Keywords:

Abstract:

Implementing Post-quantum Cryptography for Developers

3 1e

Julius Hekkala!®2, Kimmo Halunen?3@P and Visa Vallivaara
YYTT Technical Research Centre of Finland, Kaitovayld 1, Oulu, Finland

2 University of Oulu, Faculty of Information Technology and Electrical Engineering, Oulu, Finland

3National Defence University, Department of Military Technology, Helsinki, Finland

Post-quantum Cryptography, Lattice Cryptography, C++, Programming Library.

The possibility of a quantum computer threatens modern public key cryptography. Post-quantum
cryptographic algorithms are designed to protect sensitive data and communications also against an attacker
equipped with a quantum computer. National Institute of Standards and Technology is standardizing post-
quantum algorithms that could replace currently used public key cryptographic algorithms in key exchange and
digital signatures. Lattice-based cryptography is one of the post-quantum algorithm groups with the biggest
potential. Cryptography libraries are used by developers in all kinds of different solutions, but currently the
availability of post-quantum algorithms in open-source libraries is very limited. Implementing post-quantum
algorithms into a software library involves a multitude of challenges. We integrated three lattice-based post-
quantum algorithms into a fork of Crypto++, a C++ cryptography library. We analyzed challenges in the
implementation process and the performance and security of the fork. Especially the complex mathematical
ideas behind the algorithms make implementation difficult. The performance of the algorithms was satisfactory

but analyzing the security of the implementation in more detail is needed.

1 INTRODUCTION

In the modern information society, the security of
communications and data is essential. The people
need to be able to trust that their sensitive data
remains secure in the future. Cryptography is used to
prevent adversaries from accessing this information.
Public key cryptography is commonly used to create
secure connections, e.g. in TLS (Rescorla, 2018), and
to digitally sign documents.

Public key cryptographic algorithms are often
based on mathematical problems that are thought to
be hard to solve. The most notable example of a
public key cryptographic algorithm is RSA (Rivest
et al., 1978), which is based on factoring large
numbers produced by two prime numbers. Another
very commonly used group of algorithms, elliptic
curve cryptography (ECC) (Hankerson et al., 2006),
draws their security from discrete logarithms.

Both of these problems are difficult for modern
computers, and it is easy to answer the increase
of computer performance by increasing key sizes.

https://orcid.org/0000-0002-7558-9687
@ https://orcid.org/0000-0003-1169-5920
¢ https://orcid.org/0000-0002-9638-244X

Hekkala, J., Halunen, K. and Vallivaara, V.
Implementing Post-quantum Cryptography for Developers.
DOI: 10.5220/0010786200003120

Quantum computers, on the other hand, can solve
these problems much quicker. Shor’s algorithm
can be used to solve factoring (Shor, 1997) and
discrete logarithm problems (Proos and Zalka, 2003)
in polynomial time.

If a powerful enough quantum computer is
built, the communications and data secured by
conventional means are no longer secure. Because
it is possible that in the future the attackers will
have quantum computers, it is important to prepare
well in advance. For this purpose, post-quantum
cryptographic algorithms are designed. They
use mathematical problems that are difficult for
classical as well as quantum computers. Different
standardization authorities have started standardizing
post-quantum algorithms, e.g. NIST has an ongoing
process standardizing post-quantum algorithms for
key encapsulation methods (KEM) (Shoup, 2001) and
digital signatures.!

Implementing cryptography correctly is difficult.
There are many possible mistakes that can be made
when designing and implementing cryptosystems,
which can then lead to the security of the

https://csre.nist.gov/projects/post-quantum-
cryptography

73

In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 73-83

ISBN: 978-989-758-553-1; ISSN: 2184-4356

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

whole program faltering. That is why most
programs use specific cryptographic libraries that
were implemented by experts instead of programming
the cryptographic functionality from scratch every
time.

These libraries include interfaces that make
it easier to incorporate cryptography in different
programs, and ideally prevent the misuse of the
cryptographic primitives. A clear drawback is that
the algorithms available for use are the ones that
are implemented in the library. At this time, many
of the most prominent open-source cryptographic
libraries do not offer any post-quantum algorithms.
On the other hand, developers are accustomed to
using certain libraries. Thus it is not very easy
for developers to use post-quantum algorithms in
their programs. For example, the current version
of OpenSSL? does not include any post-quantum
algorithms that are part of the NIST standardization
process.

In this paper we present experiences and findings
on implementing post-quantum cryptographic
primitives in a programming language library. We
also evaluate the performance of the implemented
primitives. The paper is organized as follows.
The second chapter shines light on post-quantum
cryptography and different post-quantum algorithms.
Then we detail the background of implementing
post-quantum algorithms in cryptographic libraries.
In fourth chapter, we present our work. Fifth
chapter showcases the results and analysis. In the
sixth chapter we discuss the results as well as any
observations made during the integration process.
Finally, seventh chapter concludes this paper.

2 BACKGROUND

Public key cryptography is an essential enabling
component in the modern information society.
It allows parties to exchange keys to securely
communicate using encrypted traffic in protocols
like TLS, and allows others to verify that a digital
signature is valid and no changes have been made to
the signed document afterwards.

Quantum computers are able to compute some
tasks more efficiently than the classical computers.
Grover’s algorithm (Grover, 1996) makes the brute-
force attack against cryptographic algorithms faster.
This effect can be negated quite easily by doubling
used key sizes in algorithms. This affects all possible
algorithms, but public key algorithms are particularly

Zhttps://www.openssl.org

74

threatened by the quantum algorithms.

Most public key algorithms are based on
mathematical problems that are deemed hard to solve
with a classical computer. These hard problems
include factoring and discrete logarithms. While
there are no known algorithms for classical computers
that would solve them efficiently, there are quantum
algorithms that solve them in polynomial time, most
notably Shor’s algorithm (Shor, 1997).

Currently there is no quantum computer powerful
enough that it would break the modern cryptographic
algorithms. Breaking 1024 bit RSA would require
about 2000 qubits, while breaking 160 bit ECC would
require about 1000 qubits (Proos and Zalka, 2003).
Google reported to have built a 53 qubit quantum
computer in 2019 (Arute et al., 2019). Very recently
IBM announced that they have developed a 127 qubit
quantum processor (Chow et al., 2021). Breaking the
algorithms is still quite far away, but if somebody is
able to develop a quantum computer with the required
amount of qubits, the currently common public key
cryptographic algorithms like RSA and ECC will be
vulnerable. Then adversaries will be able to decrypt
any new and also some old encryptions of data.

When the first quantum computer is available for
malicious adversaries, any data or communication
also sent before that might become vulnerable, as
perfect forward secrecy is not present everywhere,
e.g. older versions of TLS support ciphers without
forward secrecy. That is why it is important to prepare
for that possibility already.

2.1 Post-quantum Cryptography and
Standardization

Post-quantum cryptography contains algorithms that
run on classical computers but are specifically
designed in a way that makes them resistant against
attacks with both classical and quantum computers.
There is a multitude of different types of post-
quantum algorithms that are based on different
mathematical problems. Some of the algorithms are
based on coding theory, multivariate polynomials and
hashing. In this paper, we concentrate on lattice-based
post-quantum algorithms.

During the last years, different standardization
authorities have started making official standards for
post-quantum algorithms. NIST (National Institute of
Standards and Technology) started a standardization
process in 2017, and it is currently in the third
round. Anyone was able to submit an algorithm to
the process at the start, and from those submissions,
the first round candidates for standardization were
chosen. Each round, when the candidates were

published, researchers had chance to try to find any
weaknesses in the algorithms. Also, the submitters
were able to make improvements based on the
findings. At the end of each round, the amount of
algorithms that are candidates for standardization got
smaller.

The NIST post-quantum cryptography
standardization process involves two types of
algorithms - key encapsulation mechanism (KEM)
algorithms and digital signature algorithms. KEM
algorithms are meant to replace public key algorithms
used especially for key exchange, e.g. in TLS. They
consist of three separate parts: a key generation
algorithm, an encryption (encapsulation) algorithm,
and a decryption (decapsulation) algorithm (Shoup,
2001).

At the time of writing this, there are four KEM
algorithms and three digital signature algorithms
among the finalists, all presented in Table 1. The
KEM algorithms are Classic McEliece which is based
on Goppa codes and CRYSTALS-Kyber, NTRU and
SABER which are based on lattices. The digital
signature algorithms are CRYSTALS-Dilithium and
FALCON which are based on lattices and Rainbow
which is based on multivariate polynomials.

Table 1: The third round algorithms of the NIST post-
quantum cryptography standardization process.

Algorithm Mathematical Problem
Classic McEliece Goppa codes
CRYSTALS-Kyber Lattices
NTRU Lattices
SABER Lattices
CRYSTALS-Dilithium Lattices
FALCON Lattices
Rainbow Multivar. polynomials

2.2 Chosen Algorithms

In this paper, we present work performed with
three of the third round candidate algorithms in the
NIST standardization process. Two KEM algorithms
and one digital signature algorithm were integrated.
The chosen algorithms were CRYSTALS-Kyber (Bos
et al., 2018), SABER (D’Anvers et al., 2018) and
CRYSTALS-Dilithium (Ducas et al., 2018). All
three algorithms are based on lattice problems. The
foundation of lattice problems used in cryptography
is the Shortest Vector Problem (SVP). With some
conditions SVP is an NP-hard problem, i.e. it does not
have a deterministic solution that runs in polynomial
time (Regev and Rosen, 2006).

Regev (2005) presented a problem called LWE
(Learning with Errors) that is based on SVP. Different

Implementing Post-quantum Cryptography for Developers

variants of LWE have been introduced, e.g. Ring-
LWE (RLWE) and Module-LWE (MLWE). Kyber
and Dilithium base their security on MLWE. SABER
is based on the modular version of the Learning with
Rounding problem, which is different from LWE in
that it is deterministic.

The three algorithms are all potential standards
(Alagic et al., 2020). Since they all are based on
lattice problems, comparison between the algorithms
is more meaningful. Lattice-based algorithms have
become one of the most potential replacements for the
commonly used public key cryptographic algorithms,
as is evident by the share of lattice-based algorithms
present in the third round of the NIST standardization
process. Even though they are relatively young,
researchers are quite confident in their security.
Another upside of lattice-based algorithms is that the
key or ciphertext size is not massive, like is the case
e.g. in algorithms that are based on multivariate
polynomials.

2.3 Cryptographic Software Libraries

Cryptographic primitives are usually defined in
mathematical notation, with mathematical formulae
and operations. Implementing algorithms in a certain
programming language is always a separate process
from that with its own pitfalls. A mistake in the
implementation will result in a security flaw even
if the system is secure in theory (Lazar et al.,
2014). It can be surprisingly difficult to implement
cryptographic algorithms correctly.

That is why the general rule when needing
cryptography is that there is no need to reinvent
the wheel. There are plenty of open-source
cryptographic libraries that have implemented the
cryptographic primitives and offer a (hopefully) easy-
to-use interface for the developer to integrate them in
different programs. By using a cryptographic library
one has succesfully avoided one of the biggest pitfalls.

If one wants to use common public key
cryptographic algorithms like RSA or elliptic curve
algorithms, there is an abundance of cryptographic
libraries that implement these algorithms. On the
other hand, if one wants to secure their program
against quantum computers, options are very limited.
There are example implementations of the algorithms
and some open-source libraries that specifically
focus on post-quantum cryptography, like libogs®
developed in the Open Quantum Safe project. The
big and commonly used libraries often include very
few post-quantum algorithms, if any at all.

3https://github.com/open-quantum-safe/libogs

75

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

2.4 Dangers When using Open-source
Cryptographic Libraries

Even if an algorithm has been designed to be secure, it
does not mean that implementing or using it securely
is easy. Mistakes in the implementation phase,
misunderstandings and other mistakes undermine the
security of the algorithm.

As all cryptography is implemented by people
and people make mistakes, even high profile open-
source libraries have bugs and vulnerabilities. One of
the most well-known vulnerabilities is the Heartbleed
bug, which was a mistake in the TLS implementation
of OpenSSL and allowed adversaries to access critical
information (Durumeric et al., 2014). Variation in the
execution time of functions can lead to timing attacks,
which can be very difficult vulnerabilities to prevent
and detect (Almeida et al., 2016).

Even if the cryptographic algorithms are
implemented correctly in the library, using them is
not necessarily easy. In a study from 2014, out of
the examined vulnerabilities 17 % were caused by
mistakes made in the implementation of the library,
and 83 % were caused by mistakes in the programs
using the library, e.g. by the programs using the
library incorrectly (Lazar et al., 2014). A study from
2013 found out that in over 88 % of the examined
10 000 Android applications in the Google Play
store there was at least one mistake in the use of
cryptographic interfaces (Egele et al., 2013).

These examples prove that smart design and clear
interfaces need to be a priority when implementing
cryptographic libraries. It is quite easy to make
mistakes when using the functionality of the
cryptographic libraries. =~ A common mistake is
not using cryptographically strong random number
generators when generating randomness for an
algorithm (Lazar et al., 2014).

It is not enough that the implementation of
the cryptographic algorithm is correct and secure.
Performance of the implementation is always crucial
in real use, and has a great effect on what algorithms
will be used, especially in cases where the operations
will be performed often. In small IoT devices the
choice of algorithms is very restricted.

2.5 Challenges in Implementing
Post-quantum Cryptographic
Algorithms

In principle, implementing post-quantum

cryptographic algorithms does not fundamentally
differ from implementing any other algorithm.

76

As post-quantum algorithms run on the classical
computer, unlike quantum cryptography that runs
on a quantum computer, the challenges related to
implementing cryptographic algorithms in general
apply to implementing post-quantum algorithms.

A great challenge in implementing post-quantum
cryptography is the mathematical complexity of the
algorithms. This makes implementing the algorithm
from just the specification very difficult for an average
developer (Gaj, 2018). Currently used public key
algorithms are based on mathematical problems that
are much easier to understand.

Another challenge is the often greatly increased
key size and sometimes the ciphertext size. Table
2 presents comparison of key sizes between post-
quantum and commonly used public key algorithms.
Especially the sizes of the private keys of the
post-quantum algorithms are larger on the same
security level as traditional public key algorithms.
When implementing post-quantum cryptography on
hardware, this becomes even more important.
Because post-quantum algorithms use different
operations than e.g. RSA, optimizing the hardware
is more difficult (Gaj, 2018).

Table 2: Comparison of key sizes and ciphertext sizes of
some post-quantum and traditional public key algorithms.

Algorithm | Priv. key | Public key | Output

(bytes) (bytes) (bytes)
Kyber-512 1632 800 768
Kyber-768 2400 1184 1088
Kyber-1024 3168 1568 1568
LightSaber 1568 672 736
Saber 2304 992 1088
FireSaber 3040 1312 1472
RSA-3072 384" 384" 384
RSA-7680 960" 960" 960
RSA-15360 1920" 1920" 1920

Curve25519 251 256
* Modulo.

It is important that there are implementations of
post-quantum cryptographic algorithms in different
languages and for different problems, so that
replacing algorithms that are not quantum secure
is easier. Table 3 shows the current amount of
implemented asymmetric post-quantum algorithms
in some of the most commonly used open-source
libraries. ~ Of the algorithms in the table not
mentioned before, XMSS is a hash-based post-
quantum signature scheme and NewHope is a lattice-
based KEM algorithm that was removed from the
NIST standardization process after the second round.

Many of the largest open-source cryptographic

Table 3: Availability of post-quantum asymmetric
algorithms in selected open-source libraries at the time of
the work.

Library Language | Algorithms
OpenSSL C -
LibreSSL C -

Botan C++ McEliece
NewHope
XMSS
Crypto++ C++ -
Bouncy Castle Java NewHope
McEliece
Rainbow...

libraries have not implemented any of the algorithms.
For this, there are most likely quite a few reasons.
The standardization is still ongoing and many are still
awaiting which algorithm will be standardized. Also,
many of the algorithms have undergone changes,
mostly small parameter changes, during the process.
As many of the algorithms are quite young in age, it is
possible that there are still vulnerabilities to be found
that greatly decrease their security.

3 ALGORITHM INTEGRATION

The availability of the NIST post-quantum algorithms
in open-source cryptographic libraries is scarce.
There are example implementations, mostly in C, and
some libraries that specialize in the post-quantum
niche. It would be a lot easier for the end-users
of these algorithms, i.e. developers, researchers and
hobbyists, if the algorithms were included in the
cryptographic libraries they are used to using. That
way the user will not have to learn how to use the new
cryptographic library and how its interfaces work,
reducing the threshold for trying out and adopting
post-quantum algorithms.

We chose Crypto++* as the library under
examination, as it did not have any of the algorithms
from the NIST standardization process before.
According to the Github 2020 The State of the
Octoverse report,” C++ was the 7th most popular
programming language in Github in 2020 and has
been consistently popular over the years. We used the
reference implementations of SABER, Dilithium and
Kyber as a basis and integrated them into a fork® of
Crypto++.

“https://cryptopp.com
Shttps://octoverse.github.com
Shttps://github.com/juliushekkala/cryptopp-pqc

Implementing Post-quantum Cryptography for Developers

3.1 Goals in the Integration Process

Bernstein et al. (2012) emphasize simplicity
and reliability when designing an API for a
cryptographic programming library. They also
present countermeasures taken when designing
how the library works to prevent vulnerabilities,
e.g. by always reading randomness from the OS
cryptographic random number generator instead of
implementing their own complicated way to generate
randomness. In that context, they also mention
code minimization as an underappreciated goal in
cryptographic software.

Forler et al. (2012) present their cryptographic
API that is resistant against misuse. Namely, it is
designed in a way that avoiding nonce reuse and
plaintext leaking is easier. Green and Smith (2016)
present 10 principles for implementing cryptographic
library APIs in a usable way. Because a cryptographic
library is used by other people than those who
developed it, usability needs to be a focus when
designing the cryptographic APL

When integrating the post-quantum algorithms
into the fork of Crypto++, the following were our
goals:

¢ Usability. Green and Smith (2016) mention the
API needs to be easy to learn even for users
without cryptographic expertise in addition to
being easy to use. We see these as the most
important aspects in our case. The API needs to
be clear and concise. Changing parameters has to
be easy.

* Conformity of the code with other algorithms of
the library. As far as possible, the structure of the
new algorithms’ code is similar to the algorithms
already present in the library. Also, library
specific functions are used where applicable.

* Reliability. The algorithms work as specified and
return the correct outputs.

* Prevent unnecessary code. This can be achieved
e.g. by using library functions where appropriate.

* Performance. Algorithms need to be as fast as
possible, without any unnecessary overhead.

3.2 Realization of the Goals

Because the chosen algorithms, Kyber, Dilithium and
SABER, are quite a bit more complex than traditional
public key algorithms, implementing them based on
just the specification is really difficult. That is why
we decided to use the reference implementations
provided by the designers of the algorithms to the
third round of the NIST standardization process.

77

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Because the reference implementations were
implemented with C and the language of the
Crypto++ library was C++, choosing to work with
the reference implementations directly as a basis
was very advantageous. This way we were able to
prevent much unnecessary code. We created a fork
of the at the time most current version of Crypto++.
The reference implementations were imported to the
fork and changed from C code to C++ code where
necessary.

A major goal in the implementation process was
that a potential user would be able to use the
implemented post-quantum algorithms, e.g. change
between the different security levels, in a similar way
to other algorithms already present in the library.
Class structure was added, as well as the API through
which the user is able to use the algorithms. The API
specified by NIST for the reference implementations
works as a basis, as we saw no reason to invent the
wheel anew, in other ways we tried to have the API
work as similarly as other algorithms in Crypto++.

Platform independency was also desirable, at least
that using the fork would be possible on both Linux
and Windows operating systems.

3.3 Challenges in the Integration
Process

Throughout the implementation process, the biggest
issue that needed a lot of consideration was the
question of how the multitude of parameters should
be handled. The C reference implementations manage
the parameters using compile-time constants, and as
that would require the user to compile the library
again if they want to change the security levels of the
post-quantum algorithms, it was not a suitable choice
for us. Two different solutions were used for this
in the implementations. In the implementations of
Kyber and SABER, templates were used to handle the
parameters. A base class of the algorithm was created,
that had two template parameters that were used to
define all the algorithm parameters. When using the
algorithm, the user would call a subclass of the base
class that creates an instance of the base class with the
correct template parameters.

Using templates is quite an elegant solution,
unless there is a need for a lot of template parameters.
In case of Kyber and SABER it was just two, but for
Dilitihium we would have needed quite a list to make
it work. For code clarity, it was decided to go another
route with Dilithium. With Dilithium we ended up
using just member variables, that are changed by the
subclass creating an instance of the base class. This
caused some additional compulsory changes. In the

78

reference implementation, polynomials and vectors
have been implemented using structs. The size of
arrays in structs needs to be defined before compiling,
and this was not possible, as there was variation in
the sizes between security levels. Polynomials were
switched to work with std::array and vectors with
std::vector. Even if this caused in turn some changes
in the methods, it was not very difficult, as std::array
and std::vector make it possible to work on their inner
data.

Debugging presented quite a challenge at times.
As the algorithms involve a lot of different
advanced mathematical operations and rely heavily
on randomness, it is not easy to determine whether
the state of the program is correct at some point. We
used the reference implementation with randomness
removed in the debugging process to find out where
the execution of the C++ version goes wrong. That
way we were able to find bugs created in the
integration process.

Platform independency caused some trouble, as
using variables to define arrays is possible with GCC
compiler, but not on many others, as it is not in
accordance with the official C++ standard. Because
of this we had to change from using arrays to using
std::vector at many points.

Because the NIST standardization process is
not finished, the details of the algorithms and the
parameters can change. When we started evaluating
the implementation, the security levels of Dilithium
had radically changed from the version that was
implemented to the work. We had to update Dilithium
to an up-to-date version to evaluate it against the
newest version.

4 RESULTS

The performance of the algorithms integrated to
the fork was analysed by measuring clockcycles
with __rdstc() instruction and compared against
the measured performance of the reference
implementations on the same device. All
measurements were done on a laptop (i7-10875H
CPU @ 2.30 GHz x16) running Ubuntu 18.04 and
the programs were initially compiled with G++ using
the predetermined compiler options of Crypto++ and
the reference implementations respectively. Using
different compilers and compiler optimizations will
bring forth differences in the performance.

4.1 Performance Analysis

When the SABER algorithm first was implemented
in the library, the performance was not satisfactory.
Compared to Kyber, the integration had decreased
the performance by much more. The runtime
of the algorithm was double of the reference
implementations, even though not many changes had
been made. After debugging, it was found what
part of SABER was the bottleneck. One design
choice of SABER is to use integers moduli that
are powers of 2 (D’Anvers et al., 2018). While
this makes the other parts of the implementation
simpler, it prevents SABER from using the number
theoretic transform (NTT) that is used in Kyber to
speed up calculations. The polynomial multiplication
algorithm is interchangable and needs to be decided
by the implementers of the algorithm. In the
reference implementation, the authors use Toom-
Cook-Karatsuba multiplication. For the sake of
time and resource management, we used the
construction provided by the authors in the reference
implementation. Even though the same construction
was used with very little changes, the performance
decrease was close to 100 %.

Inspecting the compiler options used in Crypto++
by default and the reference implementation revealed
the cause. After debugging, the compiler option
-march=native used in the reference implementation
was found to be the culprit. With this option enabled,
the compiler will detect the architecture of the
system and automatically optimize the code for that
architecture. Without this option, the compiler was
not able to optimize Toom-Cook-Karatsuba construct
in the way that was intended by the authors of the
algorithm. While changing the compiler options of
the library on Linux was successful, Microsoft Visual
Studio Compiler does not offer similar functionality,
and the optimization has to be done separately for
each type of machine.

Table 4 presents the performance measurements
of the integrated algorithms, with the average runtime
of different versions of the algorithms measured
in CPU clockcycles. The performance of the
integrated C++ versions, both with and without
the -march=native GCC optimization flag, was
compared against the reference implementations.
Without optimization, both KEM algorithms were
slower than the reference implementation, especially
SABER. Optimization improved performance of both
algorithms, but the difference was radical with
SABER, which is emphasized with red and green
colors in the runtime change in Table 4 respectively.
With -march=native enabled, the performance of

Implementing Post-quantum Cryptography for Developers

SABER was even better than that of the reference
implementation.

In addition to presenting the performance of
Kyber and SABER, table 4 includes Dilithium
performance after updating it to the newest parameter
set. Without any custom optimization, the C++
implementation was very close in performance to
the original C implementation. With -march=native
enabled, the C++ implementation siginificantly
outperformed the C implementation.

4.2 Security Analysis

The implementation was analyzed with Valgrind’
to find out possible memory leaks. No memory
leaks were found in the C++ implementation.
Side channel attacks are always a risk when
implementing cryptographic algorithms, especially
when optimization is present. Side channel attack
analysis remains future work.

Naturally, we had to be careful that there are
no possible parts in the algorithm where an attacker
could determine secrets based on execution times.
Constant time functions were used e.g. for comparing
the equality of byte arrays.

S DISCUSSION

The possible emergence of quantum computers
presents a threat especially to the current public key
infrastructure. ~ As there are systems where data
and communications need to be secure for years of
time, preparing for possible quantum computers is
necessary. Lattice-based algorithms are an emerging
group of post-quantum algorithms that are one
potential replacement for the currently used non-
quantum-resilient algorithms. As they are still
quite young, it is entirely possible that systematic
attacks will be found against them. The current
understanding is that the algorithms of this paper,
Kyber, Dilithium and SABER, are not affected by
serious attacks.

As the NIST standardization process is still
ongoing, it is understandable that many big libraries
have not implemented the algorithms. The algorithms
may still undergo and have undergone changes during
the process, as was the case with Dilithium during
our work. Also, it is always possible that serious
vulnerabilities are found. Like with AES, usually the
standardized algorithm will spread to use and others
will be less relevant. From that perspective, it makes

7https://valgrind.org

79

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Table 4: Performance of Kyber, SABER and Dilithium on different security levels. The reference implementation performance
is compared first against performance when compiling the fork with default options, and then when compiling with
-march=native eanabled. The red and green color are used to emphasize the difference in the performance of SABER with
and without the option.

Algorithm | Function | CPU cycles | CPU cycles Runtime CPU cycles Runtime
(ref. impl.) | (C++ default) | increase (%) | (C++ with opt.) | increase (%)
Kyber-512 | Key gen. 70527 77452 10 70106 -1
Encaps. 90177 103454 15 93220 3
Decaps. 106539 124722 17 114415 7
Kyber-768 | Key gen. 119089 137032 15 124357 4
Encaps. 141759 170474 20 152433 8
Decaps. 162677 196737 21 180212 11
Kyber-1024 | Key gen. 181525 213370 18 191942 6
Encaps. 205682 251775 22 226342 10
Decaps. 230457 283941 23 259733 13
LightSaber | Key gen. 43321 84330 95 46551 7
Encaps. 56580 106420 88 51789 -8
Decaps. 62496 121883 95 55970 -10
Saber Key gen. 80317 158330 97 80856 1
Encaps. 100271 193770 93 91811 -8
Decaps. 109088 218243 100 97211 -11
FireSaber Key gen. 132859 257348 94 127774 -4
Encaps. 156832 305424 95 143594 -8
Decaps. 169193 340069 101 153203 -9
Dilithium2 | Key gen. 216791 201662 -7 175171 -19
Sign. 920338 863546 -6 788545 -14
Verif. 214877 228392 6 201943 -6
Dilithium3 | Key gen. 350129 370364 6 321002 -8
Sign. 1382591 1397358 1 1300339 -6
Verif. 338629 364654 8 320600 -5
Dilithium5 | Key gen. 532097 550770 4 471764 -11
Sign. 1674901 1697241 1 1569844 -6
Verif. 562763 594885 6 518180 -8

sense not to implement algorithms that will not be
used.

5.1 Biggest Challenges in Implementing
Lattice-based Post-quantum
Cryptography

There is a multitude of -challenges affecting
implementing lattice-based post-quantum
cryptography. They are harder to implement than
algorithms that are based on factoring and discrete
logarithms, as the mathematical operations and
theory are much more complex. This makes creating
an efficient and well optimized implementation
quite difficult. Implementing based on just the
specification is challenging, and without the reference
implementations as a basis, the implementation would
not have been that successful.

Debugging posed a problem in the

80

implementation process. It can be hard to find
the problematic parts in the implementation as the
implementations are complicated. Because many of
the lattice-based algorithms are not deterministic,
the output is every time different for the same input,
and it requires extra effort to be able to debug the
implementation. In our work we used the reference
implementations in the debugging process, by
determining with that program what the state of the
variables should be in each part of the code. That
way we were able to find out where mistakes had
been made. If no such reference implementation is
easily available, debugging becomes tedious.

In general use, the key and output sizes and the
use of memory of lattice-based algorithms are not
a problem. In memory-constrained environments,
though, it is not possible to use every lattice-based
algorithm. Also, some communication protocols are
not suitable for lattice-based algorithms because of
e.g. constraints on the message length.

5.2 Were the Implementation Goals
Achieved?

In general, the goals we set in 3.1 were mostly
achieved. The library specific functions were used
wherever possible, and the structure is quite similar
to using other algorithms. Performance was also
satisfactory, especially after compiler optimization.
There were some things, though, that left a bit to be
desired.

One of our goals was to make the algorithms in the
fork as usable as possible. Now, using cryptographic
primitives correctly is never going to be the easiest
thing to do, but as we stayed very close to the structure
of the API specified by NIST, using the algorithms
is quite simple. It would be possible to evaluate the
usability of the algorithms in the library by using
C++ developers as evaluators. For usability, one
thing that is missing from the current implementation
is handling coding errors, e.g. using too small
buffers. Currently this leads in most cases to just the
compiled executable crashing. Exception handling
would improve the usability, but it is important to
consider the points of code where it could be useful
for the developer in order not to introduce bloated
code.

Another one of the goals was preventing
unnecessary code. Again, we partly succeeded - e.g.
the hash functions in the reference implementations
were as a rule exchanged to using already present
library implementations. With better planning and
carefully designing the class structure more could
have been achieved. Kyber and Dilithium are based
on the same framework and work very similarly,
and the code could have been designed in a way
that they use common code components for e.g.
NTT functionality. In the current implementation
the NTT functionality (essentially being the same)
can be found twice, for each Kyber and Dilithium
separately. This was mostly caused by our process
of integrating each algorithm one by one. A more
careful consideration of the overall picture would
have been beneficial.

One of the points to take into account when
designing a cryptographic API that we mentioned
in 3.1 was misuse resistance. The API in our
implementation is quite resistant against misuse. The
algorithms are designed in a way that the user does
not supply any own nonces to the algorithms, so
nonce reuse will not be an issue. Additionally, the
randomness needed in the algorithms is generated
inside the algorithms and not supplied by the user.
Still, it is quite possible that the users would be able
to use the algorithms wrong, and would need more

Implementing Post-quantum Cryptography for Developers

testing for definite results.

While the measured performance of the integrated
algorithms was satisfactory, it would be interesting
to examine it more thoroughly. For example,
the performance of SABER is even better in the
integrated C++ version when using -march=native
than in the original C version. One could try to find
out whether this is because of the changes made in
our work or because of some compiler optimization
differences, et cetera.

5.3 Comparison of the Implemented
Algorithms

The NIST post-quantum standardization process is
still underway. Therefore it is meaningful to make
some comparisons between SABER and Kyber,
as both are potential standards (Alagic et al.,
2020). Based on our work, one cannot make
definite conclusions about which of the algorithms is
ultimately better.

As the difference in the key and output sizes
is small and performance is not radically different,
these should not be the most importnat point in
standardization decisions. From these aspects, both
of the algorithm are suitable for standardization.

Kyber is structurally a lot more complex than
SABER. SABER does put a lot of focus on achieving
as much simplicity in the algorithm as possible, which
probably makes it easier to implement. Kyber is part
of the same framework as Dilithium, which is one of
the candidates to be standardized as a digital signature
algorithm. This is a clear advantage for Kyber.

5.4 Future Work

The implementation can be used to further examine
and evaluate the algorithms. The security of the
algorithms and the implementation can be examined
for example by fuzzing. The fork can be used
to examine the applicability of the algorithms
in different protocols and scenarios. Different
compiler optimizations can be experimented with
and investigated whether they cause side channel
vulnerabilities.

As the algorithms change during the NIST
standardization process, they need to be updated
to keep up with the changes. Maintenance
and improvement of the library is needed, too.
Currently only the reference versions of the algorithm
implementations are integrated to the library, while
all the algorithm submissions also included AVX2
(Advanced Vector Extensions 2) optimized versions.

81

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

Integrating them would improve the performance on
devices that can use those processor instructions.
Naturally, other post-quantum algorithms can
be implemented into the created fork. Another
challenge would be to implement e.g. a Java version
of the algorithms, as there are no Java reference
implementations available that we know of.

6 CONCLUSIONS

Post-quantum cryptography aims to provide an
answer to the emergence of quantum computers
that threaten especially the public key cryptographic
ecosystem. Lattice-based algorithms are one type of
post-quantum algorithms that are likely to increase
in use in the coming years. We integrated
into a cryptographic library fork three lattice-based
algorithms from the third round candidates of NIST
post-quantum cryptography standardization process,
namely KEM algorithms Kyber and SABER and
digital signature algorithm Dilithium.

We examined the challenges and possible
pitfalls of implementing post-quantum cryptographic
algorithms in software libraries. The mathematical
complexity of the algorithms and difficult to
understand specification provide a challenge for
the people implementing the algorithms, and extra
attention is required not to create possible security
issues. If one algorithm is easier to implement
than another, it is an immense advantage, as easier
implementation means less risk of implementation
errors.

ACKNOWLEDGEMENTS

This research was supported by PQC Finland project
funded by Business Finland’s Digital Trust program.

REFERENCES

Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D.,
Dang, Q., Kelsey, J., Liu, Y.-K., Miller, C., Moody,
D., Peralta, R., et al. (2020). Status report
on the second round of the NIST post-quantum
cryptography standardization process. https://csrc.
nist.gov/publications/detail/nistir/8309/final.

Almeida, J. B., Barbosa, M., Barthe, G., Dupressoir,
F, and Emmi, M. (2016). Verifying Constant-
Time Implementations. In 25th USENIX Security
Symposium (USENIX Security 16), pages 53-70,
Austin, TX. USENIX Association.

82

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C.,
Barends, R., Biswas, R., Boixo, S., Brandao, F. G,
Buell, D. A, et al. (2019). Quantum supremacy using
a programmable superconducting processor. Nature,
574(7779):505-510.

Bernstein, D. J., Lange, T., and Schwabe, P. (2012). The
Security Impact of a New Cryptographic Library.
In Progress in Cryptology — LATINCRYPT 2012,
pages 159-176, Berlin, Heidelberg. Springer Berlin
Heidelberg.

J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J. M., Schwabe, P, Seiler, G., and
Stehlé, D. (2018). CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P),
pages 353-367. IEEE.

Chow, J., Dial, O., and Gambetta, J. (2021). IBM
Quantum breaks the 100-qubit processor
barrier. https://research.ibm.com/blog/
127-qubit-quantum-processor-eagle. Accessed:
2021-11-26.

D’Anvers, J.-P., Karmakar, A., Roy, S. S., and Vercauteren,
F. (2018). Saber: Module-LWR based key exchange,
CPA-secure encryption and CCA-secure KEM. In
International Conference on Cryptology in Africa,
pages 282-305. Springer.

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schwabe, P., Seiler, G., and Stehlé, D.
(2018). CRYSTALS-Dilithium: A Lattice-Based
Digital Signature Scheme. [ACR Transactions on
Cryptographic Hardware and Embedded Systems,
2018(1):238-268.

Durumeric, Z., Li, E, Kasten, J., Amann, J., Beekman, J.,
Payer, M., Weaver, N., Adrian, D., Paxson, V., Bailey,
M., and Halderman, J. A. (2014). The Matter of
Heartbleed. In Proceedings of the 2014 Conference
on Internet Measurement Conference, IMC ’ 14, pages
475-488. Association for Computing Machinery.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel,
C. (2013). An Empirical Study of Cryptographic
Misuse in Android Applications. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS 13, page 73-84,
New York, NY, USA. Association for Computing
Machinery.

Forler, C., Lucks, S., and Wenzel, J. (2012). Designing
the API for a Cryptographic Library. In Reliable
Software Technologies — Ada-Europe 2012, pages 75—
88, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bos

Gaj, K. (2018). Challenges and Rewards of Implementing
and Benchmarking Post-Quantum Cryptography in
Hardware. In Proceedings of the 2018 on Great Lakes
Symposium on VLSI, GLSVLSI °18, page 359-364,
New York, NY, USA. Association for Computing
Machinery.

Green, M. and Smith, M. (2016). Developers are Not the
Enemy!: The Need for Usable Security APIs. /EEE
Security Privacy, 14(5):40-46.

Grover, L. K. (1996). A fast quantum mechanical
algorithm for database search. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of
computing, pages 212-219.

Hankerson, D., Menezes, A. J., and Vanstone, S. (2006).
Guide to elliptic curve cryptography. Springer
Science & Business Media.

Lazar, D., Chen, H., Wang, X., and Zeldovich, N. (2014).
Why does cryptographic software fail? A case study
and open problems. In Proceedings of 5th Asia-Pacific
Workshop on Systems, pages 1-7.

Proos, J. and Zalka, C. (2003). Shor’s discrete logarithm
quantum algorithm for elliptic curves. Quantum
Information & Computation, 3(4):317-344.

Regev, O. (2005). On Lattices, Learning with Errors,
Random Linear Codes, and Cryptography. In
Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’05,
page 84-93, New York, NY, USA. Association for
Computing Machinery.

Regev, O. and Rosen, R. (2006). Lattice Problems
and Norm Embeddings. In Proceedings of the
Thirty-Eighth Annual ACM Symposium on Theory of
Computing, STOC 06, page 447-456, New York, NY,
USA. Association for Computing Machinery.

Rescorla, E. (2018). The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446. https://rfc-editor.org/
rfc/rfc8446.txt.

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Commun. ACM, 21(2):120-126.

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM Journal on Computing, 26(5):1484—
1509.

Shoup, V. (2001). A Proposal for an ISO Standard for
Public Key Encryption. Cryptology ePrint Archive,
Report 2001/112. https://eprint.iacr.org/2001/112.pdf.

Implementing Post-quantum Cryptography for Developers

83

