
Computing the Variations of Edit Distance
for Rooted Labaled Caterpillars

Manami Hagihara, Takuya Yoshino and Kouich Hirata
Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan

Keywords: Edit Distance, Rooted Labeled Caterpillar, Rooted LabeledUnordered Tree, Top-down Distance, Bottom-up
Distance, LCA-preserving Distance.

Abstract: In this paper, we pay our attention totop-down distance, LCA-preserving distanceandbottom-up distancefor
rooted labeled caterpillars(caterpillars, for short), as the variations of the edit distance. Here, the top-down
distance is the edit distance that the deletion and the insertion are allowed to just leaves, the LCA-preserving
distance is one to just either leaves or vertices with one child and the bottom-up distance is one to just the root.
Then, we show that the top-down and the bottom-up distances for caterpillars can be computed inO(n) time
and the LCA-preserving distance for caterpillars inO(n2) time. Furthermore, we give experimental results of
computing these variations for caterpillars in real data.

1 INTRODUCTION

Comparing tree-structured data such as HTML and
XML data for web mining or RNA and glycan data for
bioinformatics is one of the important tasks for data
mining. The most famous distance measure (Deza
and Deza, 2016) betweenrooted labeled unordered
trees(trees, for short) is theedit distanceτTAI (Tai,
1979). The edit distance is formulated as the mini-
mum cost ofedit operations, consisting of asubstitu-
tion, adeletionand aninsertion, applied to transform
a tree to another tree.

It is known that the edit distance is always a met-
ric and coincides with the minimum cost ofTai map-
pings(Tai, 1979). Unfortunately, the problem of com-
puting the edit distance between trees is MAX SNP-
hard (Zhang and Jiang, 1994), even if trees are binary
or the maximum height of trees is at most 3 (Akutsu
et al., 2013; Hirata et al., 2011).

Whereas the edit distance is the standard mea-
sure for comparing trees, it is too general for sev-
eral applications. Therefore, more structurally sen-
sitive distances of the edit distance such as thetop-
down (or degree-1) distanceτTOP (Chawathe, 1999;
Selkow, 1977), theLCA-preserving(or degree-2) dis-
tanceτLCA (Zhang et al., 1996) and thebottom-updis-
tanceτBOT (Valiente, 2001) required for these applica-
tions. Such distances are formulated as the minimum
cost of the variations of the Tai mapping such as a
top-down mapping(Chawathe, 1999; Selkow, 1977),

anLCA-preserving mapping(Zhang et al., 1996) and
a bottom-up mapping(Kuboyama, 2007; Valiente,
2001) respectively.

As operational, the top-down distance is the edit
distance that the deletion and the insertion are allowed
to just leaves, the LCA-preserving distance is one to
just either leaves or vertices with one child and the
bottom-up distance is one to just the root. Yoshino
and Hirata (Yoshino and Hirata, 2017) have summa-
rized and characterized the other variations of the Tai
mapping as a Tai mapping hierarchy.

For trees, we can compute the top-down and
the LCA-preserving distances inO(n2d) time (Ya-
mamoto et al., 2014; Zhang et al., 1996), where
n is the maximum number of vertices andd is the
minimum degree in two trees. On the other hand,
the problems of computing the bottom-up distance is
MAX SNP-hard (Yamamoto et al., 2014).

A caterpillar (cf. (Gallian, 2007)) is a tree trans-
formed to a rooted path after removing all the leaves
in it. Whereas the caterpillars are very restricted and
simple, there are some cases containing many cater-
pillars in real dataset (cf., (Muraka et al., 2018; Ukita
et al., 2021)). Recently, Murakaet al. (Muraka et al.,
2018) have proposed the algorithm to compute the
edit distance between caterpillars inO(n2λ) time un-
der the unit cost function, whereλ is the maximum
number of leaves in caterpillars1.

1This time complexity is different from the result in

272
Hagihara, M., Yoshino, T. and Hirata, K.
Computing the Variations of Edit Distance for Rooted Labaled Caterpillars.
DOI: 10.5220/0010826100003122
In Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2022), pages 272-279
ISBN: 978-989-758-549-4; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Hence, in this paper, we pay our attention to the
top-down, the LCA-preserving and bottom-up dis-
tances for caterpillars as the variations of the edit dis-
tance. Then, we design the algorithm to compute
them and show that the top-down distance and the
bottom-up distance for caterpillars can be computed
in O(n) time and the LCA-preserving distance for
caterpillars inO(n2) time, see Table 1.

Table 1: The time complexity of computingτTAI , τTOP,
τLCA andτBOT for trees and caterpillars. Here,n is the max-
imum number of vertices,d is the minimum degree andλ is
the maximum number of leaves in two trees or caterpillars.

distance tree caterpillar

τTAI MAX SNP-hard O(n2λ)
(Zhang and Jiang, 1994)(Muraka et al., 2018)

τTOP O(n2d) O(n)
(Yamamoto et al., 2014) Theorem 4

τLCA O(n2d) O(n2)
(Yamamoto et al., 2014) Theorem 5

τBOT MAX SNP-hard O(n)
(Yamamoto et al., 2014) Theorem 6

Also, we give experimental results of computing
these variations for caterpillars in real data. In partic-
ular, we compare the running time of the algorithms
in this paper with the previous algorithms of comput-
ing the top-down and the LCA-preserving distances
for trees (Yamamoto et al., 2014).

2 PRELIMINARIES

A tree is a connected graph without cycles. For a tree
T = (V,E), we denoteV andE by V(T) andE(T).
We sometimes denotev ∈ V(T) by v∈ T. A rooted
tree is a tree with one vertexr chosen as itsroot,
which we denote byr(T).

For each vertexv in a rooted tree with the rootr,
let UPr(v) be the unique path fromv to r. Theparent
of v(6= r), which we denote bypar(v), is its adjacent
vertex onUPr(v) and theancestorsof v(6= r) are the
vertices onUPr(v)−{v}. We say thatu is achild of
v if v is the parent ofu, andu is adescendantof v if
v is an ancestor ofu. We denote the set of all children
of v by ch(v). Two vertices with the same parent are
calledsiblings. A leaf is a vertex having no children.
We denote the set of all leaves in a treeT by lv(T).

We denoteu < v if v is an ancestor ofu, and we
denoteu≤ v if eitheru< v or u= v. Also we say that
w is the least common ancestorof u andv, denoted

(Muraka et al., 2018), because it contains some errors. See
(Ukita et al., 2021) in more detail.

by u⊔ v, if u≤ w, v≤ w and there exists now′ such
thatu≤w′, v≤w′ andw′ ≤w. A complete subtree of
T at v, denoted byT[v], is a rooted treeT ′ = (V ′,E′)
such thatr(T ′) = v, V ′ = {u ∈ V | u≤ v} andE′ =
{(u,w) ∈ E | u,w∈V ′}.

Theheight h(v) of v is defined as|UPr(v)|−1 and
theheight h(T) of T is the maximum height for every
vertexv∈ T. Thedegree d(v) of v is the number of
the children ofv∈ T. and thedegree d(T) of T is the
maximum degree for every vertex inT.

We say that a rooted tree isordered if a left-to-
right order among siblings is given;Unorderedoth-
erwise. Also we say that a tree islabeledover Σ if
each vertex is assigned a symbol from a fixed finite
alphabetΣ, where we denote the label of a vertexv by
l(v), and sometimes identifyv with l(v). In this paper,
we call a rooted labeled unordered tree overΣ a tree,
simply.

As the restricted form of trees, we introduce a
rooted labeled caterpillar(caterpillar, for short).

Definition 1. We say that a tree is acaterpil-
lar (cf. (Gallian, 2007)) if it is transformed to a rooted
path after removing all the leaves in it. For a caterpil-
lar C, we call the remained rooted path abackboneof
C and denote it bybb(C).

It is obvious thatr(C) = r(bb(C)) andV(C) =
bb(C)∪ lv(C) for a caterpillarC, that is, every ver-
tex in a caterpillar is either a leaf or an element of the
backbone.

Next, we introduce atree edit distanceand aTai
mapping.

Definition 2 (Edit operations (Tai, 1979)). The edit
operationsof a treeT are defined as follows, see Fig-
ure 1.

1. Substitution: Change the label of the nodev in T.
2. Deletion: Delete a nodev in T with parentv′,

making the children ofv become the children of
v′. The children are inserted in the place ofv as a
subsequence in the left-to-right order of the chil-
dren ofv′. In particular, ifv is the root inT, then
the result applying the deletion is a forest consist-
ing of the children of the root.

3. Insertion: The complement of deletion. Insert a
nodev as a child ofv′ in T makingv the parent of
a consecutive subsequence a subset of the children
of v′.

Let ε 6∈Σ denote a specialblanksymbol and define
Σε = Σ∪{ε}. Then, we represent each edit operation
by (l1 7→ l2), where(l1, l2)∈ (Σε×Σε−{(ε,ε)}). The
operation is a substitution ifl1 6= ε andl2 6= ε, a dele-
tion if l2 = ε, and an insertion ifl1 = ε. For nodesv
andw, we also denote(l(v) 7→ l(w)) by (v 7→w). We
define acost functionγ : (Σε×Σε \{(ε,ε)}) 7→R+ on

Computing the Variations of Edit Distance for Rooted Labaled Caterpillars

273

Substitution (v 7→ w)

v 7→ w

Deletion (v 7→ ε)

v
′

v

7→ v
′

Insertion (ε 7→ v)

v
′ 7→

v
′

v

Figure 1: Edit operations for trees.

pairs of labels. We often constrain a cost functionγ to
be ametric, that is,γ(l1, l2)≥ 0, γ(l1, l2) = 0 iff l1 = l2,
γ(l1, l2) = γ(l2, l1) andγ(l1, l3)≤ γ(l1, l2)+γ(l2, l3). In
particular, we call the cost function thatγ(l1, l2) = 1
if l1 6= l2 aunit cost function.

Definition 3 (Edit distance (Tai, 1979)). For a cost
function γ, the costof an edit operatione= l1 7→ l2
is given byγ(e) = γ(l1, l2). The cost of a sequence
E = e1, . . . ,ek of edit operations is given byγ(E) =
∑k

i=1 γ(ei). Then, anedit distanceτTAI (T1,T2) be-
tween treesT1 andT2 is defined as follows:

τTAI (T1,T2) = min



γ(E)

∣∣∣∣∣∣

E is a sequence
of edit operations
transformingT1 to T2



 .

Definition 4 (Tai mapping (Tai, 1979)). Let T1 and
T2 be trees. We say that a triple(M,T1,T2) is a Tai
mapping(a mapping, for short) fromT1 to T2 if M ⊆
V(T1)×V(T2) and every pair(v1,w1) and(v2,w2) in
M satisfies the following conditions.

1. v1 = v2 iff w1 = w2 (one-to-one condition).
2. v1≤ v2 iff w1 ≤ w2 (ancestor condition).

We will useM instead of(M,T1,T2) when there is no
confusion denote it byM ∈M TAI (T1,T2).

Let M be a mapping fromT1 to T2. Let IM andJM
be the sets of nodes inT1 andT2 but not inM, that is,
IM = {v∈ T1 | (v,w) 6∈M} andJM = {w∈ T2 | (v,w) 6∈
M}. Then, thecostγ(M) of M is given as follows.

γ(M) = ∑
(v,w)∈M

γ(v,w)+ ∑
v∈IM

γ(v,ε)+ ∑
w∈JM

γ(ε,w).

TreesT1 and T2 are isomorphic without labels,
denoted byT1 ≡l T2, if there exists a mappingM ∈
M TAI (T1,T2) such thatIM = JM = /0, andisomorphic,
denoted byT1 ≡ T2, if there exists a mappingM ∈
M TAI (T1,T2) such thatIM = JM = /0 andγ(M) = 0.

Theorem 1. (Tai, 1979)It holds that:

τTAI (T1,T2) = min{γ(M) |M ∈M TAI (T1,T2)}.

Furthermore, we introduce the variations of the
Tai mapping and the edit distance, which are main
topics in this paper.

Definition 5. Let T andS be trees and suppose that
M ∈M TAI (T,S). We defineM− asM \ {r(T), r(S)}.

1. We say thatM is atop-down mapping(Chawathe,
1999; Selkow, 1977), which we denote byM ∈
M TOP(T,S), if (par(v),par(w)) ∈ M for every
(v,w) ∈M−.

2. We say thatM is anLCA-preserving mapping(or
degree-2 mapping) (Zhang et al., 1996), which we
denote byM ∈M LCA(T,S) if (v⊔v′,w⊔w′) ∈M
for every(v,w),(v′,w′) ∈M.

3. We say thatM is abottom-up mapping(Valiente,
2001), which we denote byM ∈ M BOT(T,S), if
the following condition holds for every(v,w)∈M.(

∀v′ ∈ T[v]∃w′ ∈ S[w]
(
(v′,w′) ∈M

))

∧

(
∀w′ ∈ S[w]∃v′ ∈ T[v]

(
(v′,w′) ∈M

))
.

Furthermore, for◦∈ {TOP,LCA,BOT}, we define the
distanceτ◦(T,S) betweenT and S as the minimum
cost of all the mappings inM ◦(T,S), that is:

τ◦(T,S) = min{γ(M) |M ∈M ◦(T,S)}.

Here, we callτTOP, τLCA and τBOT a top-down dis-
tance, an LCA-preserving distanceand abottom-up
distance, respectively.

As the time complexity of the variations of the edit
distance in Definition 5, the following theorem holds,
also see Table 1 in Section 1.

Theorem 2. Let T and S be trees, wheren =
max{|T|, |S|} andd = min{d(T),d(S)}

1. The problem of computing τTAI (T,S) is
MAX SNP-hard (Zhang and Jiang, 1994).
This statement also holds even if bothT andSare
binary trees or the maximum height of trees is at
most 3 (Akutsu et al., 2013; Hirata et al., 2011).

2. We can computeτTOP(T,S) and τLCA(T,S) in
O(n2d) time (Yamamoto et al., 2014).

3. The problem of computingτBOT(T,S) is
MAX SNP-hard. This statement also holds
even if bothT andS are binary trees (Yamamoto
et al., 2014).

It is know the following theorem for caterpillars.

Theorem 3. (Muraka et al., 2018)Let C and
D be caterpillars, where n= max{|C|, |D|} and
λ = min{|lv(C)|, |lv(D)|}. Then, we can compute
τTAI (C,D) in O(n2λ) time under the unit cost func-
tion.

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

274

3 COMPUTING THE
VARIATIONS FOR
CATERPILLARS

Let C and D be caterpillars. We regard a back-
bone bb(C) as a sequence[v1, . . . ,vn], wherev1 =
r(C) and (vi ,vi+1) ∈ E(C), and a backbonebb(D)
as a sequence[w1, . . . ,wm], where w1 = r(D) and
(wj ,wj+1) ∈ E(D).

Let Li (1≤ i≤ n) denote the set of leaves inch(vi),
that is,Li = ch(vi)\{vi+1} for 1≤ i ≤ n−1 andLn =
ch(vn). Also Let K j (1 ≤ j ≤ m) denote the set of
leaves inch(wj), that is, letK j = ch(wj)\{wj+1} for
1≤ j ≤m−1 andKm = ch(wm).

Recall thatC[v] denotes the (complete) subcater-
pillar of C rooted atv. Also C(v) denotes the forest
obtained by deleting the rootv in C[v]. For a Cater-
pillar C and a subcaterpillarC′ of C, we denote the
caterpillar obtained by deletingC′ fromC by C\C′.

When designing the algorithm to compute the
variations of edit distance for caterpillars, we use a
multisetof labels on an alphabetΣ. A multisetonΣ is
a mappingS : Σ→ N. For a multisetS on Σ, we say
thata∈ Σ is anelementof S if S(a)> 0 and denote it
by a∈ S(like as a standard set). Thecardinalityof S,
denoted by|S|, is defined as∑

a∈Σ
S(a).

Let S1 and S2 be multisets onΣ. Then, we
define the intersection S1 ⊓ S2, the union S1 ⊔ S2
and the difference S1 \ S2 as multisets satisfying
that(S1⊓S2)(a) = min{S1(a),S2(a)}, (S1⊔S2)(a) =
max{S1(a),S2(a)} and (S1 \S2)(a) = max{S1(a)−
S2(a),0} for everya∈Σ. Note thatS1\S2=S1\(S1⊓
S2) and|S1\S2|= |S1\ (S1⊓S2)|= |S1|− |S1⊓S2|.

We can compute the edit distanceµ between mul-
tisetsS andS′ in O(|S|+ |S′|) time, sinceµ(S,S′) =
max{|S\S′|, |S′ \S|} under the unit cost function (cf.,
(Ukita et al., 2021)).

Let S be a set of vertices. Then, we denote the
multiset of labels onΣ occurring inSby S̃. Also, we
denote∑

v∈S

γ(v,ε) by del(S) and ∑
w∈S

γ(ε,w) by ins(S).

3.1 Top-down Distance

First, we consider the equation to compute the top-
down distanceτTOP(C,D) between caterpillarsC and
D, illustrated in Figure 2.

Theorem 4. Let C and D be caterpillars, where n=
max{|C|, |D|}. Then, we can computeτTOP(C,D) in
O(n) time under the unit cost function.

Proof. First, we show that the equations in Figure 2
is correct. Suppose thatM ∈ M TOP(C,D). Note
that bb(C) = [v1, . . . ,vn] and bb(D) = [w1, . . . ,wm].

τTOP(C,D) =
min{n,m}−2

∑
i=1

(
γ(vi ,wi)+µ(L̃i , K̃i)

)
+dn,m(C,D),

dn,m(C,D) =



γ(vm−1,wm−1)+

min

{
γ(vm,wm)+µ(c̃h(vm), K̃m)+del(C(vm+1)),

µ(˜ch(vm−1), ˜ch(wm−1))+del(C(vm))+ ins(Km)

}

if n> m,

γ(vn−1,wn−1)+

min

{
γ(vn,wn)+µ(L̃n, K̃n),

µ(˜ch(vn−1), ˜ch(wn−1))+del(Ln)+ ins(Kn)

}

if n= m,

γ(vn−1,wn−1)+

min

{
γ(vn,wn)+µ(L̃n, c̃h(wn))+ ins(D(wn+1)),

µ(˜ch(vn−1), ˜ch(wn−1))+ ins(D(wn))+del(Ln)

}

if n< m.

Figure 2: The equations of computingτTOP.

It is obvious that(v1,w1) ∈ M. Also, if (vi ,w) ∈
M (resp., (v,wj) ∈ M), then it holds thatw = wi
(resp., v = v j). Hence, there exists an indexh such
that 1≤ h ≤ min{n,m} and M contains the pairs
(v1,w1), . . . ,(vh,wh). Furthermore, ifM is the mini-
mum cost, thenM contains the pairs(vh,wh) as many
as possible, so such anh is min{n,m} and such anM
impliesτTOP(C,D).

For everyi (1≤ i ≤ h−2), we can compute the
correspondences inM between the leaves inLi and
the leaves inKi asµ(L̃i , K̃i), whereL̃i ⊓ K̃i implicitly
represents such correspondences. Then, it holds that

τTOP(C \C[h],D \D[h]) =
h−2

∑
i=1

(
γ(vi ,wi)+µ(L̃i, K̃i)

)
,

which is computed in the formula ofτTOP(C,D) ex-
ceptdn,m(C,D) in Figure 2.

Consider the case thati = h−1, that is, consider
the formuladn,m(C,D).

If n = m, then we can compute
τTOP(C[vn−1],D[vn−1]) as the sum ofγ(vn−1,wn−1)

and the minimum value ofγ(vn,wn)+µ(L̃n, K̃n) (if vn

is corresponding town) andµ(˜ch(vn−1), ˜ch(wn−1))+
del(Ln) + ins(Kn) (otherwise), which is realized as
the second formula indn,m(C,D) in Figure 2.

Suppose thatn > m. Then, we can compute
τTOP(C[vn−1],D[vn−1]) as the sum ofγ(vm−1,wm−1)
and the minimum value of the upper and the lower
formulas in the first formula indn,m(C,D) in Figure 2.

If vm is corresponding towm, then its cost is
γ(vm,wm) and the leaves inKm are possible to cor-
respond to not only the leaves inLm but alsovm+1,
that is,ch(vm). Such correspondences are computed

as µ(c̃h(vm), K̃m). Furthermore, the remained ver-
tices in C(vm+1) are deleted, which is realized as

Computing the Variations of Edit Distance for Rooted Labaled Caterpillars

275

del(C(vm+1)). Hence, the upper formula is correct.
Otherwise, that is, ifvm is not corresponding to

wm, then the vertices inch(vm−1) are corresponding to
the vertices inch(wm−1). Such correspondences are

computed asµ(˜ch(vm−1), ˜ch(wm−1)). Furthermore,
the remained vertices inC(vm) are deleted and the re-
mained vertices inKm are inserted, which is realized
asdel(C(vm))+ ins(Km). Hence, the lower formula is
correct. Therefore, the first formula is correct.

Similarly, for the case thatn < m, the third for-
mula indn,m(C,D) in Figure 2 is also correct.

Since the equations traverse at most once for every
vertex inC andD with traversing(vi ,wi) and the pro-
cessing for(vi ,wi) runs inO(1) time, the total running
time isO(|C|+ |D|) = O(n).

3.2 LCA-preserving Distance

Next, we consider the recurrences of computing the
LCA-preserving distanceτLCA(C,D) between cater-
pillars C andD illustrated in in Figure 3. Here, we

regardC̃[vi+1] andD̃[wj+1] in the recurrences as the
multisets of labels occurring in all the vertices in
C[vi+1] andD[wj+1].

τLCA(C[vi],D[w j]) =

min





γ(vi ,w j)+µ(L̃i , K̃ j)+ τLCA(C[vi+1],D[w j+1]),
γ(vi ,ε)+del(Li)+ τLCA(C[vi+1],D[w j]),
γ(ε,w j)+ ins(K j)+ τLCA(C[vi],D[w j+1])





if 1 ≤ i < n and 1≤ j < m,

τLCA(C[vn],D[w j]) =

min





γ(ε,w j)+ ins(K j)+ τLCA(C[vn],D[w j+1]),
γ(vn,w j)

+min
v∈Ln

{
µ(L̃n \ {̃v}, K̃ j)+µ({̃v}, D̃[w j+1])

}
,

γ(vn,w j)+µ(L̃n, K̃ j)+ ins(D[w j+1])





if 1 ≤ j < m,

τLCA(C[vi],D[wm]) =

min





γ(vi ,ε)+del(Li)+ τLCA(C[vi+1],D[w j]),
γ(vi ,wm)

+ min
w∈Km

{
µ(L̃i , K̃m\ {̃w})+µ(C̃[vi+1], {̃w})

}
,

γ(vi ,wm)+µ(L̃i , K̃m)+del(C[vi+1])





if 1 ≤ i < n,
τLCA(C[vn],D[wm]) = γ(vn,wm)+µ(L̃n, K̃m).

Figure 3: The recurrences of computingτLCA .

We start the following simple lemma.

Lemma 1. Let C be a caterpillar. For distinct vertices
v,w∈C, it holds that v⊔w∈ bb(C).

Proof. If v∈ bb(C) andw∈ bb(C), then it holds that
v⊔w = v or w, which implies thatv⊔w ∈ bb(C). If
v ∈ bb(C) andw ∈ lv(C), then it holds thatv⊔w =
v⊔par(w), which implies thatv⊔w∈ bb(C). By the
same reason, it holds thatv⊔w ∈ bb(C) if v∈ lv(C)

andw ∈ bb(C). If v ∈ lv(C) andw ∈ lv(C), then it
holds thatv⊔w= par(v)⊔par(w), which implies that
v⊔w∈ bb(C).

Theorem 5. Let C and D be caterpillar, where n=
max{|C|, |D|}. Then, we can computeτLCA(C,D) in
O(n2) time under the unit cost function.

Proof. The first recurrence in Figure 3 computes that,
for M ∈M LCA(C,D), (1) if (vi ,wj) ∈M, then(v,w)∈
Li ×K j such thatv,w ∈ L̃i ⊓ K̃ j are added toM and
next it computesτLCA(C[vi+1],D[wj+1]), (2) if vi is
deleted, then all the leaves inLi are deleted and next
it computesτLCA(C[vi+1],D[wj]), or (3) if wj is in-
serted, then all the leaves inK j are inserted and next
it computesτLCA(C[vi],D[wj+1]), for 1≤ i < n and
1≤ j < m. Then, the pairs added toM are obtained
from just the case (1), and the pairs consist of some
(v,w) ∈ Li ×K j and (vi ,wj). Sincepar(v) = vi and
par(w) = wj and by Lemma 1,M is LCA-preserving.

By the same reason, the mapping obtained from
the last recurrence in Figure 3 is LCA-preserving.

Consider the second recurrence in Figure 3, that
is, the case thatτLCA(C[vn],D[wj]) for 1≤ j < m and
M ∈M LCA(C,D). The first formula means to insert
wj andL j , and next computeτLCA(C[vn],D[wj+1]), no
pairs are added toM.

The second and third formulas mean to add
(vn,wj) to M. Then, the second formula means that
somev ∈ Ln is corresponding to some vertexw ∈
D[wj+1] (and(v,w) is added toM and the remained
vertices inD[wj+1] are inserted), and thenLn \ {v} is
corresponding toK j as possible (and the correspond-
ing pairs are added toM). On the other hand, the
third formula means that nov∈ Ln is corresponding
to D[wj+1]. In this case,Ln is corresponding toK j as
possible (and the corresponding pairs are added toM)
and the vertices inD[wj+1] are inserted.

For both formulas, by Lemma 1, it holds that
(v1⊔ v2,w1⊔w2) = (vn,wj+1) ∈M for distinct pairs
(v1,w1),(v2,w2)∈M∩(C[vn]×D[wj+1]). Then,M is
LCA-preserving.

By the same reason, the mapping obtained from
the third recurrence in Figure 3 is LCA-preserving.

Hence, the mapping obtained from the recurrences
in Figure 3 is LCA-preserving.

By traversingC andD at once inO(n) time, we
can obtain the information ofvi , wi , Li andKi . Then,
in computingτLCA(C[vi],D[wj]) for a fixedi and j, the
running time isO(1). Since the recurrences compute
τLCA(C[vi],D[wj]) for 1≤ i ≤ n and 1≤ j ≤ m, the
total running time isO(n2).

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

276

3.3 Bottom-up Distance

When considering the algorithm of computing the
bottom-up distanceτBOT(C,D) between caterpillarsC
andD, we deal with the reversal of backbones, that
is, bb(C) = [v1, . . . ,vn] for andbb(D) = [w1, . . . ,wm],
wherer(C) = vn, (vi ,vi+1) ∈ E(C), r(D) = wm and
(wj ,wj+1) ∈ E(D). Then, we design the algorithm
BOTCAT in Algorithm 1.

procedure BOTCAT(C,D)
/* C,D: caterpillars */
/* bb(C) = [v1, . . . ,vn], r(C) = vn */
/* bb(D) = [w1, . . . ,wm], r(D) = wm */
for h= 1 to min{n,m} do1

if |Lh| 6= |Kh| then break;2

h--; /* |Li |= |Ki | for 1≤ i ≤ h */3
A← bb(C); B← bb(D); L← lv(C); K← lv(D);4

d← µ(L̃, K̃)+del(A)+ ins(B);5
if h> 0 then6

d0← d; L′0← L; K′0← K;7
for i = 1 to h do8

L′i ← L′i−1 \Li ; K′i ← K′i−1\Ki ;9

di ←10
di−1− γ(vi ,ε)− γ(ε,wi)+ γ(vi ,wi)−

µ(L̃′i−1,M̃
′
i−1)+µ(L̃i , K̃i)+µ(L̃′i , K̃

′
i);

d←min{d,di};11

return d;12

Algorithm 1 : BOTCAT.

Theorem 6. Let C and D be caterpillars, where n=
max{|C|, |D|}. Then, we can computeτBOT(C,D) in
O(n) time under the unit cost function.

Proof. SinceC and D are caterpillars, if|Li | = |Ki |
for 1≤ i ≤ h but |Lh+1| 6= |Kh+1|, then it holds that
C[vh] ≡l D[wh] but C[vh+1] 6≡l D[wh+1]. The algo-
rithm BOTCAT first finds such anh in lines 1, 2 and
3. In this case, we can obtain bottom-up mapping
M ∈ M BOT(C,D) betweenC[wh] and D[wh] by (1)
adding(vi ,wi) to M, (2) adding(v,w) to M for v∈ Li ,
w∈ Ki andl(v) = l(w) and (3) adding(v,w) to M for
the remainedv∈ Li andw∈ Ki for 1≤ i ≤ h. We can
compute the distance concerned with the above (2)
and (3) asµ(L̃i , K̃i). Note that the remained vertices
in C are deleted and those inD are inserted.

After obtaining the aboveh, the algorithm BOT-
CAT computes the bottom-up distance whose bottom-
up mappingM ∈ M BOT(C,D) contain no pair in
bb(C)× bb(D) as d in line 6. Then, in for-loop in
lines from 7 to 12, the algorithm BOTCAT updatesd
as the minimum value of the currentd and the newly
obtaineddi such that(vi ,wi) ∈M. Here,di is the dis-
tance thatvi ∈ bb(C) is corresponding towi ∈ bb(D),
by addingγ(vi ,wi) instead ofγ(vi ,ε)+ γ(ε,wi), andLi

are corresponding toKi , by addingµ(L̃i , K̃i) instead

of µ(L̃′i−1, K̃
′
i−1). This is realized at line 11, that is, by

using the following formula.

di ← di−1− γ(vi,ε)− γ(ε,wi)+ γ(vi ,wi)

−µ(L̃′i−1,M̃
′
i−1)+µ(L̃i, K̃i)+µ(L̃′i, K̃

′
i).

In other words, for 1≤ i ≤ h, the bottom-up mapping
M ∈ M BOT(C,D) is updated by adding(vi ,wi) and
the correspondence betweenLi andKi to M for every
i, after removing the correspondences betweenL1∪
·· · ∪Li andK1∪ ·· · ∪Ki in M. Hence, the algorithm
BOTCAT is correct.

By traversingC andD at once inO(n) time, we
can obtain the information ofbb(C), bb(D), lv(C) and
lv(D) (sovi , wi , Li andKi). Then, each of lines 2, 4,
5, 7 and 9 to 11 runs inO(1) time. Hence, the total
running time of the algorithm BOTCAT is O(n).

4 EXPERIMENTAL RESULTS

In this section, we give the experimental results of
computingτTOP, τLCA andτBOT. Here, the computer
environment is that OS is Ubuntu 14.04.6, CPU is In-
tel Xeon E5-1650 v3(3.50GHz) and RAM is 15GB.

We deal with caterpillars for N-glycans from
KEGG2, the largest 5,154 caterpillars (0.1%) in dblp3

(refer to dblp0.1%), SwissProt and non-isomorphic
caterpillars in TPC-H (refer to TPC-H◦) from UW
XML Repository4. Also we deal with caterpillars
obtained by deleting the root in Auction (refer to
Auction−) and non-isomorphic caterpillars obtained
by deleting the root in Nasa (refer to NASA−◦),
Protein (refer to Protein−◦) and University (refer to
University−◦) from UW XML Repository. Table 2 il-
lustrates the information of such caterpillars. Here,
#, n, d, h, λ andβ are the number of caterpillars, the
average number of vertices, the average degree, the
average height, the average number of leaves and the
average number of labels.

Then, we use all the pairs in the caterpillars in Ta-

ble 2, of which the number is
#× (#−1)

2
. Table 3

illustrates the number (#pairs) of all the pairs in cater-
pillars in Table 2.

Table 4 illustrates the running time to compute
τTOP, τLCA and τBOT, as comparing withτTAI by the
algorithm in (Muraka et al., 2018).

2Kyoto Encyclopedia of Genes and Genomes,
http://www.kegg.jp/

3http://dblp.uni-trier.de/
4http://aiweb.cs.washington.edu/research/projects/xmltk/

xmldata/www/repository.html

Computing the Variations of Edit Distance for Rooted Labaled Caterpillars

277

Table 2: The information of caterpillars.

data # n d h λ β

N-glycans 514 6.40 1.84 4.22 2.18 4.50
dblp0.1% 5,154 41.74 40.73 1.01 40.73 10.61
SwissProt 6,804 35.10 24.96 2.00 33.10 16.79
TPC-H◦ 8 8.63 7.63 1.00 7.63 8.63
Auction− 259 4.29 3.00 0.71 3.57 4.29
Nasa−◦ 33 7.27 5.15 1.64 5.64 3.18
Protein−◦ 5,150 4,97 3.63 1.16 3.81 4.57
University−◦ 26 1.35 0.35 0.19 1.15 1.35

Table 3: The number (#pairs) of all the pairs in caterpillars
in Table 2.

data #pairs

N-glycans 131,841
dblp0.1% 13,279,281
SwissProt 23,143,806
TPC-H◦ 28

data #pairs

Auction− 33,411
Nasa−◦ 528
Protein−◦ 13,258,675
University−◦ 325

Table 4: The running time (sec.) to computeτTAI , τTOP,
τLCA andτBOT.

data τTAI τTOP τLCA τBOT

N-glycans 753.33 1.23 2,804.82 2.57
dblp0.1% 7,525.28 343.70 1,505.05 737.96
SwissProt 82,031.10 1,594.42 9,819.62 2,138.54
TPC-H◦ 5.78×10−3 0.64×10−3 1.77×10−3 1.43×10−3

Auction− 4.55 0.23 0.87 0.94
Nasa−◦ 20.93×10−2 0.34×10−2 4.91×10−2 0.57×10−2

Protein−◦ 2,055.77 118.20 433.22 327.66
University−◦ 14.22×10−3 0.40×10−3 2.84×10−3 6.58×10−3

Table 4 shows that, whereas the time complexity
of computingτTOP is same as that of computingτBOT,
the running time of computingτTOP is slightly smaller
than that of computingτBOT. On the other hand, the
running time of computingτLCA is smaller than that of
computingτTAI except N-glycan. The reason is that
the depth of caterpillars in N-glycan is much larger
than other caterpillars.

Table 5 illustrates the number (#cases) of cases
thatτTAI < τTOP, τTAI < τLCA andτTAI < τBOT with their
ratios (%) in all the pairs (#pairs), where “max.” is the
maximum difference fromτTAI . Since it always holds
τLCA ≤ τTOP, we omit the cases thatτTAI < τLCA in Ta-
ble 5 when the number of cases thatτTAI < τTOP is 0.

Table 5 show that, for caterpillars in dblp0.1%,
TPC-H◦, Auction− and University−◦ , τTOP is an alter-
native and much faster distance toτTAI . Also, whereas
τLCA is an improved distance ofτTOP for caterpillars
in N-glycans,τLCA andτTOP are not changed for the

Table 5: The number (#cases) of cases thatτTAI < τTOP,
τTAI < τLCA andτTAI < τBOT with their ratios (%) in all the
pairs (#pairs) with the maximum difference (max.)

τTAI < τTOP

data #pairs #cases % max.

N-glycans 131,841 64,467 48.90 10
dblp0.1% 13,279,281 0 0.00 0
SwissProt 23,143,806 5,933,179 25.64 30
TPC-H◦ 28 0 0 0
Auction− 33,411 0 0 0
Nasa−◦ 528 104 19.70 9
Protein−◦ 13,258,675 697,697 5.26 50
University−◦ 325 0 0 0

τTAI < τLCA

data #pairs #cases % max.

N-glycans 131,841 5,490 4.16 2
SwissProt 23,143,806 5,933,179 25.64 29
Nasa−◦ 528 56 10.61 1
Protein−◦ 132,586,75 348,119 2.63 10

τTAI < τBOT

data #pairs #cases % max.

N-glycans 131,841 117,657 89.24 16
dblp0.1% 13,279,281 12,667,501 95.39 4
SwissProt 23,143,806 23,019,607 99.46 4
TPC-H◦ 28 27 96.43 2
Auction− 33,411 4,107 12.29 1
Nasa−◦ 528 403 76.33 4
Protein−◦ 13,258,675 8,828,524 66.59 5
University−◦ 325 5 1.54 1

other caterpillars. Furthermore,τBOT is insufficient
to approximate toτTAI since the number of cases that
τTAI < τBOT are much larger than the number of cases
thatτTAI < τTOP.

On the other hand, by focusing on the maxi-
mum difference, for caterpillars in SwissProt and
Protein−◦ , the maximum difference ofτBOT − τTAI is
much smaller than that ofτTOP− τTAI andτLCA− τTAI .
Then, for these caterpillars, whereas the number of
cases thatτTAI < τBOT is larger than the number of
cases thatτTAI < τTOP andτTAI < τLCA , τBOT is more
appropriate to characterize the forms of caterpillars
thanτTOP andτLCA .

In order to improve the results in Table 5, Table 6
summarizes the case that min{τTOP,τBOT}.

By comparing with Table 5, Table 6 shows that
the usage of min{τTOP,τBOT} succeeds to decrease the
maximum difference with slightly decreasing the ra-
tio. Hence, min{τTOP,τBOT} provides to fast approxi-
mate toτTAI for caterpillars.

Finally, we compare the algorithms in this paper

ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

278

Table 6: The number (#cases) of cases thatτTAI <

min{τTOP,τBOT} with their ratios (%) in all the pairs
(#pairs) with the maximum difference (max.).

data #pairs #cases % max.

N-glycans 131,841 59,921 45.45 9
dblp0.1% 13,279,281 0 0.00 0
SwissProt 23,143,806 5,933,179 25.64 2
TPC-H◦ 28 0 0 0
Auction− 33,411 0 0 0
Nasa−◦ 528 94 17.80 1
Protein−◦ 13,258,675 637,773 4.81 2
University−◦ 325 0 0 0

for caterpillars with the algorithms designed by (Ya-
mamoto et al., 2014) for standard trees. Table 7 illus-
trates the running time of computingτTOP andτLCA by
using such algorithms which refer toτT

TOP andτT
LCA .

Here, “–” denotes time out over 10,000 seconds.

Table 7: The running time (sec.) of computingτTOP and
τLCA by using the algorithms in this paper and the algo-
rithmsτT

TOP andτT
LCA in (Yamamoto et al., 2014).

data τTOP τLCA τT
TOP τT

LCA

N-glycans 1.23 2,804.82 11.77 25.64
dblp0.1% 343.70 1,505.05 – –
SwissProt 1,594.42 9,819.62 – –
TPC-H◦ 0.64×10−3 1.77×10−3 3.77×10−3 7.45×10−3

Auction− 0.23 0.87 1.20 2.12
Nasa−◦ 0.34×10−2 4.91×10−2 5.64×10−2 10.68×10−2

Protein−◦ 118.20 433.22 628.79 1156.32
University−◦ 0.40×10−3 2.84×10−3 2.93×10−3 2.19×10−3

Table 7 shows that the algorithm of computing
τTOP in this paper is much faster thanτT

TOP. Also,
except N-glycans and University−◦ , the algorithm of
computingτLCA in this paper is faster thanτT

LCA .

5 CONCLUSION

In this paper, we have designed the algorithms of
computingτTOP andτBOT for caterpillars inO(n) time
and τLCA in O(n2) time. Also, we have given ex-
perimental results of computingτTOP, τLCA andτBOT

for caterpillars in real data. Then, the usage of
min{τTOP,τBOT} have provided to fast approximate to
τTAI for caterpillars. Also, the algorithms in this pa-
per have been almost fast and faster than the previous
algorithms for trees (Yamamoto et al., 2014).

Since the algorithm of computingτLCA for cater-
pillars is slow for N-glycan, it is a future work to im-
prove the implementation, in particular, to apply to

larger number of caterpillars such as all-glycans in
KEGG and CSLOGS5. Also it is a future work to in-
vestigate the other variations of the edit distance for
caterpillars presented in (Yoshino and Hirata, 2017).

REFERENCES

Akutsu, T., Fukagawa, D., Halldórsson, M. M., Takasu, A.,
and Tanaka, K. (2013). Approximation and parame-
terized algorithms for common subtrees and edit dis-
tance between unordered trees.Theoret. Comput. Sci.,
470:10–22.

Chawathe, S. S. (1999). Comparing hierarchical data in ex-
ternal memory. InProc. VLDB’99, pages 90–101.

Deza, M. M. and Deza, E. (2016).Encyclopedia of dis-
tances (4th ed.). Springer.

Gallian, J. A. (2007). A dynamic survey of graph labeling.
Electorn. J. Combin., 14:DS6.

Hirata, K., Yamamoto, Y., and Kuboyama, T. (2011). Im-
proved MAX SNP-hard results for finding an edit dis-
tance between unordered trees. InProc. CPM’11
(LNCS 6661), pages 402–415.

Kuboyama, T. (2007).Matching and learning in trees. Ph.D
thesis, University of Tokyo.

Muraka, K., Yoshino, T., and Hirata, K. (2018). Computing
edit distance between rooted labeled caterpillars. In
Proc. FedCSIS’18, pages 245–252.

Selkow, S. M. (1977). The tree-to-tree editing problem.In-
form. Process. Lett., 6:184–186.

Tai, K.-C. (1979). The tree-to-tree correction problem.J.
ACM, 26:422–433.

Ukita, Y., Yoshino, T., and Hirata, K. (2021). Caterpil-
lar alignment distance for rooted labeled caterpillars:
Distance based on alignments required to be caterpil-
lars. In Recent advance in computational optimiza-
tion, pages 111–134.

Valiente, G. (2001). An efficient bottom-up distance be-
tween trees. InProc. SPIRE’01, pages 212–219.

Yamamoto, Y., Hirata, K., and Kuboyama, T. (2014).
Tractable and intractable variations of unordered tree
edit distance. Internat. J. Found. Comput. Sci.,
25:307–329.

Yoshino, T. and Hirata, K. (2017). Tai mapping hierarchy
for rooted labeled trees through common subforest.
Theory of Comput. Sys., 60:769–787.

Zhang, K. and Jiang, T. (1994). Some MAX SNP-hard re-
sults concerning unordered labeled trees.Inform. Pro-
cess. Lett., 49:249–254.

Zhang, K., Wang, J., and Shasha, D. (1996). On the editing
distance between undirected acyclic graphs.Internat.
J. Found. Comput. Sci., 7:43–58.

5http://www.cs.rpi.edu/˜zaki/www-
new/pmwiki.php/Software/Software

Computing the Variations of Edit Distance for Rooted Labaled Caterpillars

279

