with Table 5, Table 6 shows that
Table 5 show that, for caterpillars in dilpy, the usage of mifttrop, Taor} SUCCEEdS tO decrease the

TPC-H,, Auction™ and University , Trop iS an alter- maximum difference with slightly decreasing the ra-
native and much faster distancertq, . Also, whereas  tio. Hence, mifTrop, Tgor} provides to fast approxi-
TLca iS an improved distance afrop for caterpillars ~ mate totr,, for caterpillars.

in N-glycans,T_ca andttop are not changed for the Finally, we compare the algorithms in this paper
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Table 6: The number (#cases) of cases thgf <
min{Ttop,TBor} With their ratios (%) in all the pairs
(#pairs) with the maximum difference (max.).

data #pairs #cases % max.
N-glycans 131,841 59,921 45.45 9
dblpo.1% 13,279,281 0 0.00 0
SwissProt 23,143,806 5,933,179 25.64 2
TPC-H, 28 0 0 0
Auction™ 33,411 0 0 0
Nasg 528 94 17.80 1
Proteiry 13,258,675 637,773 4.81 2
University, 325 0 0 0

for caterpillars with the algorithms designed by (Ya-
mamoto et al., 2014) for standard trees. Table 7 illus-
trates the running time of computingee andt,_ c, by
using such algorithms which refer @, andt/,.
Here, “—" denotes time out over 10,000 seconds.

Table 7: The running time (sec.) of computingor and
TLca by using the algorithms in this paper and the algo-
rithms 1}, andt] _, in (Yamamoto et al., 2014).

data Tror  Tica Tor Tea
N-glycans 1.23 2,804.82 11.77 25.64
dblpo.19 343.70 1,505.05 - -
SwissProt 1,594.42 9,819.62 - -
TPC-H, 0.64<103 1.77x10% 3.7h103 7.450°3
Auction™ 0.23 0.87 1.20 212
Nasg 0.34<102 4.91x102 5.64<102 10.68102
Proteiry 118.20 433.22 628.79 1156.32
University, 0.40c103 2.84<103 2.93103 2.19%103

Table 7 shows that the algorithm of computing
T1op IN this paper is much faster thaﬁop. Also,
except N-glycans and University the algorithm of
computingr ¢, in this paper is faster tharj ..

5 CONCLUSION

In this paper, we have designed the algorithms of
computingtroep andtger for caterpillars inO(n) time
and T ca in O(nz) time. Also, we have given ex-
perimental results of computingop, T ca andTgor

for caterpillars in real data. Then, the usage of
min{Trop, Teor} have provided to fast approximate to
T1a for caterpillars. Also, the algorithms in this pa-

larger number of caterpillars such as all-glycans in
KEGG and CSLOGS Also it is a future work to in-
vestigate the other variations of the edit distance for
caterpillars presented in (Yoshino and Hirata, 2017).
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per have been almost fast and faster than the previous

algorithms for trees (Yamamoto et al., 2014).

Since the algorithm of computing ., for cater-
pillars is slow for N-glycan, it is a future work to im-
prove the implementation, in particular, to apply to
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