
Learning Heuristic Estimates for Planning in Grid Domains by Cellular
Simultaneous Recurrent Networks

Michaela Urbanovská and Antonı́n Komenda
Department of Computer Science (DCS), Faculty of Electrical Engineering (FEE),

Czech Technical University in Prague (CTU), Karlovo namesti 293/13, Prague, 120 00, Czech Republic

Keywords: Classical Planning, Simultaneous Recurrent Neural Networks, Heuristic Learning, Deep Learning.

Abstract: Automated planning provides a powerful general problem solving tool, however, its need for a model cre-
ates a bottleneck that can be an obstacle for using it in real-world settings. In this work we propose to use
neural networks, namely Cellular Simultaneous Recurrent Networks (CSRN), to process a planning problem
and provide a heuristic value estimate that can more efficiently steer the automated planning algorithms to
a solution. Using this particular architecture provides us with a scale-free solution that can be used on any
problem domain represented by a planar grid. We train the CSRN architecture on two benchmark domains,
provide analysis of its generalizing and scaling abilities. We also integrate the trained network into a planner
and compare its performance against commonly used heuristic functions.

1 INTRODUCTION

Classical planning is a powerful tool in terms of gen-
eral problem solving. Its performance relies heavily
on heuristic functions which provide further informa-
tion about the problem and suggest which states to ex-
pand in search of the solution. There are many widely
used heuristic functions that provide informed state-
goal distance estimate, however, to compute such es-
timate we need to model the problem we try to solve.

Problem representation for classical planning of-
ten has to be done by hand and some problems can be
too hard to describe and model in standardized lan-
guages such as PDDL (Aeronautiques et al., 1998).
That creates a bottleneck which complicates usage
of classical planning techniques on complex or very
large domains that are too hard to be modeled by a hu-
man. That holds for many real-world problems such
as logistic problems, distribution warehouses or fork-
lift fleets.

One way to avoid creating such representation is
using a graphical representation of the problem. In
conjunction with neural networks we take the mod-
elling part out of the equation and base the heuris-
tic computation on graphical features and not a hand-
coded model.

Combining classical planning with neural net-
works is currently widely discussed problem which
is being tackled from many different perspectives.

In (Shen et al., 2020), authors use hypergraph neu-
ral networks together with the standardized modelling
language to compute heuristic value for a given state.
In (Groshev et al., 2018) the authors take similar path
to ours where they use graphic representation of the
problem and compute a policy which should be fol-
lowed in the search algorithm.

Another approach which uses image representa-
tion is (Asai and Fukunaga, 2017) and (Asai and
Fukunaga, 2018) where authors convert the image
into latent space and further evaluate it using neural
networks to obtain a heuristic.

One type of neural networks which have been suc-
cessful with problems represented by an image-like
grid are the Cellular Simultaneous Recurrent Net-
works (CSRN). In particular, they were used to solve
the maze traversal problem. As mentioned in (Ilin
et al., 2008), output of the network can be used to
greedily guide an algorithm from a start state to a goal
using values generated by the network as a heuristic
function which means that it can be used in classi-
cal planning algorithms. There are works regarding
the CSNR architecture such as (Ilin et al., 2006) and
(White et al., 2010) which mostly focused on improv-
ing its training which is a great bottleneck of this ap-
proach.

In this work, we implemented CSRN for both
maze and Sokoban domains based on implementa-
tion in (Ilin et al., 2008). We analyze training of the

Urbanovská, M. and Komenda, A.
Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks.
DOI: 10.5220/0010813900003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 2, pages 203-213
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

203



CSRN architecture, discuss the parameters, training
and evaluation. At the same time, we focus on its
ability to generalize over different problem instances
and discuss how to use it as a domain-independent
heuristic function. At last, we integrate the CSRN in a
classical planner and compare its performance against
other heuristic functions.

2 BACKGROUND

Classical planning is a form of general problem solv-
ing that starts in a fully defined initial state and looks
for a goal state by applying deterministic actions.

For each problem we need a set of facts which cre-
ate the states and a set of actions which can be applied
to said states. The two sets form a graph which can
be referred to as a state-space of the problem. In this
state-space we then look for a solution using state-
space search algorithms.

2.1 State-space Search

Any search algorithm starts at the initial state and in
each step applies all applicable actions to create more
states which are further expanded until a goal state is
reached. We can then reconstruct the path leading to
solution by taking every expansion that led to the goal
state from the beginning of the algorithm.

Such graph traversal algorithm can be computed
blindly and states can be expanded in first-in first-out
manner as a breadth-first search (Bundy and Wallen,
1984). However, the state-spaces tend to be large and
exhaustive search may not be the most efficient way
to find the solution. The performance of a search al-
gorithm can be improved by using a heuristic function
to guide it. There are many state-space search algo-
rithms which use a heuristic function. In this work,
we use Greedy Best-first Search (GBFS) which relies
solely on the heuristic function when making a deci-
sion. Because we use a neural network to estimate
the heuristic value and we have no guarantees on the
generated heuristic values, we use GBFS in our ex-
periments.

2.2 Heuristic Functions

Heuristic function is a function h(s)→R0+ that takes
a state s on the input and returns a single value that
estimates how far is the given state from a goal. Based
on the values provided by the heuristic function, the
search can make much more informed decisions in
which state to expand next.

In this work, we use multiple different heuristic
functions in the experiments to compare their perfor-
mance. The most simple heuristic is a blind heuris-
tic, which gives each estimate equal to zero. Next
used heuristic function is Euclidean Distance (ED)
which computes Euclidean distance from current state
to goal state on a grid. These two heuristics are very
fast and simple to compute, but the information they
add to the search may not be very valuable.

Another heuristics, we use in the experiments,
are hFF (Hoffmann, 2001) and LM-cut (Pommeren-
ing and Helmert, 2013) which are both widely used
domain-independent heuristics that are used in plan-
ners such as LAMA (Richter and Westphal, 2010) or
SymBA* (Torralba et al., 2014).

The hFF heuristic uses a principle called relax-
ation of a problem. Relaxed problem is a modified
version of a problem where we lift certain constraints
(in this particular case, we enforce monotonicity of
the state transitions) to make it easier to solve. hFF

then solves the relaxed version of the problem and re-
ports the solution cost as a heuristic estimate for the
original problem.

The LM-cut heuristic uses the principle of action
landmarks. For every problem, there is a set of actions
which have to be present in every existing solution.
For example, to get to the goal in a maze, we always
have to step to the tile next to the goal. Therefore,
action that moves an agent to goal from a neighbor-
ing tile has to be present in the action landmark. The
heuristic value can be then computed as a sum of the
landmark action costs.

3 CELLULAR SIMULTANEOUS
RECURRENT NETWORKS

Neural networks have proved to be a very powerful
and versatile tool. Their possible connection with
planning is still being explored (in works as stated in
Section 1). In contrast to the existing work, here, we
use a minimalistic recurrent neural network which is
used as a component of the whole CSRN architecture.

CSRN can be used on domains which are repre-
sented as a grid. In (Ilin et al., 2008), it was used on
mazes. The CSRN architecture technically copies the
structure of the input and each of the grid tiles has its
own small neural network that processes it. We will
refer to this kind of network as a cell network. Ev-
ery tile has its own cell network, but all the cell net-
works share weights, such that no matter how large
the grid input is, the number of trained weights stays
the same. That is one of the great advantages of this
architecture. It also allows CSRN to scale over arbi-

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

204



trarily large inputs, i.e. being scale-free, which is not
case in any of the previous works, to our best knowl-
edge.

3.1 Cell Network

The cell network which operates over one grid tile can
have arbitrary structure. We implemented the CSRN
according to the (Ilin et al., 2008), therefore we de-
cided to use the same cell network architecture as
well.

The cell network is a small recurrent network that
uses two fully connected layers as displayed in Fig-
ure 1. It takes a vector on the input which contains
information about the tile (red arrows), its neighbors
(green arrows) and values of the hidden states from
the last iteration (blue arrows). The first fully con-
nected layer (FC-1) takes the input vector of size v
and computes h hidden states. The second fully con-
nected layer (FC-2) takes the h hidden states and cre-
ates one value which represents heuristic value for the
given grid tile. In case of the maze problem, the num-
ber estimates how many steps the agent has to take in
order to find a goal in the maze if he starts at the given
tile.

As we mentioned, the cell network is recurrent so
the hidden states are a part of the input vector every
following iteration. In every iteration, each cell net-
work generates an output value using FC-2 (yellow
arrow) which is then being fed into the neighboring
cell networks in the next iteration (green arrows). All
the cell networks run for the same number of itera-
tions.

At the end of the last iteration, all cell networks re-
turn the final heuristic value for their cell. That leaves
us with a matrix that contains a value for each tile of
the input grid. These values represent the heuristic
estimates for all the initial positions in the grid.

3.2 Training CSRN

In (Werbos and Pang, 1996), the authors showed that
training such structure using Stochastic Gradient De-
scent (SGD) methods does not converge efficiently.
We propose to use Bayesian Optimization (BO), as
it is a universal approach, which does not require
any additional assumptions on the objective function.
E.g., for mentioned SGD, this function has to be dif-
ferentiable, which heuristic functions are not in gen-
eral. To train the CSRN, we use BO with Gaussian
processes to optimize the objective function.

Input maze image

FC
-2

Iteration outputs

Recurrent cell

Heuristic value

FC-1 FC-2

Figure 1: Cell network architecture. FC-1 represents a fully
connected layer which takes v inputs and returns h outputs;
FC-2 represents a fully connected layer which takes h in-
puts and returns one value; red arrows - fixed grid tile en-
coding; green arrows - neighbor values from previous iter-
ation; blue arrows - feeding hidden states to next iteration;
yellow arrow - computation of intermediate result for one
iteration using FC-2.

3.3 Architecture Parameters

There are parameters of the cell network, but also for
the CSRN structure as a whole.

The cell network, as described in (Ilin et al.,
2008), requires number of recurrent iterations and
number of hidden states as parameters.

The number of iterations influences how much of
the actual search the cell network simulates during its
run but it does not influence the number of trainable
weights. It does, however, influence the run time of
the network.

On the other hand, the number of the hidden states
directly influences the number of trainable weights in
the whole architecture.

Let us say that the input vector v consists of n val-
ues which describe the grid tile, m values which con-
tain values of all tile’s neighbors and h values which
are the hidden state values from the previous iteration.
The total number of trainable weights w in such net-
work is then computed as

w = (n+m+h)∗h+h (1)

The CSRN can be used for any size of the input
grid, therefore it is a scale-free architecture. For all
our domains in this work, we parametrize the local-
ity of the cells as a 4-neighborhood, as we only as-
sume that the state can change by moving one cell up,
down, left and right (intuitively representing a robot
or agent on the grid). However, it is possible to define
the neighborhood in a different manner depending on

Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks

205



1

2

...

...

...

n

1

2

m

1

2

h

}
}
}

grid tile encoding

neighbors' values

hidden states

Figure 2: General input vector encoding. First n values rep-
resent the grid tile encoding. Next m values are iteration
outputs from neighboring tiles. The last h values are hidden
states computed in the last iteration.

the actions available in the domain we are solving.
Deeper analysis of the action structure and its mani-
festation in the locality parametrization of the CSRNs
is left for future work.

4 PROBLEM DOMAINS

As we already mentioned, (Ilin et al., 2008) uses maze
traversal problem as the only domain which is also
used in (Urbanovská et al., 2020). One property of the
maze domain is that the 2D grid representation con-
tains the whole state space of the problem. We can
create every state in the state space by simply mov-
ing the agent in the maze onto every free tile on the
grid. That led us to believe that the CSRNs’ success
may be caused simply by this property of the maze
domain, which is in core a simple problem from the
planning perspective. Intuitively, the only process the
CSRN has to learn is iterative gradient propagation
through the maze as shown in Figure 3. That creates
an optimal heuristic for such problem, provided that
the already filled cells are not overwritten.

Therefore, we decided to test out the CSRN ar-
chitecture on Sokoban domain, which is one of the
hardest classical planning problems (it falls into the
PSPACE-complete class). It can be easily represented
by a grid which makes it a perfect candidate for the
CSRN architecture, but its whole state space certainly
cannot be represented by one-dimensional 2D grid.

8.0 14.0 13.0 12.0 13.0

7.0 11.0

6.0 9.0 10.0 11.0

5.0 6.0 7.0 8.0 12.0

4.0 13.0

3.0 2.0 1.0 0.0

Figure 3: Gradient propagated through an example maze
instance. The goal tile should be equal to 0, each tile next
to it 1 and so on.

1.0 2.0 1.0 2.0 3.0

0.0 0.0 4.0

1.0 2.0

4.0 3.0 2.0 3.0

5.0 3.0 4.0 5.0

1.0 2.0 3.0 4.0 5.0

0.0 3.0 4.0 5.0

2.0

3.0 2.0 1.0 0.0

4.0 2.0 1.0 2.0

1.0 2.0 3.0 4.0 5.0

0.0 4.0 5.0 6.0

3.0 4.0

4.0 3.0 2.0

5.0 1.0 0.0 1.0

Figure 4: Gradient propagated through an example Sokoban
instance in 3 steps. The desired actions are for each map
configuration are displayed as red arrows. The gradient nav-
igates the agent to a tile where it can make a decision that
creates a new state that is closed to a goal state.

4.1 Input Encoding

The cell network takes a vector on the input, so its cor-
responding grid tile has to be processed accordingly.
In Figure 2, we can see the general input vector struc-
ture for the cell network which is very similar for both
maze and Sokoban domain.

First n values of the vector describe the objects
present at the given grid tile. In case of maze it is rep-

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

206



resented by 2 binary values, one for a goal and one for
a wall. In case of Sokoban there is one more binary
value that represents the presence of a box. These val-
ues stay the same in every recurrent iteration of the
cell network.

Next m values are output values from m neighbor-
ing grid tiles. In both domains we have only 4 possi-
ble actions which represent 4 possible movements on
the grid, so 4 values in total. Each problem instance
is surrounded by walls so the agent cannot step out
of the world, therefore we can wrap the neighborhood
around and not break any rules of the domain. That
is crucial because we need every cell network to have
input of the same size. The neighbor values change
in every iteration based on the previous results of the
neighboring cells.

Last h values are values of the hidden states. Their
number is set by a selected parameter. These values
change every iteration and at the start they are initi-
ated to −1.

4.2 CSRN Output

As described in Section 1, each cell network returns
one value at the very end of the CSRN computation.
In this section, we focus on the output as a whole
where we work with all the values returned by all the
cell networks.

Each grid tile is evaluated by a cell network, so
we can create an output grid with all the generated
values that has the same size as the input grid which
represents the problem as shown in Figure 3.

As we already stated, complete state-space of a
maze can be represented by the grid per se and we can
clearly see how to interpret the output of the CSRN in
this domain. Each cell in the output grid corresponds
to a heuristic value for a state where agent stands on
the given tile.

That is a great advantage for such simple domain
as the maze domain because we can run the CSRN
once and get heuristic values for the whole state-space
at the same time. That means that the heuristic com-
putation does not have to be repeated through the rest
of the search algorithm which can greatly contribute
to the algorithm’s performance. Sadly this only holds
for domains, where we can represent the whole state-
space by the output grid.

Sokoban is a more complex domain and its state-
space is much bigger and depends on different ele-
ments than just the position of the agent. Because of
the boxes that are present, the problem becomes ex-
ponential and to create one output with all heuristic
values we would have to create exponentially many
grids with all box combinations to be able to evaluate

the CSRN only once.
Creating a multi-dimensional output of the CSRN

is certainly an interesting direction for future re-
search, but in this work we decided to use 2D projec-
tion of the problem to be able to interpret the output
grid. The downside of this approach is that it is nec-
essary to evaluate the CSRN every time a box moves.
That is still less heuristic function calls than many
heuristics use because it is very common to evaluate
the heuristic function for every encountered state.

Thanks to this approach, we can then create a 2D
output grid which contains heuristic values for all the
agent positions in the world with particular box con-
figuration. Therefore it is basically a projection over
two variables (x,y) that describe agent’s position. We
could do the same for any two variables and create a
2D representation which can be used as a source of
heuristic values for a subset of states. However, using
agent’s position seemed the most intuitive in this case.

Selection of the variable which are suitable for
such projection is a direction of research of itself
and it is not a problem, we will further discuss in
this work. However, with good selection strate-
gies, it would be possible to create such projection
for arbitrary problem and therefore create a domain-
independent framework that uses graphical represen-
tation on a grid.

5 CSRN TRAINING

Training of the CSRN architecture is a well-known
bottleneck of the approach as stated in (Werbos and
Pang, 1996). There have been many approaches to
training the architecture, but overall the training can
be very slow especially on a large number of samples.
We use a very small number of training samples of
small sizes because in this work we mainly focus on
generalizing and scaling abilities of the CSRN archi-
tecture.

Due to these reasons, we decided to use BO with
5 steps and 3 restarts which runs for 5000 iterations.
The objective function we want to optimize counts
number of incorrect decisions the network would
make in search using the learned heuristic. It is a
function analogous to function used in (Ilin et al.,
2008), thus the optimization algorithm aims to de-
crease the number of incorrect decisions made based
on the learned heuristic values. Incorrect decision is
such decision that is not present in any solution for
the problem.

Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks

207



5.1 Objective Function

Before training the network, we have to create a struc-
ture that contains all ”correct decisions”. To do so, we
generate the whole state-space for the given instance
and find all solutions for every existing state. Such
exhaustive search is costly, therefore, we only train
the network on smaller number of problem instances
that can be solved exhaustively in a reasonable time.

Once we have all plans for all possible states in
the state-space, we go through all the plans and mark
every decision that occurs in the plans. We know for
sure that every one of these decisions leads to a goal
state, because it is a part of a solution to the problem.
That way, we are able to train the network not only
on a subset of solutions but on all the existing solu-
tions which hopefully provides us with more general
knowledge about the problem domain.

In case of the maze domain, the exhaustive evalu-
ation does not create a problem, as we can run a basic
search algorithms from the goal and go through every
tile in the maze which guarantees that we find all the
possible plans.

Exhaustive evaluation for one Sokoban map is a
very costly procedure. Therefore, we had to train the
network only on very small samples we were able to
exhaustively evaluate in a reasonable amount of time.
One evaluation requires creating states for all possible
box and agent position combinations and looking for
all solutions in every created state.

It might seem that the evaluation function and cre-
ating all possible plans is rather a tedious approach.
There are examples in the literature which use only
optimal plans for training (Shen et al., 2020). Our
reasoning behind training on all existing plans is that
the network might be able to make more informed de-
cisions in problematic parts of the state-space where
other heuristics struggle or where the optimal solution
may never lead to. We also hope it is going to prevent
reaching dead-ends 1 which is a great problem specif-
ically in the Sokoban domain. This approach prevents
expanding the dead-end states, however, its behaviour
in the dead-end is not being learned.

5.2 Parameter Selection

As stated in Section 3.3, there are several parameters
in the CSRN architecture that have to be set. For the
number of recurrent iterations and number of hid-
den states we trained architectures with different pa-

1A dead-end state in planning is a state from which
no goal state is reachable. An example of a dead-end in
Sokoban is a state, where a box is in a corner, which is not
a goal.

rameter combinations. In the (Ilin et al., 2008), the
authors used 20 recurrent iterations and 15 hidden
states for the network. However, that was for the maze
domain. That is unfortunately not much information
on how to modify the values in order to process the
Sokoban domain. Therefore, we trained multiple dif-
ferently parametrized architectures and based on their
performance we used the most successful one in the
planning experiments.

Another mentioned parametrization of the archi-
tecture is based on the neighborhood definition. In
this case, in both the maze and Sokoban domains we
have one agent which is allowed to move by one tile
in its 4-neighborhood. Therefore the neighborhood
function can be reused for both domains.

5.3 CSRN Convergence

Since we are using BO to train the network we wanted
to demonstrate how the network converges on one
maze sample. We are testing convergence of the ob-
jective function, thus we want the number of incorrect
decisions made by the trained network equal to zero.
The training was deployed 400 times with the limit of
1000 iterations and the results can be seen in Figure 5.
We have observed that the success of the optimization
heavily relies on the initial weights which are sampled
randomly from given intervals.

In Figure 5 we see how the objective function con-
verges to zero during the training. The lowest num-
ber of iterations is 0 which means that the initial it-
eration was good enough to find weights that yielded
no wrong decisions. On the other hand, we see that
the number of iterations can lead to hundreds. Even
though the correct gradient propagation in only one
maze instance is a very simple task, the initialization
plays a great part in the speed of training. Lucky ini-
tialization can lead to almost immediate success while
a bad initialization can lead to great prolonging. Some
of the runs did not even finish with no mistakes in the
given 1000 iterations.

6 EXPERIMENTS

We want to look at multiple properties of the trained
CSRN and decide whether it is a suitable approach for
neural heuristic learning for graphically represented
problems.

First, we want to take the trained architectures and
see their generalizing capabilities on different unseen
problem instances. That will show us if training on a
small number of samples provides the network with

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

208



Figure 5: Convergence graph for training CSRN on one
maze instance 400 times for the first 200 iterations. Blue
line represents average number of wrong decisions per
training iteration. The grey band represents standard de-
viation.

a knowledge base that can be reused on different but
similar problems.

Next, we want to see how the CSRN scales-up
with the learned knowledge. In case of the maze do-
main, we use it on larger instances and in case of
the Sokoban, we create larger instances and instances
with more boxes which can both increase the com-
plexity of the problem.

The last experiments regard the planning perfor-
mance which is also an important aspect of our work.
We integrated the CSRN as a heuristic function into
our classical planning solver and we want to compare
the performance of CSRN in comparison with other
heuristic functions on the same data sets.

All codes used for the experiments were imple-
mented in Julia, including the domain-specific plan-
ners which use naive implementation of heuristics 2

described in Section 2.2. That way, we have a fair
comparison in terms of the evaluation.

Due to the nature of our data we have imple-
mented domain-specific planners in Julia together
with all the mentioned heuristic functions. All exper-
iments were performed on the same machine with 64
CPU cores, 346 GB of memory and a GPU for com-
putation of the neural networks required in the plan-
ning process.

To evaluate the results we use the same metrics
for all the experiments. First we look at average path
length denoted as ”avg pl” which shows average so-
lution length over the given data set. Next is the aver-
age number of expanded states denoted as ”avg ex”
which shows average number of expanded states dur-
ing the search. And last is the coverage denoted as
”cvg” which shows solving success rate.

2Experimental codes were based on
https://github.com/urbanm30/nn-planning.

6.1 Generalization and Scaling
Experiments

In Section 5.2 we mentioned that we had to train
multiple networks with different parameter configu-
rations. We then integrated trained network in a plan-
ner and used them to solve different unseen data sets.
Each data set in this branch of experiments contains 5
unseen problem instances. For each data set we also
provided reference solution that has been achieved by
using GBFS and the blind heuristic which is denoted
as ”ref” in Table 1 and Table 2. In both tables, each
CSRN configuratoin is encoded as ”number of recur-
rent iterations”−”number of hidden states”.

CSRNs for the maze domain were trained on 5
problem instances of size 5x5. The parameters were
selected from following

• number of recurrent iterations = [10, 20]

• number of hidden states = [5, 10 ,15].

We then evaluated the trained networks on data set
5x5 which contains 5 unseen samples of size 5x5 and
on data set 10x10 which contains 5 unseen samples of
size 10x10.

CSRNs for the Sokoban domain were trained on
1 problem instance of size 3x3 with one box. The
parameters were selected from following

• number of recurrent iterations = [10, 20, 30]

• number of hidden states = [15, 30].

Sokoban is a more complicated domain in terms of
difficulty so we decided to scale-up both the size and
the number of boxes. Each mentioned data set con-
tains 5 unseen problem instances. First we have 2
data sets of size 3x3 with one and two boxes. Then
we have 3 data sets with samples of size 6x6 with
one, two and three boxes.

The search for the generalizing and scaling exper-
iments was limited by number of expanded states for
each sample which was set to 2x the reference solu-
tion.

6.1.1 Maze Domain

In Table 1 we can see results for all mentioned data
sets and CSRN configurations. All configurations
solved all problems in both data sets with the best pos-
sible solution lengths. The only difference is in the
number of expanded states. All CSRN configurations
managed to expand less states than the reference so-
lution in both data sets. The configuratoins with best
results are the 20-15 which achieved lowest number
of expanded states on the 5x5 data set and the 10-10
configurations which achieved the lowers number of

Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks

209



expanded states one the 10x10 data set. These two
configurations are further used in the planning exper-
iments.

6.1.2 Sokoban Domain

In Table 2 we see results for all the CSRN configu-
rations trained for Sokoban. The first two data sets
which both have samples of size 3x3 were not a prob-
lem in terms of coverage because all CSRNs were
able to solve all the problems. The first unsolved in-
stances appeared in the 6x6 data set with one box.

Configuration with the highest coverage (most
solved problems) is clearly 10-30 which did not solve
only one problem and also has lower number of ex-
panded states on 4/5 data sets.

From the solution length perspective, no CSRN
was able to produce shorter solutions than the refer-
ence solver. Four configurations were able to find the
same average solution length for 2 data sets. From
these four configurations we selected the 30-30 be-
cause it has the highest coverage and also expanded
less states than the reference point in 3/5 data sets
compared to the other 3 configurations.

Based on the results, configurations 10-30 and 30-
30 are further used in the planning experiments.

6.2 Planning Experiments

Each data set for the planning experiments contains
50 samples which are all unseen for the trained CSRN
architectures. Each problem instance in the planning
experiments is limited by a time limit of 10 minutes.
For each domain, we used two trained networks that
were evaluated as the best ones. In case of maze, we
use CSRN configurations 10-10 and 20-15 which are
denoted as CSRN-1 and CSRN-2. In case of Sokoban,
we use CSRN configurations 10-30 and 30-30 which
are placed in the same row in Table 3 as CSRN-1 and
CSRN-2.

We can see all the results in Table 3. First four
columns contain planning experiments where we used
four data sets of different sized mazes - 8x8, 16x16,
32x32, 64x64. Last three columns in Table 3 con-
tains three data sets of Sokoban data - 8x8, 10x10
- Boxoban, 16x16. The data used in 10x10 data set
were sampled from the original Boxoban (Guez et al.,
2018) data set.

The CSRNs were successful in the maze domain
in terms of coverage because they were able to solve
every problem instance in all four data sets. In terms
of solution length, they also found optimal solutions
for 3/4 data sets. A drawback we can see in the CSRN
performance is the number of expanded states which
is greater than even the simplest heuristic. That means

that the heuristic generated by CSRN was often mis-
leading for the search and caused selection of wrong
states in the algorithm. However, since the heuris-
tic is precomputed once for the whole maze (see Sec-
tion 4.2), the final efficiency of the search does not lag
behind the classical methods.

The Sokoban domain is a lot more complex and
size of the instances in the planning experiments is
higher than in the generalizing and scaling experi-
ments. In the 8x8 data set, we can see that both CSRN
configurations were able to achieve 0.98 coverage and
expand nearly half the states compared to the blind
heuristic. The performance gets worse in the 16x16
data set where CSRNs cannot solve any of the given
instances. In the 10x10 - Boxoban data set we can see
that the CSRNs solved at least some of the instances
but the coverage is very low.

We also want to address the low coverage of the
LM-cut and hFF heuristics which is caused by the
complexity of the domain as well as the computa-
tional time they require. We can see that CSRN has an
advantage over these two heuristics especially in the
8x8 data set. As we stated in Section 4.2, CSRN has
to be evaluated only once for a new box configuration
so the evaluation is not running for every new state
and its outputs can be saved and reused. That seems
to be a great advantage in the Sokoban domain. While
using the CSRN we can expand more states quicker
because when we compute heuristic (run the CSRN)
it provides heuristic values for a whole subset of states
instead of just one state.

6.3 Discussion

Results presented in 6.1 and 6.2 show us that the
CSRN architecture is able to scale-up for both given
domains. In case of the maze domain, we see impres-
sive performance for all presented data sets and the
planning experiments. This result is to be expected
due to the domain’s complexity.

Much more interesting are the Sokoban results
where we see CSRN’s ability to generalize over in-
comparably more difficult problem instances. Con-
sidering the fact that the CSRN was trained on empty
3x3 maze with one box its performance on 6x6 and
8x8 instances is very impressive. More importantly, it
was fully able to adapt to problems with higher num-
ber of boxes. Adding boxes to the Sokoban prob-
lem presents a large number of complications for
the heuristic. There are overlapping trajectories, ex-
tended movement rules as only one box can be pushed
at a time and other aspects which make the problem
more complex.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

210



Ta
bl

e
1:

C
SR

N
ev

al
ua

tio
n

pe
rf

or
m

ed
on

m
az

e
do

m
ai

n.
R

ef
er

en
ce

so
lv

er
is

G
B

FS
w

ith
bl

in
d

he
ur

is
tic

.E
ac

h
C

SR
N

co
nfi

gu
ra

tio
n

is
na

m
ed

by
its

nu
m

be
ro

fr
ec

cu
re

nt
ite

ra
tio

ns
an

d
nu

m
be

ro
fh

id
de

n
st

at
es

co
nn

ec
te

d
w

ith
a

da
sh

.B
es

tr
es

ul
ts

ar
e

w
ri

tte
n

in
bo

ld
le

tte
ri

ng
.

re
f

10
-5

10
-1

0
10

-1
5

20
-5

20
-1

0
20

-1
5

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

5x
5

5.
6

19
.2

1
5.

6
12

.6
1

5.
6

12
.8

1
5.

6
11

.4
1

5.
6

10
.8

1
5.

6
13

.6
1

5.
6

10
.0

1
10

x1
0

11
.2

80
.8

1
11

.2
48

.8
1

11
.2

33
.6

1
11

.2
46

.0
1

11
.2

51
.0

1
11

.2
42

.6
1

11
.2

40
.6

1

Ta
bl

e
2:

C
SR

N
ev

al
ua

tio
n

pe
rf

or
m

ed
on

So
ko

ba
n

do
m

ai
n.

R
ef

er
en

ce
so

lv
er

is
G

B
FS

w
ith

bl
in

d
he

ur
is

tic
.

E
ac

h
C

SR
N

co
nfi

gu
ra

tio
n

is
na

m
ed

by
its

nu
m

be
r

of
re

cc
ur

en
t

ite
ra

tio
ns

an
d

nu
m

be
ro

fh
id

de
n

st
at

es
co

nn
ec

te
d

w
ith

a
da

sh
.B

es
tr

es
ul

ts
ar

e
w

ri
tte

n
in

bo
ld

le
tte

ri
ng

.

re
f

10
-1

5
10

-3
0

20
-1

5
20

-3
0

30
-1

5
30

-3
0

si
ze

bo
xe

s
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
av

g
pl

av
g

ex
cv

g
3x

3
1

6.
0

23
.6

1
6.

0
22

.4
1

6.
4

21
.6

1
6.

0
28

.4
1

6.
0

23
.8

1
6.

0
22

.8
1

6.
0

29
.6

1
3x

3
2

5.
2

10
.8

1
5.

4
18

.4
1

5.
4

18
.4

1
5.

2
20

.0
1

5.
2

19
.6

1
5.

2
20

.0
1

5.
4

7.
6

1
6x

6
1

21
.0

34
0.

8
1

29
.8

46
9.

8
1

29
.0

26
1.

8
1

26
.2

45
4.

2
1

26
.2

5
43

0.
75

0.
8

27
.0

46
5.

2
1

27
.2

5
46

6.
5

0.
8

6x
6

2
21

.8
12

10
.6

1
39

.5
95

0.
5

0.
4

49
.2

5
99

7.
5

0.
8

39
.5

95
1.

5
0.

4
40

.7
5

14
96

.7
5

0.
8

29
.5

94
6.

0
0.

4
33

.2
5

65
8.

5
0.

8
6x

6
3

28
.6

12
42

1.
0

1
54

.0
18

21
7.

5
0.

4
72

.8
10

73
1.

0
1

57
.8

11
19

5.
8

1
79

.0
13

13
4.

25
0.

8
51

.5
17

83
8.

0
0.

4
50

.2
84

71
.2

1

Ta
bl

e
3:

Pl
an

ni
ng

ex
pe

ri
m

en
ts

fo
rb

ot
h

m
az

e
an

d
So

ko
ba

n
do

m
ai

ns
.

M
az

e
So

ko
ba

n
8x

8
16

x1
6

32
x3

2
64

x6
4

8x
8

10
x1

0
-B

ox
ob

an
16

x1
6

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

av
g

pl
av

g
ex

cv
g

bl
in

d
11

.6
4

27
.4

2
1

23
.3

6
96

.8
2

1
46

.2
26

7.
28

1
10

4.
72

10
85

.6
6

1
11

1.
24

3.
5k

1
1.

2k
66

k
1

30
k

52
k

0.
54

E
D

10
.7

6
14

.5
8

1
23

.3
6

48
.1

4
1

46
.2

12
9.

7
1

10
4.

72
56

1.
44

1
31

.1
0

0.
5k

1
45

.6
4

8.
2k

1
11

5.
33

12
.6

k
0.

54
hF

F
10

.7
6

10
.7

6
1

23
.3

6
23

.3
6

1
46

.2
46

.2
1

10
4.

72
10

4.
72

1
-

-
0.

04
-

-
0

-
-

0
L

M
-c

ut
10

.7
6

10
.7

6
1

23
.3

6
23

.3
6

1
-

-
0

-
-

0
-

-
0

-
-

0
-

-
0

C
SR

N
-1

10
.8

8
28

.9
8

1
23

.3
6

10
5.

6
1

46
.2

35
7.

5
1

10
4.

72
15

72
.6

8
1

41
.6

5
1.

7k
0.

98
37

.6
7

2.
1k

0.
06

-
-

0
C

SR
N

-2
10

.8
8

26
.9

1
23

.3
6

10
5.

02
1

46
.2

35
6.

44
1

10
4.

72
16

07
.8

6
1

47
.7

6
2.

1k
0.

98
36

.0
96

8.
0

0.
04

-
-

0

Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks

211



Based on the results we can report that the CSRN
is capable of generalizing and scaling not only in the
maze domain which we consider a simple baseline but
also in the Sokoban domain.

7 CONCLUSION

We successfully trained CSNR architecture on both
maze and Sokoban domains and evaluated its scal-
ing and generalizing ability on unseen problem in-
stances. We also integrated trained CSRNs into a
planner and compared their performance with other
commonly used heuristic functions. As we already
stated, we are using the image-like grid representa-
tion of the problems. Thanks to that, we can say that
we work with a model-free planning framework be-
cause our planner does not require a domain / problem
model for the computation.

The generalizing and scaling experiments showed
that the CSRN architecture is able to generalize very
well on maze domain where it outperformed the refer-
ence solution in all data sets. In case of the Sokoban
domain, we were able to achieve 96% coverage and
even though the CSRN was finding longer solution in
general, it was also able to decrease number of ex-
panded states compared to the reference solution.

The planning experiments showed that the CSRN
for maze domain provided comparable results to the
classical heuristics, however, it expanded a larger
amount of states in the process. In the Sokoban do-
main, we saw a great coverage on the 8x8 data set
which contained larger instances than the data sets in
generalizing and scaling experiments. However, we
also saw limitations of the trained configurations as
the results on the other two data sets showed next to
no coverage. That is caused by the size of the prob-
lem instances which influence the complexity as well.
Still, training the network on one 3x3 sample pro-
vided us with great results on the 8x8 data set and
a promising direction for a follow-up research of the
CSRN ability to generalize.

These results show us that the CSRN architec-
ture might be the right tool for grid-based domains in
terms of heuristic computation. Other further research
direction would be to explore achieving domain-
independence of this approach. So far, we have two
ways of achieving that. One is creating an algorithm
that would select appropriate variables in the problem
domain which would allow us to create a 2D projec-
tion of the problem. The other way is creating an al-
ternative representation of the problem which would
be still processed by the CSRN architecture but with-
out the condition of the grid structure, similarly as

in Natural Language Processing using a linear vector
representation, for instance.

Addressing these ideas could lead to a model-free,
scale-free and domain-independent heuristic function
learned by a neural network on small tractable prob-
lem samples. In the future, we would like to focus on
these mentioned challenges and provide such frame-
work that could process any given problem.

ACKNOWLEDGEMENTS

The work of Michaela Urbanovská was
supported by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16019/0000765 “Research
Center for Informatics” and the work of Antonı́n
Komenda was supported by the Czech Science
Foundation (grant no. 21-33041J).

REFERENCES

Aeronautiques, C., Howe, A., Knoblock, C., McDermott,
I. D., Ram, A., Veloso, M., Weld, D., SRI, D. W., Bar-
rett, A., Christianson, D., et al. (1998). Pddl— the
planning domain definition language. Technical re-
port, Technical Report.

Asai, M. and Fukunaga, A. (2017). Classical planning in
deep latent space: From unlabeled images to PDDL
(and back). In Besold, T. R., d’Avila Garcez, A. S.,
and Noble, I., editors, Proceedings of the Twelfth In-
ternational Workshop on Neural-Symbolic Learning
and Reasoning, NeSy 2017, London, UK, July 17-18,
2017, volume 2003 of CEUR Workshop Proceedings.
CEUR-WS.org.

Asai, M. and Fukunaga, A. (2018). Classical planning in
deep latent space: Bridging the subsymbolic-symbolic
boundary. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence.

Bundy, A. and Wallen, L. (1984). Breadth-first search. In
Catalogue of artificial intelligence tools, pages 13–13.
Springer.

Groshev, E., Tamar, A., Goldstein, M., Srivastava, S., and
Abbeel, P. (2018). Learning generalized reactive poli-
cies using deep neural networks. In 2018 AAAI Spring
Symposium Series.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racaniere,
S., Weber, T., Raposo, D., Santoro, A., Orseau,
L., Eccles, T., Wayne, G., Silver, D., Lilli-
crap, T., and Valdes, V. (2018). An investi-
gation of model-free planning: boxoban levels.
https://github.com/deepmind/boxoban-levels/.

Hoffmann, J. (2001). Ff: The fast-forward planning system.
AI magazine, 22(3):57–57.

Ilin, R., Kozma, R., and Werbos, P. J. (2006). Cellular srn
trained by extended kalman filter shows promise for

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

212



adp. In The 2006 IEEE International Joint Confer-
ence on Neural Network Proceedings, pages 506–510.
IEEE.

Ilin, R., Kozma, R., and Werbos, P. J. (2008). Beyond feed-
forward models trained by backpropagation: A prac-
tical training tool for a more efficient universal ap-
proximator. IEEE Transactions on Neural Networks,
19(6):929–937.

Pommerening, F. and Helmert, M. (2013). Incremental lm-
cut. In Twenty-Third International Conference on Au-
tomated Planning and Scheduling.

Richter, S. and Westphal, M. (2010). The lama planner:
Guiding cost-based anytime planning with landmarks.
Journal of Artificial Intelligence Research, 39:127–
177.

Shen, W., Trevizan, F., and Thiébaux, S. (2020). Learning
domain-independent planning heuristics with hyper-
graph networks. In Proceedings of the International
Conference on Automated Planning and Scheduling,
volume 30, pages 574–584.

Torralba, A., Alcazar, V., Borrajo, D., Kissmann, P., and
Edelkamp, S. (2014). Symba: A symbolic bidirec-
tional a planner. International Planning Competition,
pages 105–109. cited By 27.

Urbanovská, M., Bı́m, J., Chrestien, L., Komenda, A., and
Pevný, T. (2020). Model-free automated planning us-
ing neural networks. In Proceedings of the 1st Work-
shop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL) of the International
Conference on Automated Planning and Scheduling,
pages 7–15.

Werbos, P. J. and Pang, X. (1996). Generalized maze navi-
gation: Srn critics solve what feedforward or hebbian
nets cannot. In 1996 IEEE International Conference
on Systems, Man and Cybernetics. Information Intelli-
gence and Systems (Cat. No. 96CH35929), volume 3,
pages 1764–1769. IEEE.

White, W. E., Iftekharuddin, K. M., and Bouzerdoum, A.
(2010). Improved learning in grid-to-grid neural net-
work via clustering. In International Joint Conference
on Neural Networks, IJCNN 2010, Barcelona, Spain,
18-23 July, 2010, pages 1–7. IEEE.

Learning Heuristic Estimates for Planning in Grid Domains by Cellular Simultaneous Recurrent Networks

213


