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Abstract: Driven by the need to develop methods for minimizing operational delays at public administration agencies,
this paper considers problems involving routing and staffing in these agencies. We examine a threshold-based
N-System of two queues with capacities C1 = ∞ and C2 < ∞, respectively. We use the matrix analytic method
to obtain the steady-state probabilities, the performance measures, and the optimal threshold values in terms
of the system parameters. Our numerical experiments reveal that the mean response time is sensitive to the
stability condition, and the effectiveness of the threshold policy depends on the customer arrival rate.

1 INTRODUCTION

Almost everyone has waited for days or weeks to get
an identity card, a driver’s license, a visitor visa, a
business registration certificate, etc. Waiting lines or
queues are known as common phenomena in admin-
istrative services due to the inadequate resources in
public administrations and rising demand for these
services, typically in Immigration Department, Busi-
ness Registration Office, etc. Queues exist mainly due
to the limited resources of the system. Customer ar-
rivals cannot be scheduled or controlled since the cus-
tomers usually arrive randomly. Moreover, customer
service times are independent random variables; some
individuals take a short time, while others require a
long period. It can be seen that queueing phenom-
ena lead to three common problems: (i) Customer
satisfaction declines due to the discomfort of spend-
ing hours in a crowded waiting room to access the
services; (ii) The employees endure the overloaded
work stress, which reduces the efficiency and quality
of work; (iii) Worsening relationships between cus-
tomers and staff, and leading to more disputes.

Waiting time has been identified as the critical
factor influencing customer satisfaction, and conse-
quently, decreasing delays has become a focus in op-
timizing the efficiency of public services (Osborne
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et al., 2013). Allocating human resources based on
staff capacity is an effective solution for optimizing
staff performance and, as a result, reducing waiting
time. The complexity of work in administrative ser-
vices varies, and so do the qualifications of the staff.
Experienced employees are advantageous in terms of
performance in highly complex jobs; however, their
performance tends to decline quickly in non-complex
tasks when they become bored. Meanwhile, inexpe-
rienced employees are under pressure as their skills
are not well-matched to their job duties (Hunter and
Thatcher, 2007).

Motivated by these situations, we consider an N-
design multi-server queueing system that serves two
types of customers in two queues. This system em-
ploys two groups of servers: employees trained to
handle low complexity tasks and more experienced
employees who can handle all tasks. The switching
policy of the model is based on the skills of two dif-
ferent types of employees and the thresholds of two
queues. Similar configurations are found in various
settings, including international call centers (single-
language and multilingual servers), emergency med-
ical departments (life-threatening injuries and oth-
ers), etc. The problem of optimal allocation of cus-
tomers between queues in queueing systems to mini-
mize waiting time has received much attention. As for
the routing and staffing issues, we refer to the survey
paper by Gans et al. (2003).

The model used in this paper is related to the
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stochastic service systems belonging to a class of
models named ”lane section” that was first pro-
posed by Schwartz (1974). Stanford and Grassmann
(1993) considered a similar model of N-design bilin-
gual server system with both specialized and flexible
servers. They presented an exact performance anal-
ysis to determine the minimum number of bilingual
servers required. Due to the computational complex-
ity of this method, only comparatively small systems
can be solved. A closely related model is the paper
by Li and Yue (2016). The authors examined the N-
design call center with two types of users in which pri-
mary users have non-preemptive priority. The state-
space division method has been employed to divide
an infinite number of system states into several finite
states and obtain the steady-state probability equation
of the system. Shumsky (2004) presented an approx-
imate analysis of a queueing model of the multi-skill
call center in N-design, which has a fixed priority
strategy. The approximate analysis provides reason-
able accuracy while reducing the computational bur-
den of large service centers.

A matrix analytic method has been successfully
applied to the entire state space to obtain exact perfor-
mance measures. Morozov et al. (2021) examined a
modified Erlang loss system with two classes of cus-
tomers, in which the primary users take precedence
over secondary users. The authors assumed that the
probability distribution of service time is the expo-
nential distribution, then studied the model in depth
by matrix analysis method to evaluate the influence
of the input parameters on the secondary user perfor-
mance. Perel and Yechiali (2017) studied a closely
related system consisting of two non-identical M/M/1
queues controlled by a threshold-based switching pol-
icy. Jolles et al. (2018) expanded the model of Perel
and Yechiali by adding a switchover time policy.
In order to find the mean number of customers in
each queue, the authors formulated the system as a
Quasi-Birth-and-Death (QBD) process. Similar to
the method in Latouche and Ramaswami (1999), they
studied the steady-state behavior of the system and
obtained the rate matrix by applying the matrix ana-
lytic method.

In this paper, we consider the staffing problem of
the N-design model using the matrix-analytic method.
Though queueing analysis has been used in public ser-
vices, this is the first analytical result for public ad-
ministration service models with multiple servers in
N-design. The matrix-analytic method allows us to
derive the stability condition and effects of the input
parameters on the mean response time and users’ per-
formance. The advantage of this method is to pro-
vide systematically specific calculation formulas to

analyze more complicated models while not requir-
ing complex data. Therefore, our model is suitable
for providing evidence to evaluate administrative ser-
vice performance and compare alternatives quickly.

The rest of the paper is structured as follows. In
Section 2, we describe our model with a focus on the
switching policy, while in Section 3, the matrix an-
alytic method is applied to derive performance mea-
sures of the system in steady-state. In Section 4, we
present the results of numerical experiments to show
insights into the performance of our system and vari-
ous phenomena that occur due to a result of changes
in parameters. Section 5 concludes the paper.

2 MODEL DESCRIPTION

We consider an N-design system that serves two
classes of customers with c1 and c2 servers, respec-
tively. The arrival processes are assumed to be the
Poisson processes with arrival rates λ1 and λ2, respec-
tively, and the servers have exponential distributions
with mean 1/µi for class-i customers, i = 1,2. The
server’s switching policy is threshold-based.

We assume that number of customers in Queue 1
(Q1) is not limited while Queue 2 (Q2) can accom-
modate up to Nmax < ∞ customers including the ones
in service. Let Ci denote the capacity (the maximum
number of customers accommodated in the system) of
Qi, i= 1,2. We then have C1 =∞, and C2 =Nmax <∞.
If the two capacities C1 and C2 are infinite, a com-
pletely different approach is required to solve this
problem. For Q1, the threshold level is K ≥ c1, while
for Q2, it is N, c2 ≤ N ≤ Nmax. Denote by Qi(t) the
number of customers in Qi, i = 1,2 at time t.

If a customer arrives at Q2 and sees this queue al-
ready has N customers, this customer will transfer to
Q1. At that time, if Q1 already has K customers, Q1
will not accept customers from Q2, and that customer
will return to Q2. The system is illustrated in Figure
1.

Figure 1: The N-design multi-server queueing system.
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3 THE QBD PROCESS

In this section, we calculate the stationary distri-
bution of the Markov process to obtain the cor-
responding stationary performance measures. The
two-dimensional process {(Q1(t),Q2(t)), t ≥ 0} is a

continuous-time Markov Chain with the state space
S given by S = {(i, j) ∈ N×{0,1, . . . ,Nmax}}. The
system can be formulated as a Quasi-Birth-and-Death
process (QBD) with the infinitesimal generator Q
given as

Q =



B0 C 0 0 0 · · · · · · · · · · · · · · · · · · · · ·

A1 B1 C 0 0 · · ·
...

...
...

...
...

...

0 A2 B2 C 0 · · ·
...

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

...

0 · · · 0 Ac1 Bc1 C 0 · · ·
...

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...

0 0 . . . . . . 0 Ac1 BK−1 C 0 . . .
...

...

0 0 . . . . . . 0 0 Ac1 BK CK 0 . . .
...

0 0 · · · · · · · · · 0 0 Ac1 BK CK 0 . . .
...

...
...

...
...

...
...

. . . . . . . . .
...

...



,

where 0 is a (Nmax+1)× (Nmax+1) zero matrix, and Ai,Bi,BK ,C,CK are (Nmax+1)×(Nmax+1) block matrices given
by

Ai =


min(i,c1)µ1 0 0 0

0 min(i,c1)µ1 0 0
...

...
. . .

...
0 . . . 0 min(i,c1)µ1

 ,

for i < c1, and Ai = Ac1 for i≥ c1.

Bi =



bi,0 λ2 0 0 . . . . . . . . . . . . . . . . . . 0
µ2 bi,1 λ2 0 . . . . . . . . . . . . . . . . . . 0
0 2µ2 bi,2 λ2 0 . . . . . . . . . . . . . . . 0
...

...
. . . . . . . . .

...
...

...
...

...
...

0 . . . 0 c2µ2 bi,c2 λ2 0 . . . . . . . . . 0
...

...
...

...
. . . . . . . . .

...
...

...
...

0 . . . . . . . . . 0 c2µ2 bi,N−1 λ2 0 . . . 0
0 . . . . . . . . . 0 0 c2µ2 bi,N 0 . . . 0
...

...
...

...
...

...
...

. . . . . .
...

...
0 . . . . . . . . . . . . . . . . . . 0 c2µ2 bi,Nmax−1 0
0 . . . . . . . . . . . . . . . . . . . . . 0 c2µ2 bi,Nmax



,

for i = 0,1,2, . . . ,K−1, where bi,n =− [λ1 +λ2 +min(i;c1)µ1 +min(n;c2)µ2] .

BK =



bi,0 λ2 0 0 . . . . . . . . . 0
µ2 bi,1 λ2 0 . . . . . . . . . 0
0 2µ2 bi,2 λ2 0 . . . . . . 0
...

...
. . . . . . . . .

...
...

...
0 . . . 0 c2µ2 bi,c2 λ2 . . . 0
...

...
...

...
. . . . . . . . .

...
0 . . . . . . . . . 0 c2µ2 bi,Nmax−1 λ2
0 . . . . . . . . . . . . 0 c2µ2 bi,Nmax


,

Performance Analysis for Threshold-based N-Systems with Heterogeneous Servers

139



for i = K,K +1,K +2, . . . ,Bi = BK , where

bi,n =− [λ1 +λ2 +min(i;c1)µ1 +min(n;c2)µ2] ,

for n = 0,1, . . . ,Nmax−1, and

bi,Nmax =− [λ1 +min(i;c1)µ1 +min(n;c2)µ2] .

C =



λ1 0 0 . . . . . . . . . 0
0 λ1 0 . . . . . . . . . 0
...

...
. . .

...
...

...
...

0
... 0 λ1 0 . . . 0

0 . . . . . . 0 λ1 +λ2 . . . 0
...

...
...

...
...

. . .
...

0 . . . . . . . . . . . . 0 λ1 +λ2


,

where the diagonal element C(i, i) is given by

C(i, i) = λ1, for i = 0,1, . . . ,N−1,

C(i, i) = λ1 +λ2, for i = N,N +1, . . . ,Nmax.

CK =


λ1 0 0 0
0 λ1 0 0
...

...
. . .

...
0 . . . 0 λ1

 .

Let M = Ac1 +BK +CK , then

M =



m0 λ2 0 0 . . . . . . 0
µ2 m1 λ2 0 . . . . . . 0
0 2µ2 m2 λ2 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 c2µ2 mc2 λ2 . . .
...

...
...

...
. . .

. . .
. . .

0 . . . . . . . . . 0 c2µ2 mNmax


,

where the diagonal elements of M is given by

mi =−(min(i,c2)µ2 +λ2), for i = 0,1, . . . ,Nmax−1,

and mNmax =−c2µ2.

Let πM = (πM,i; i = 1,2, . . . ,Nmax) be the stationary
probability vector of the matrix M, i.e., πMM = 0
and πMe = 1, where e denotes the column vector
of ones, whose dimension is determined upon context.

The stability condition of such a QBD, (see Theorem
1.7.1, Neuts (1994)) can be obtained by the condition

πMCKe < πMAc1e.

This stability condition can be transformed as

λ1 < c1µ1. (1)

Let π(i,n) = P(Q1(t) = i,Q2(t) = n), for i ∈ N and
n = 0,1, . . . ,Nmax denote the stationary probability of
the Markov chain.

We define

π
(1)
i = (πi,0,πi,1, . . . ,πi,Nmax) , for i = 0,1,2, . . . ,

π
(2)
n =(π0,n,π1,n,π2,n, . . .) , for n= 0,1,2, . . . ,Nmax.

According to Matrix-analytic-method (Latouche and
Ramaswami (1999); Phung-Duc et al. (2010)), we
have

π
(1)
i = π

(1)
K Ri−K , i > K, (2)

π
(1)
i = π

(1)
i−1R(i), i = K,K−1, . . . ,1, (3)

where R is the minimal non-negative solution of

CK +RBK +R2Ac1 = 0, (4)

and

R(i) =−C(Bi +R(i+1)Ai+1)
−1, for i = K−1,K−2, . . . ,1,

(5)
given that

R(K) =−C(BK +RAc1)
−1. (6)

Then, π0 is the solution of the following equations

π
(1)
0

(
B0 +R(1)A1

)
= 0,

π
(1)
0

(
I +

K−1

∑
i=1

i

∏
j=1

R( j)+

(
K

∏
j=1

R( j)

)
(I−R)−1

)
e = 1,

(7)

where we use I to denote the (Nmax +1)× (Nmax +1)
identity matrix. The first and the second equation in
(7) represent the boundary equations at level 0, and
the normalization condition, respectively.

Let E[Li] denote the average number of customers in
the system in Qi, i = 1,2. We then obtain the mean
queue length of Q1 and Q2 as follows

E [L1] =
∞

∑
i=1

π
(1)
i ie

=
K−1

∑
i=1

π
(1)
i ie+

∞

∑
i=K

π
(1)
i ie

=
K−1

∑
i=1

π
(1)
i ie+

∞

∑
i=K

π
(1)
K Ri−K ie

=
K−1

∑
i=1

π
(1)
i ie+π

(1)
K

∞

∑
i′=0

Ri′ (i′+K
)

e

=
K−1

∑
i=1

π
(1)
i ie+π

(1)
K

∞

∑
i′=0

Ri′Ke+π
(1)
K

∞

∑
i′=0

Ri′ i′e
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=
K−1

∑
i=1

π
(1)
i ie+π

(1)
K (I−R)−1Ke+π

(1)
K R

∞

∑
j=1

R j−1 je

=
K−1

∑
i=1

π
(1)
i ie+π

(1)
K (I−R)−1Ke+π

(1)
K R[(I−R)−1]2e

=
K−1

∑
i=1

π
(1)
i ie+π

(1)
K [(I−R)−1K +R[(I−R)−1]2]e,

(8)

E [L2] =
Nmax

∑
n=0

π
(2)
n ne

=

(
K−1

∑
n=0

π
(1)
n +π

(1)
K
(
I +R+R2 + · · ·

))
f

=

(
K−1

∑
n=0

π
(1)
n +π

(1)
K (I−R)−1

)
f ,

(9)

where f = (0,1,2, . . . ,Nmax)
T .

Let E[L] be the total average number of customers in
the system in both queues, then

E[L] = E [L1]+E [L2] . (10)

We obtain the mean number of busy servers, E[Si], in
Qi, i = 1,2 as follows

E[S1] =
c1−1

∑
i=1

π
(1)
i ie+ c1

∞

∑
j=c1

π
(1)
j e

=
c1−1

∑
i=1

π
(1)
i ie+ c1

K−1

∑
j=c1

π
(1)
j e+ c1

∞

∑
j′=K

π
(1)
j′ e

=
c1−1

∑
i=1

π
(1)
i ie+ c1

K−1

∑
j=c1

π
(1)
j e+ c1

∞

∑
j′=K

π
(1)
K R j′−Ke

=
c1−1

∑
i=1

π
(1)
i ie+ c1

K−1

∑
j=c1

π
(1)
j e+ c1π

(1)
K (I−R)−1e

=
c1−1

∑
i=1

π
(1)
i ie+

(
K−1

∑
j=c1

π
(1)
j +π

(1)
K (I−R)−1

)
c1e.

(11)

E[S2] =
c2−1

∑
i=1

π
(2)
i ie+ c2

Nmax

∑
j=c2

π
(2)
j e

=

(
K−1

∑
n=0

π
(1)
n +π

(1)
K (I−R)−1

)
g,

(12)

where g is a (Nmax +1)×1 column vector given by

g = (0,1,2, . . . ,c2−1,c2, . . . ,c2)
T .

Denote by E[Ti] the throughput of Qi, i = 1,2, that are

E[T1] = E[S1]×µ1

=

(
c1−1

∑
i=1

π
(1)
i ie+ c1

∞

∑
j=c1

π
(1)
j e

)
µ1

< c1

∞

∑
i=1

π
(1)
i eµ1 = c1µ1, (13)

E[T2] = E[S2]×µ2. (14)

Then the throughput of the system is given by

E[T ] = E[T1]+E[T2]. (15)

Furthermore, due to Little’s law, we obtain the mean
response time E[Ri] in Qi, i = 1,2, respectively, as
follows

E[Ri] =
E[Li]

E[Ti]
, for i = 1,2. (16)

The mean system response time is given by

E[R] =
E[L]
E[T ]

. (17)

For reference, we compare with a baseline model,
i.e., two parallel queues without the threshold policy.
In the absence of threshold policy (K = 0), our
system becomes a system of an M/M/c1 queue and
an M/M/c2/Nmax queue.

According to Medhi (2002), the probability of zero
customers in the system in Q1 is calculated by

π
(1)
o =

(
c1−1

∑
n=0

(λ1/µ1)
n

n!
+

(λ1/µ1)
c1

c1!(1−λ1/(c1µ1))

)−1

.

The condition for the stability of Q1 is λ1/(c1µ1)< 1.
The mean number of customers in the system in Q1 is
given by

E[L1] =
λ1

µ1
+

ρ1

1−ρ1
C
(

c1,
λ1

µ1

)
, (18)

where ρ1 =
λ1

c1µ1
, and C

(
c1,

λ1
µ1

)
= (λ1/µ1)

c1

c1!(1−λ1/(c1µ1))
π
(1)
0

is referred to as Erlang’s C formula.

Then, the mean response time in Q1 can be obtained
by

E[R1] =
E[L1]

λ1
. (19)

According to Shortle et al. (2018), the probability of
zero customers in the system in Q2 is given by

π
(2)
o =

c2−1

∑
n=0

ρn
2

n!
+

(
ρ

c2
2

c2!

)
(Nmax− c2 +1)

−1

,

for
ρ2

c2
= 1, and
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π
(2)
0 =

[
c2−1

∑
n=0

ρn
2

n! +

(
ρ

c2
2

c2!

)(
1−
(

ρ2
c2

)Nmax−c2+1

1− ρ2
c2

)]−1

,

for
ρ2

c2
6= 1, where ρ2 =

λ2

µ2
.

Denote by PNmax the blocking probability of Q2 which
means that Q2 can satisfy atmost Nmax flow units, then

PNmax =
π
(2)
0 ρ

Nmax
2

cNmax−c2
2 c2!

.

The mean number of customers in the system in Q2 is
calculated as

E[L2] =
π
(2)
o ρ

c2
2

(
ρ2
c2

)
c2!
(

1− ρ2
c2

)2

[
1−
(

ρ2

c2

)Nmax−c2+1

−
(

1− ρ2

c2

)
(Nmax− c2 +1)

(
ρ2

c2

)Nmax−c2
]

+ρ2(1−PNmax).

(20)

The mean system response time in Q2 can be obtained
by

E[R2] =
E[L2]

λ2(1−PNmax)
. (21)

We obtain the mean system response time E[R] in the
case without threshold policy as follows

E[R] =
E[L1]+E[L2]

λ1 +λ2(1−PNmax)
. (22)

4 NUMERICAL INSIGHTS

This section presents several numerical experiments
of the results obtained in Section 3 to find insights
into the performance of our system. For fixed λ1 =
20, λ2 = 30, µ1 = 8, µ2 = 12, c1 = 4, c2 = 3, and
Nmax = 50, we show how the performance measures
change according to the thresholds (K,N). Under the
same settings, we also compute these performance
measures in the case without threshold policy (K = 0)
using the classical M/M/c and M/M/c/m models.

Figure 2 reflects the changes in the mean response
time of class-1 customers against Q2’s threshold. The
mean response time of class-1 customers decreases
when N goes up to a specific value for a fixed K, then
remains unchanged as N continues to increase. Mean-
while, Figure 3 shows the exact opposite trend in the
response time of class-2 customers. It is noticeable
that the mean amount of time that class-2 customers
spend in the system depends more on N than on K.

Figure 2: The mean response time of class-1 customers
against the Q2’s threshold.

Figure 3: The mean response time of class-2 customers
against the Q2’s threshold.

Figure 4: The mean system response time against the Q2’s
threshold.

Figure 4 indicates that the mean system response
time E[R] drops as N goes up to certain thresholds,
then rises again sharply before remaining unchanged
when N is at very high values. For small values of N,
E[R] goes down as N increases and K decreases. This
occurs since the servers in Q2 may remain idle even if
there are waiting customers in Q1, including class-2
customers, leading to an increase in the mean system
response time. In this experiment, E[R] reaches the
minimum at 0.1374 when the value of N is 4, and K
is 4. Moreover, the mean response time of the system
without threshold policy is 0.1808, which is higher
than it is in the case of the optimal threshold policy.

For fixed K = 4 and N = 3,9, we show the changes
in the performance measure E[R] against λ1 and λ2,
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while all other parameters remain unchanged. We
also illustrate the changes in these performance mea-
sures against λ1 and λ2 in the absence of threshold
policy, thereby finding that a non-threshold policy is
not optimal for our system. We recall that the stability
condition in both cases with and without the threshold
policy is given by λ1 < c1µ1 = 32.

Figure 5: The mean system response time E[R] against the
arrival rate of class-1 customers (λ2 = 30).

Figure 5 illustrates how the mean system response
time E[R] changes according to the arrival rate of
class-1 customers. The mean system response time is
large when class-1 customers arrive more frequently,
especially as λ1 is asymptotic to the value c1µ1. The
mean system response time is highly sensitive to these
values of λ1, while changes in N and K at that time
have no significant effect on E[R]. Therefore, as the
arrival rate of class-1 customers approaches the stable
threshold, increasing the number of servers in Q1 is
required to reduce the mean system response time.

Figure 6: The mean system response time E[R] against ar-
rival rate of class-2 customers (λ1 = 20).

Figure 6 shows the changes in the mean system
response time E[R] against λ2 in both cases with and
without the threshold policy. The performance mea-
sure E[R] in these two cases shares the same trend
when λ2 changes. It can be seen that applying the
threshold policy significantly reduces the mean sys-
tem response time as the arrival rate of class-2 cus-
tomers is large enough. If class-2 customers arrive
more frequently, the mean system response time is

large, especially within a specific range of values of
λ2. However, when λ2 reaches a certain threshold,
the mean system response time E[R] will stop grow-
ing because the capacity of Q2 is limited to Nmax.

Figure 7: Throughput of Q1 against arrival rate of class-2
customers (λ1 = 20).

Figure 7 indicates the impact of the arrival rate
of class-2 customers on the throughput of Q1. In the
case of the threshold policy, the throughput E[T1] re-
mains unchanged at λ1 when λ2 goes up to certain
thresholds, then rises sharply as λ2 continues to in-
crease before remains stable at a value of c1µ1 (see
the condition (13)) when class-2 customers arrive at
very high rates.

Figure 8: Throughput of Q2 against arrival rate of class-1
customers (λ2 = 30).

Figure 8 reflects the changes in the throughput of
Q2 against λ1 when λ2 is fixed. Under the threshold
policy, the throughput of Q2 closely approaches the
value of λ2 when λ1 is asymptotic to the value of c1µ1.
For large values of N, the throughput of Q2 is insen-
sitive to the arrival rate of class-1 customers. Obvi-
ously, with the threshold policy, the throughput of Q1
is greater than or equal to λ1, whereas the through-
put of Q2 is less than or equal to λ2 because class-
2 customers can transfer from Q2 to Q1. In the ab-
sence of threshold policy, the throughputs E[T1] and
E[T2] equal the arrival rates of class-1 and class-2 cus-
tomers, respectively.
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5 CONCLUSIONS

This paper has considered the routing and staffing
problems of an administrative agency in an N-design
model that serves two types of customers. Using the
matrix analytic method, we have derived the steady-
state probabilities and the performance measures. We
then have determined the optimal threshold values ac-
cording to the system parameters. We have found
that the threshold policy is highly effective when the
arrival rate of class-1 customers is low and the ar-
rival rate of class-2 customers is high. When λ1 ap-
proaches the critical value satisfying the stability con-
dition or λ2 is relatively small, increasing the num-
ber of servers combined with changing the threshold
policy is the solution to reduce the mean system re-
sponse time. As a result, we have provided a ba-
sis for reallocating resources when the customer ar-
rival rate changes. Our findings could be used in
decision-making, managing resources in administra-
tive services, and related applications. It will be help-
ful to expand the analysis of our model to the case
when both capacities are infinite.
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