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Abstract: It is important to detect negative behavior of animals for breeding in order to improve their health and welfare. 
In this work, AI is employed to assist individual animal detection and tracking, which enables the future 
analysis of behavior for individual animals. The study involves animal groups of pigs and laying hens. First, 
two state-of-the-art deep learning-based Multi-Object Tracking (MOT) methods are investigated, namely 
Joint Detection and Embedding (JDE) and FairMOT. Both models detect and track individual animals 
automatically and continuously. Second, a weighted association algorithm is proposed, which is feasible for 
both MOT methods to optimize the object re-identification (re-ID), thereby improving the tracking 
performance. The proposed methods are evaluated on manually annotated datasets. The best tracking 
performance on pigs is obtained by FairMOT with the weighted association, resulting in an IDF1 of 90.3%, 
MOTA of 90.8%, MOTP of 83.7%, number of identity switches of 14, and an execution rate of 20.48 fps. For 
the laying hens, FairMOT with the weighted association also achieves the best tracking performance, with an 
IDF1 of 88.8%, MOTA of 86.8%, MOTP of 72.8%, number of identity switches of 2, and an execution rate 
of 21.01 fps. These results show a promising high accuracy and robustness for the individual animal tracking. 

1 INTRODUCTION 

While the demand for animal products increases, the 
people’s attention for animal health and welfare is 
growing accordingly. Negative social interactions 
among animals, such as tail-biting in pigs and 
smothering in laying hens, threaten animal lives and 
reduce feeding efficiency, thereby increasing the 
ecological footprint of food production (Matthews, et 
al., 2016). Early detection of such negative behavior 
and interventions are essential, but challenging for 
farm staff due to changes over time and variances in 
environments, especially in large-scale farms 
(Matthews, et al., 2016), (Matthews, et al., 2017). The 
objective of the animal science community is to 
develop a one-health solution that jointly links human, 
animal, and environmental health (Kahn, 2017). To 
facilitate efficient breeding for animals with minimal 
occurrence of negative behavior, continuous 
monitoring of animals at a large scale is desirable for 
identifying damaging behavior. However, most 
animals are raised in groups, which causes 

inconvenience for observing individual animals. 
Therefore, automated and continuous individual 
tracking is needed.  

In the past few years, several methods have been 
developed for automated animal monitoring. Radio 
frequency identification device (RFID) sensors have 
been widely used for tracking animals, which require 
the installation of RFID antennas at every location of 
interest in the housing environment, which can be 
deployed with tags, such as an ear tag for each pig 
(Kapun, et al., 2018), (Maselyne, 2016). However, 
sensors have risks of being destructed by the active 
behavior of animals. In addition, for large-scale 
commercial farms, RFIDs are expensive concerning 
the installation and retrieval of tags. Another rising 
field for animal tracking is based on videos, which are 
contactless, and can be more simply implemented (e.g.  
low-cost cameras) and maintained than RFID systems. 
Several studies have investigated the three-
dimensional Kinect cameras monitoring from the top 
view with depth sensors (Mallick, et al., 2014), (Kim, 
et al., 2017). They are capable of monitoring animals 
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through generated point clouds, while the range of 
depth sensors is too limited to address the entire area 
of a big pen (Matthews, et al., 2017). Additionally, the 
installation of top-view cameras could be difficult for 
large-scale farms. Therefore, the most common 
methods for monitoring animals are based on two-
dimensional RGB cameras.  

Recent advances in Artificial Intelligence (AI) 
provide radical new opportunities to monitor animal 
behavior through inexpensive and scalable strategies. 
The state-of-the-art Multi-Object Tracking (MOT) 
methods in deep learning include both two-stage and 
one-shot systems as shown in Figure 1. Two-stage 

 
Figure 1: Layouts of both two-stage and one-shot tracking 
methods (Wang, et al., 2020). 

methods firstly employ detectors, such as Faster R-
CNN (Ren, et al., 2015) or YOLOv3 (Redmon et al., 
2018) to localize objects in video frames, and then 
extract these features by an embedding model, such 
as Fast R-CNN (Girshick, 2015) for embedding 
learning. These two computations can adopt the most 
suitable model individually, achieving good perform-
ance on public pedestrian datasets (Wang, et al., 
2020). However, separate detection and tracking 
tasks incur critical challenges on computation 
efficiency, while the execution time of embedding 
increases as the number of identities grows, which 
implies that two-stage methods are not optimal for 
real-time MOT in practice. To reduce computing time 
and enhance tracking efficiency, one-shot methods 
are proposed. Compared with two-stage tracking 
methods, one-shot methods combine object detection 
and embedding feature learning into a single deep 
network to reduce computation cost. In this way, 
detected objects and related appearance embeddings 
are learnt simultaneously in the network. The 
execution of the entire MOT procedure draws more 
attention than focusing on an association step only.  

Our research aims at developing a 2D camera-
based solution that leverages the state-of-the-art deep 
learning techniques for the automated detection and 
tracking of every individual pig/laying hen that is 
kept in large groups. In this work, we propose two 
one-shot video-based automated approaches for 
detecting and tracking individual pigs and laying 
hens. The first method is based on joint detection and 
embedding (JDE) network (Wang, et al., 2020), 
which is based on a one-shot concept of joint 
detection and tracking procedure. The second method 
FairMOT (Zhang, et al., 2020) is a network derived 
from the JDE by adding a re-ID embedding branch 
and addressing fairness issues to improve tracking 
performance. The proposed methods are evaluated 
using state-of-the-art metrics that provide multiple 
perspectives for assessing MOT (Heindl, 2017). 

Our contributions to the improvement of the 
datasets are: (1) a pig dataset is manually annotated 
on 3,706 video frames including pigs with and 
without sprayed color marks, and (2) a laying hen 
dataset is created, containing 1,124 annotated frames 
of both white and brown laying hens. We apply two 
state-of-the-art methods to track individual objects 
for the two types of animals. Further contributions 
from the algorithmic side are as follows. An online 
association strategy is proposed based on animal 
characteristics, which efficiently reduces identity 
switches and enhances the tracking performance, for 
both JDE and FairMOT methods. Moreover, 
regarding the JDE, new clusters of anchor boxes are 
also learnt for each specific animal dataset, and the 
object numbers are constrained on each frame. 

The sequel of this paper is as follows. Section 2.1 
describes the data acquisition workflow, followed by 
Section 2.2 on the annotation method. Section 2.3 
introduces the network architecture of the proposed 
methods. Section 2.4 describes the evaluation 
metrics, enabling visualization of the tracking 
performance. Section 3 illustrates experimental 
results, divided into Section 3.1 for pigs and Section 
3.2 for laying hens. Section 4 discusses the findings 
of problems and the relevant future work accordingly. 
Section 5 discusses and concludes this paper. 

2 METHODS 

2.1 Dataset Description 

2.1.1 Pig Dataset 

All video recordings of pigs are collected at Volmer 
farm, Topigs Norsvin, Germany. Figure 2(a) shows a 

VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications

70



sample frame illustrating the scene of the video 
recording. Pigs from in total eight pens are recorded, 
where each pen contains 10 or 11 pigs with or without 
sprayed color marks on the bodies. The group 
composition of the pigs usually remains unchanged 
unless situations of for example, sickness or injury 
occur. Most pens are set up with one single camera, 
while several remaining pens are equipped with 
double cameras. All the cameras film from the side 
views towards the pen’s ground, covering the entire 
pen. The cameras used for recording are LOREX 
4KSDAI168 with an image resolution of 1,280 ×720 pixels, and a frame rate of 15 fps. Pig videos are 
recorded continuously on a 24/7 basis, and each video 
is automatically generated and stored per hour. 

2.1.2 Laying Hen Dataset 

The videos of laying hens are collected at the farm of 
Utrecht University, the Netherlands. Figure 2(b) 
shows a sample frame illustrating the scene of the 
video recording. Laying hens from in total 24 pens are 
recorded, where each pen contains 8-10 laying hens. 
White and brown chickens are separated in different 
pens. The grouping of laying hens usually remains 
unchanged unless situations of e.g., sickness or injury 
occur. All pens are equipped with double cameras. 
The cameras film from the top and side views towards 

the pen’s ground, coving the entire pen. The cameras 
used for recording are RLK8-800B4 with an image 
resolution of 2,304×1296 pixels, and a frame rate of 
15 or 20 fps. Laying hens videos are recorded 
continuously during daytime.  

2.2 Data Annotation 

Video segments showing active animal movements 
are selected, followed by annotating the animal 
location in each video frame with consistent identity 
association for every animal. Computer Vision 
Annotation Tool (CVAT) (Intel, 2018) is used to label 
object location and also the situation of occluded 
objects. CVAT supports to save the frame ID, 
identity, bounding box location and size of the object. 

2.3 Network Architecture Overview 

2.3.1 Joint Detection and Embedding (JDE) 

JDE network adopts DarkNet-53 (Redmon, et al., 
2018) as the backbone network. It is based on Feature 
Pyramid Network (FPN) (Lin, et al., 2017), which 
provides possibilities to predict from multiple scales. 
As shown in Figure 3, at the beginning, the input 
video frames are transmitted forward through the 
 

 
Figure 2: Sample frames for (a) pigs recorded at Volmer farm, Topigs Norsvin, Germany, and (b) laying lens recorded at the 
farm of Utrecht University, the Netherlands. 

 
Figure 3: Explanation of JDE network architecture and prediction heads (Wang, et al., 2020). 
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backbone to obtain feature maps at three scales of 
down-sampling of 1/32, 1/16 and 1/8. The feature 
map, which supplies multi-task learning: box 
classification, box regression and embedding learning. 
The detection branch of JDE is based on the standard 
Region Proposal Network (RPN) (Ren, et al., 2015) 
map with the smallest size is up-sampled and fused 
with the feature map from the second smallest scale 
by a skip connection, similarly for other scales. 
Prediction heads are added to the fused feature maps 
at all scales. Each prediction head includes several 
convolutional layers and outputs a dense prediction 
with two modifications. First, we apply k-means 
clustering to the training dataset to recalculate 12 
anchors, where each scale has 4 anchors. For the 
widely used pedestrian datasets in MOT, a filter 
condition is normally applied to constrain the object 
aspect ratio of 1:3 (width : height). We remove this 
constraint because more deformations are expected in 
the animal datasets. Second, we set the IoU threshold 
to distinguish foreground from background regions. 
In this way, false alarms can be suppressed especially 
for occluded cases. As depicted in Figure 3, the 
detection branch is covering two tasks: 
foreground/background classification with a cross-
entropy loss, and bounding-box regression with a 
smooth L1 loss. 

The learning procedure of appearance embedding 
in JDE is to derive a small distance measure for 
detected bounding boxes with the same identity, 
while bounding boxes with different identities have a 
large distance. JDE compares three types of loss 
functions to achieve this goal. The triplet loss 
(Schroff, et al., 2015) is feasible, but the training is 
unstable and its convergence is slow. A smooth upper 

bound of triplet loss (Sohn, 2016) is presented to 
alleviate issues caused by the triplet loss. It is similar 
to the cross-entropy loss, where all negative classes 
participate in the loss computation. However, the 
smooth upper bound of the triplet loss only considers 
sampled negative classes in the mini-batch. The 
experimental results with pedestrian datasets show 
that the cross-entropy loss gives the best results. 
Hence, the appearance embedding learning of JDE is 
based on using cross-entropy. 

The way for combining detection loss and 
embedding loss is automatic loss balancing (Kendall, 
et al., 2018), based on the concept of task-
independent uncertainty, which is calculated by 𝐿௧௢௧௔௟ ൌ 12 ൬ 1𝑒௪భ 𝐿ௗ௘௧௘௖௧௜௢௡ ൅ 1𝑒௪మ 𝐿௘௠௕௘ௗௗ௜௡௚  ൅  𝑤ଵ ൅  𝑤ଶ ൰ (1)

where w1 and w2 are learnable parameters. 
JDE adopts a simple and fast online association 

algorithm. Each tracklet consists of an appearance 
state and a motion state. The appearance affinity 
matrix is calculated by cosine similarity and the 
motion affinity matrix is computed using the 
Mahalanobis distance. A buffer pool is set for 
potential tracklets to the following association. For 
each frame, there are computations between all 
detections and tracklets in the buffer pool. The 
Hungarian algorithm (Kuhn, 1955) solves the linear 
assignment to output matched tracks, unmatched 
tracks and detections. A Kalman filter (Welch, et al., 
1995) is used to update and predict the locations in 
the current frame from the existing tracklets. 

Improved Re-identification Association: 
Figure 4 describes the workflow of an online 
association strategy. This procedure has three 
 

 
Figure 4: The online association strategy deployed both in JDE and FairMOT. We improve the second association with the 
weighted IoU distance and embedding distance with fused motion, instead of only considering the IoU distance at the second 
association in JDE and FairMOT. 
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Figure 5: Explanation of the FairMOT (Zhang, et al., 2020) network architecture and prediction heads. 

 
Figure 6: Comparison between (a) anchor-based (JDE) and 
(b) anchor-free method (FairMOT) (Zhang, et al., 2020). 

association steps in total. The first association is 
related to the embedding distance with fused motion. 

After calculating by the Hungarian algorithm 
(Kuhn, 1955), the unmatched tracks and detections 
are further imported to the second association. We 
introduce an improved strategy, which considers the 
weighted distance between the IoU and fused 
embedding with motion, instead of only relying on 
the IoU distance after the first embedding comparison. 
Because animal behavior is faster and more 
deformable than pedestrians, the comparison of 
appearance embeddings is more reliable. In the third 
ID association step, the IoU distance is adopted to 
handle the unconfirmed tracks, which are usually 
tracks with only one initial frame. A buffer pool is 
used for storing lost tracks, and the tracks are 

removed when they have been lost for more than a 
certain frame count (threshold). Finally, the outputs 
combine all followed tracks, activated tracks and 
refined tracks. 

In addition, we present a way to limit object 
numbers in each frame by Non-Maximum 
Suppression (NMS) (Neubeck, et al., 2006). 
According to the amount of objects for tracking, we 
keep the same amount of NMS indices. 

2.3.2 FairMOT 

The backbone network used in FairMOT is ResNet-
34, which trades-off tracking performance and 
computing time. To fuse multi-layer features like JDE, 
a developed version of Deep Layer Aggregation 
(DLA) (Zhou, et al., 2019) is attached to the backbone 
as shown in Figure 5. The development adds more 
skip connections between multiple scales, which is 
similar to the FPN. Moreover, there are deformable 
convolution layers in all up-sampling stages, which 
enables dynamic adjustment among object scales and 
poses. The entire network is called DLA-34. 

Compared with JDE, FairMOT addresses three 
unfair issues caused by anchors, features, and feature 
dimensions. Figure 6 illustrates the unfairness caused 
by the anchor-based method in JDE. As shown in 
Figure 6(a), all active anchors around the object 
center are considered as candidates of Re-ID features. 
These adjacent anchors have high possibilities to be 
confirmed as the same identities if their IoU value is 
large enough, which results in suboptimal extracted 
features. For instance, Figure 6(a) shows that three 
anchors are predicted as the same identity. FairMOT 
solves this unfairness by extracting the Re-ID feature 
only from the center of the object (see Figure 6(b)). 
In addition, FairMOT improves the setting of the 
feature dimension, while the performance is higher 
when the network learns lower-dimensional features. 
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The detection module in FairMOT is based on the 
CenterNet, but also combined with anchor-free 
methods. It leaves out the steps for computing clusters 
from all bounding boxes. As can be observed in Figure 
5, three parallel heads contribute to the detection 
branch. The heatmap head predicts the locations of the 
object centers with a focal loss. The box-offset head 
and the box-size head are responsible for more accurate 
localization and estimating the height and width of the 
target box, optimized by the L1 loss. 

As shown in Figure , FairMOT introduces a re-ID 
branch to generate object features, aiming at 
distinguishing different objects. The re-ID features 
are extracted from the feature map, which are derived 
from a convolution layer with 128 kernels based on 
the backbone network. 

The automated loss balancing and online 
association strategy in FairMOT are the same as used 
in the JDE network. We explore a weighted strategy 
in the FairMOT approach, which is expected to 
reduce the identity switches during tracking. 

2.4 Evaluation Metrics 

The proposed methods are evaluated using the metrics 
derived from the MOT challenge based on a pedestrian 
dataset (Dendorfer, et al., 2019), combined with 
evaluation metrics used in JDE (Wang, et al., 2020) 
and FairMOT methods (Zhang, et al., 2020), 

(Bernardin, et al., 2008). These metrics are employed 
and listed in Table 1 and supplemented with the IDF1 
metric (Ristani, et al., 2016) to evaluate the overall 
tracking performance. Table 1 illustrates all terms for 
evaluating MOT systems. The upward arrow means a 
higher value of this term is desired and the downward 
arrow indicates that a result of a lower value is better.  

Table 1: Evaluation metrics for the proposed methods. 

Metric Description 

MOTA↑ 

Multi-Object Tracking Accuracy. 
This measure combines three error 
sources: false positives, missed 
targets, and identity switches. 

MOTP↑ 

Multi-Object Tracking Precision. 
The misalignment between the 
annotated and the predicted bounding 
boxes. 

MT↑, PT, ML↓ Number of mostly tracked, partially 
tracked, and mostly lost trajectories. 

IDF1↑ 

ID F1 score. The ratio of correctly 
identified detections over the average 
number of ground-truth and 
computed detections. 

IDs↓ Number of identity switches. 

FPS↑ Runtime, frame per second. 
 

Table 2: Summary of training data information for pigs. 

Rec. date Sprayed marks  No. of pens No. of identities No. of frames No. of bounding boxes 

20200820 no 8 87 1,737 

36,019 

20201205 yes 6 66 600 
20210105 yes 6 65 561 
20210205 yes 3 33 303 
20210305 yes 1 10 101 

Overall with:without 
= 10:11 24 261 3,302 

Table 3: Summary of testing data information for pigs. 

Rec. No. Rec. date Sprayed 
marks 

No. of 
identities 

Duration 
(min : s) 

No. of 
frames 

Bounding 
boxes Conditions 

R1_pig 20210205 yes 11 3:20 101 1,111 Limited active movements; 
Pigs are not too close to each other

R2_pig 20210415 yes 11 3:20 101 1,111 
Partial active movements; 
one pig is mostly occluded in a few 
seconds

R3_pig 20210420 no 11 3:20 101 1,111 Partial active movements; 
some pairs of pigs are very close

R4_pig 20210420 no 11 3:20 101 1,111 Partial active movements; 
several pigs are stacked together
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Table 4: Comparison between the original association method and the proposed weighted strategy on the pig dataset. 

Testing Method Association IDF1↑ MOTA↑ IDs↓ 

All testing 
data 

JDE 
Original 82.0 90.1 54 

Weighted 82.9 89.9 36 

Fair- 
MOT 

Original 89.7 90.8 18 
Weighted 90.3 90.8 14 

Table 5: Comparison of tracking results from JDE and FairMOT on the pig testing set. 

Method Test recording IDF1↑ MOTA↑ MOTP↑ GT MT↑ PT ML↓ IDs↓ FPS↑ 

JDE 

R1_pig 82.8 93.5 85.5 11 11 0 0 7 15.98 
R2_pig 88.9 92.0 79.1 11 11 0 0 5 15.83
R3_pig 81.5 89.7 78.4 11 11 0 0 6 15.93
R4_pig 78.4 84.4 78.8 11 9 2 0 18 15.70
Overall 82.9 89.9 80.5 44 42 2 0 36 15.86

FairMOT 

R1_pig 91.2 94.4 87.8 11 11 0 0 2 20.57 
R2_pig 94.3 90.5 82.2 11 10 1 0 1 20.41 
R3_pig 88.1 87.3 81.8 11 10 1 0 4 20.50 
R4_pig 87.8 91.1 82.7 11 11 0 0 7 20.42
Overall 90.3 90.8 83.7 44 42 2 0 14 20.48

 

3 EXPERIMENTAL RESULTS 

3.1 Pig Experiments 

3.1.1 Dataset Description 

Our manually annotated datasets of pigs are divided 
into two parts, which are the training dataset 
described in Table 2, and the testing dataset from 
Table 3. Pig videos are recorded at a frame rate of 15 
fps. A frame step of 30 frames (2 seconds) is taken 
during annotation to output one frame. All images are 
selected from daytime in an uncontrolled farming 
environment. The training dataset shown in Table 2 
consists of 3,302 frames including 36,019 annotated 
bounding boxes from 24 pens in 5 days, of which the 
recording dates are separated from each other for at 
least one month. The frame ratio between pigs 
with/without sprayed color marks is about 10/11. 
Four videos with the same length and the same 
number of pigs are used for testing as depicted in 
Table 3. For evaluating the generalizability of our 
models, videos in various conditions are selected 
according to the activity levels of pig movements, 
occlusion or occurrence of group stacking. 

3.1.2 Implementation Details 

The backbone network of JDE is DarkNet-53 (Redmon, 
et al., 2018). Twelve clusters of anchor boxes are 

derived from all training bounding boxes by a k-means 
clustering method. Three key parameters are 
determined - learning rate, batch size and epoch by 
smartly choosing the training parameters based on 
controlled experiments, to yield the best convergence 
and the highest accuracy. The training model is based 
on a learning rate of 0.001, optimizing under standard 
SGD. The training is performed for 30 epochs with a 
batch size of unity. The input video frames are resized 
to 1,088 × 608 pixels. 

The backbone network of FairMOT is DLA-34 
(Zhang, et al., 2020). The initialized weights are pre-
trained on the pedestrian dataset (Zhang, et al., 2020) 
by the DLA-34 network. The training model starts 
with a learning rate of 0.0001, optimized with the 
Adam optimizer. The training is performed for 50 
epochs with a batch size of 2. The input video frames 
are also resized to 1,088 × 608 pixels. 

All the experiments are carried out on a GeForce 
GTX 1080 GPU and an Xeon E5-1650 v4 CPU. 

3.1.3 Results on Improving re-ID 

We assess the models on all testing data with JDE and 
FairMOT methods. Table 4 shows a comparison 
between the original association method and the 
proposed weighted association strategy, where the 
results of IDF1, MOTA and ID switches are shown. 
The value of MOTA decreases by 0.2 percent by the 
weighted association. However, the weighted 
strategy outperforms the original association, as 
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shown by the other two metrics. The overall results of 
FairMOT are better than JDE, especially with respect 
to identity switches. 

Table 4 demonstrates that the weighted 
association is effective. Hence, the following 
evaluations are all on the models with the weighted 
association step. Evaluation metrics on separate test 
recordings are then calculated (see Table 5). Most 
results show that FairMOT outperforms JDE, 
especially in terms of the execution time (FairMOT 
executes about 5 fps faster than JDE). The average 
values of IDF1 and MOTA are increased relatively by 
7.4% and 0.7%. Another essential term in MOT refers 
to the identity switches, where the obtained result of 
FairMOT is lower than half of that achieved by JDE.  

3.2 Laying Hen Experiments 

3.2.1 Dataset Description 

The laying hen dataset includes the training dataset 
(see Table 6 for details) and the testing dataset (see 
Table 7 for details). Laying hen videos are recorded 
at a frame rate of 15 or 20 fps. A frame step of 15 or 
20 frames (1 second) is chosen to output one 
annotated frame. All images are selected from 
daytime with uncontrolled environmental conditions. 
The training dataset as shown in Table 6 consists of 
2,563 frames including 21,708 annotated bounding 
boxes from 8 pens in 4 days. The frame ratio between 

white/brown laying hens is around 7/10. Two videos 
with the same length and the same number of laying 
hens are used for testing, as shown in Table 7. For 
evaluating the generalizability of the proposed 
models, videos in different conditions are selected 
according to feather color, activity levels of laying 
hen movements and occlusion occurrences. 

3.2.2 Implementation Details 

The experimental settings of laying hen training on 
JDE are similar to the training pig data, except for the 
learning rate, which is set to 0.0001. 

The training procedure for the laying hen dataset 
on FairMOT is also similar to training pig data, but 
performed for 100 epochs. 

3.2.3 Results on Improving re-ID 

The proposed models are evaluated on the testing data. 
Table 8 provides a comparison between the original 
association method and the proposed weighted 
association strategy, where the results illustrate the 
values of IDF1, MOTA and ID switches. The results 
demonstrate that the weighted strategy is feasible to 
improve the tracking results for both models.  
The performances of two tracking methods are 
improved by applying the weighted association, as 
shown in Table 8. Hence, the following evaluations 
are based on the models with the weighted association  
 

Table 6: Summary of training data property for the laying hens. 

Rec. date Color No. of pens No. of identities No. of frames No. of bounding boxes 
20210308 brown 1 10 288 

21,708 
20210318 white, brown 2 88 1,085 
20210321 white, brown 2 19 196 
20210720 brown 3 35 994 

Overall white:brown= 7 : 10 8 152 2,563 

Table 7: Summary of testing data property for laying hens. 

Rec. No. Rec. date Color No. of 
identities 

Duration 
(min : s) 

No. of 
frames 

Bounding 
boxes Conditions 

R1_hen 20210318 white 9 2:30 151 1,359 Mostly active movements;  
hens fly several times. 

R2_hen 20210720 brown 9 2:30 151 1,359 Partial active movements; 
One hen is completely occluded.

Table 8: Comparison between original association method and the proposed weighted strategy on the laying hen dataset. 

Testing Method Association IDF1↑ MOTA↑ IDs↓ 

All testing 
data 

JDE Original 83.7 84.7 5 
Weighted 83.1 85.1 5 

FairMOT Original 87.1 86.5 4 
Weighted 88.8 86.8 2 
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Table 9: Comparison of tracking results from JDE and FairMOT on laying hen testing set. 

Method Test recording IDF1↑ MOTA↑ MOTP↑ GT MT↑ PT ML↓ IDs↓ FPS↑ 

JDE 
R1_hen 84.0 85.5 77.6 9 9 0 0 2 18.16
R2_hen 82.2 84.8 83.7 9 8 0 1 3 18.16 
Overall 83.1 85.1 80.6 18 17 0 1 5 18.16

FairMOT 
R1_hen 85.1 87.2 78.5 9 9 0 0 2 21.01 
R2_hen 92.8 86.4 77.5 9 8 0 1 0 21.01 
Overall 88.8 86.8 72.8 18 17 0 1 2 21.01 

 
algorithm. The evaluation metrics on separate test 
recordings are obtained (see Table 9), where for most 
metrics, FairMOT outperforms JDE, especially in 
terms of the execution time (FairMOT is about 3 fps 
faster than JDE). The average values of IDF1 and 
MOTA are relatively increased by 5.7% and 1.7%. 
Again, the number of identity switches from 
FairMOT is less than half of that with JDE. Especially, 
FairMOT achieves zero identity switches for the 
second recording. It can be observed that the 
execution time of FairMOT is lower than for JDE, 
which is beneficial for real-time multi-object tracking. 
If more data is added, we still expect similar results, 
but with more reliability in the comparison.  

4 DISCUSSION AND 
CONCLUSION 

In this paper, we investigate two state-of-the-art 
automated multi-object tracking methods on animal 
datasets. Manual annotation of two types of animals 
are collected: 3,706 frames of pigs with / without 
sprayed body marks, and 2,865 frames of white / 
brown laying hens. The models are evaluated on 4 pig 
videos, each lasting 3 minutes and 20 seconds, and 2 
laying hen videos, each lasting 2 minutes and 30 
seconds. Each recording has different challenging 
conditions such as occlusion, active and high-speed 
movements. In this way, the generalization and 
robustness of the tracking models are evaluated. The 
execution time on JDE is 15~18 fps, while FairMOT 
can achieve more than 20 fps. We have proposed a 
weighted association strategy to improve the 
association algorithm of animal re-ID, which 
increases the performance of IDF1 by 1.7% at most, 
MOTA by 0.4% at most and reduces the identity 
switches by 18 at most. 

 Overall, the evaluation metrics of JDE on the pig 
dataset result in an IDF1 of 82.9%, MOTA of 89.9%, 
MOTP of 80.5%, number of identity switches of 36 
and a rate of 15.86 fps. FairMOT deployed on the pig 
dataset results in an IDF1 of 90.3%, MOTA of 90.8%, 

MOTP of 83.7%, number of identity switches of 14 
and an execution speed of 20.48 fps.  

For the laying hen dataset, JDE leads to an IDF1 
of 83.1%, MOTA of 85.1%, MOTP of 80.6%, 
number of identity switches of 5 and a execution 
speed of 18.16 fps. FairMOT yields an IDF1 of 88.8%, 
MOTA of 86.8%, MOTP of 72.8%, number of 
identity switches of 2 and an execution speed of 21.01 
fps.  

Considering the manual annotation effort, the 
procedure for collecting appropriate annotation is 
rather slow. However, better performance is expected 
when training on more available data is possible. 
Considering the difference in moving speed of 
animals, we have adopted an annotation step of 2 
seconds for pigs and 1 second for laying hens to 
improve annotation efficiency. Continuous 
annotation is expected to yield a more precise 
tracking system. Additionally, our ultimate goal is to 
achieve good real-time animal tracking, so longer 
video recordings in different conditions are required 
to be annotated for both model development and more 
thorough evaluation. After achieving sufficient 
tracking performance, we will also optimize and 
trade-off the execution time of the system. 

The adopted backbone network in JDE is 
DarkNet-53 for object detection, which is based on 
the third version of YOLO. In recent years, YOLO 
has already been developed and implemented into 
Version 5. Future work will involve to incorporate the 
latest YOLOv5 into the JDE model in order to verify 
its efficiency. Similar work should also be performed 
for the FairMOT architecture. 
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