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Abstract: We investigated the anomaly detection behaviour of three convolutional autoencoder types - a “standard” con-
volutional autoencoder (CAE), a variational convolutional autoencoder (VAE) and an adversarial convolutional
autoencoder (AAE) - by applying them to different visual anomaly detection scenarios. First, we utilized our
three autoencoder types to detect anomalous regions in two synthetically generated datasets. To investigate
the convolutional autoencoders’ defect detection performances “in the industrial wild”, we applied the models
on quality inspection images of non-defective and defective material regions. We compared the performances
of all three autoencoder types based on their ability to detect anomalies and captured the training complexity
by measuring the time needed for training them. Although the CAE is the simplest model, the trained model
performed nearly as well as the more sophisticated autoencoder types, which depend on more complex train-
ing processes. For data that lacks regularity or shows purely stochastic patterns, all our autoencoders failed to
compute meaningful results.

1 INTRODUCTION

The detection of defective material is an essential
component in the industrial manufacturing process.
Yang et al. (2020) describe how the detection of de-
fective material represents a complex problem due to
the elusive nature and immense diversity of the de-
fects. Pang et al. (2021) elaborate in much detail how
anomalies deviate from what is defined as usual or re-
garded as normal and explain the process of anomaly
detection - the detection of data instances that differ
from the majority of samples.
An autoencoder (Rumelhart and McClelland, 1987)
consists of an encoder and a decoder model. The en-
coder network encodes data into a compressed ver-
sion, the decoder network decodes it back such that it
is as similar as possible to the original input. Due to
this underlying principle of learning and compressing
normal data into a latent vector by minimizing the re-
construction error, the autoencoder is an appropriate
tool for anomaly detection. By training an autoen-
coder model purely on normal data, it will learn the
profile of non-anomalous data and the resulting re-
construction error for normal data will be lower than
the reconstruction error for anomalous data.

Normal Anomalous Reconstruction Residual map

Figure 1: Principle of autoencoder based anomaly detec-
tion: The autoencoder is trained exclusively on normal im-
ages. If that trained model is applied on an anomalous im-
age, the input is reconstructed by using the mapping the
model learned from the non-anomalous data. The recon-
struction then deviates from the anomalous image at pixel
positions where the anomalies appear, see the residual map.

By considering non-defective material as normal
and defective material as anomalous, the detection of
defects on material surfaces can be formulated as an
anomaly detection problem. Autoencoders have been
previously used to detect defects, e. g., Essid et al.
(2018) demonstrated how autoencoders can be uti-
lized to localize defects on metal boxes and Kholief
et al. (2017) used autoencoders for the detection of
surface defects on steel strips.

We compared three convolutional versions of
autoencoders - a “standard” autoenocoder (CAE)
(Gondara, 2016), a variational autoencoder (VAE)
(Kingma and Welling, 2014) and an adversarial au-
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toencoder (AAE) (Makhzani et al., 2016).
First, we used two datasets we generated syntheti-
cally. Both consist of a ground structure considered
as normal or non-defective. In the corresponding
anomalous images, the ground structure was changed
in order to create anomalous regions. The pixel-wise
reconstruction error can be used to localize anoma-
lous regions. We can quantify the quality of our
anomaly detection algorithm because the location of
anomalous pixels are exactly known.

To investigate the anomaly detection behaviour of
autoencoders in the “industrial wild”, our models are
utilized to detect defects in quality inspection images
of two different manufactured materials, namely ma-
terial 1 and material 2.

Our investigations show scenarios in which a con-
volutional autoencoder leads to meaningful results,
but we also present a situation where a convolutional
autoencoder fails to detect anomalies. To capture
the “cost-benefit ratio” of our different autoencoder
types, we evaluated the quality of their anomaly
detection results alongside with their measured
training times.

Our contribution comprises:

• a thorough review and suggestions for improved
designs based on the given evidence,

• a quantitative and qualitative comparison of dif-
ferent convolutional autoencoder types (CAE,
VAE, AAE) based on their anomaly localization
performances on two synthetic datasets,

• a qualitative evaluation of the performances of
different convolutional autoencoder types (CAE,
VAE, AAE) on two industrial datasets.

2 AUTOENCODERS FOR
ANOMALY DETECTION

The underlying principle of autoencoders is to en-
code an input sample x ∈RC×H×W into a compressed
representation z ∈ RCb×Hb×Wb and then decoding this
representation back such that it is as similar to the
original input as possible. Typically, the dimen-
sions of the so-called bottleneck layer Cb×Hb×WB
are significantly smaller than the input dimensions
C×H ×W . This enforces a compression of data.
By training the autoencoder purely on normal sam-
ples, it will learn the profile of these normal images.
A normal image region will be reconstructed more
accurately than an anomalous region. The residual
map R(x, x̃)∈RC×H×W formulates the squared pixel-
wise difference of the input x and its reconstruction

x̃ computed by the trained network and can be uti-
lized to decide between normal and anomalous pixels
(Bergmann et al., 2019; Bank et al., 2020; Manakov
et al., 2019).

R(x, x̃) = (x− x̃)2 (1)

2.1 “Standard” Convolutional
Autoencoder

A “standard” convolutional autoencoder as described
in Bergmann et al. (2019) and Manakov et al. (2019)
consists of a convolutional encoder network ECAE ,
which compresses the data x into a latent representa-
tion z and another convolutional network, the decoder
DCAE , which outputs a reconstruction x̃ of the com-
pressed version of the data:

x̃ = DCAE(ECAE(x)) = DCAE(z). (2)

The autoencoder should be forced to reconstruct
the input image, therefore the mean squared error
(MSE) function is used as the guiding loss func-
tion. The MSE-loss is the squared l2-norm between
each pixel of the input x and the reconstructed im-
age x̃, where x(m,n) and x̃(m,n) denote the intensity
at the pixel locations (m,n) with m ∈ [1, ...,H] and
n ∈ [1, ...,W ] of image x and x̃, respectively (Rumel-
hart and McClelland, 1987; Bergmann et al., 2019;
Bank et al., 2020; Manakov et al., 2019):

LMSE(x, x̃) =
1
H

1
W

H

∑
m=1

W

∑
n=1

(x(m,n)− x̃(m,n))2. (3)

2.2 Variational Autoencoder

Similarly to the CAE, the variational autoencoder
(VAE) as described in Kingma and Welling (2014),
Rocca (2019) and Pereira and Silveira (2018) con-
sists of an encoder EVAE , which learns a latent rep-
resentation of the input, and a decoder DVAE , which
generates an output based on the latent variables. The
network is trained to encode and decode the input x
in such a way that the reconstructed input x̃ is as sim-
ilar as possible to x. In contrast to the CAE, the VAE
not only compresses the input to a lower dimensional
representation, but encodes it as a distribution over
the latent space. More precisely, the latent represen-
tation z of an input is now constrained to be a ran-
dom variable distributed according to a prior distribu-
tion pθ(z), which is typically a Gaussian distribution
N (µ,σ). For a continuous latent space, the true pos-
terior pθ(z|x) is intractable. A deterministic approx-
imation qΦ(z|x) can be found by applying the vari-
ational inference technique, a technique to approxi-
mate complex distributions. Loosely speaking, the
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idea is to set a parametrised family of distributions
and to look for the best approximation of the target
distribution among this family, i.e. the element of the
family that gives the least approximation error. To
learn the autoencoder’s parameters, we optimise the
following:

L(θ,φ,x)=EqΦ(z|x)[pθ(x|z)]−DKL(qΦ(z|x)||pθ(x)). (4)

The first term of this loss function is the recon-
struction loss, which measures how well the input
was reconstructed. The second term is the Kull-
back–Leibler divergence. It evaluates how much in-
formation is lost if pθ is approximated by qΦ(z|x).
It makes sure that the learned distribution stays close
to the prior distribution. The reconstruction loss can
be simplified to the MSE loss (given previously in
equation 3) if qΦ(z|x) is following a Gaussian distri-
bution. Kingma and Welling (2014) show how the
Kullback–Leibler divergence can be simplified when
both prior and posterior approximations are assumed
to be distributed according to a Gaussian distribution.
Variance σ and mean µ will be learned according to
the following equation, where J is the number of ele-
ments in vectors σ and µ:

−DKL(qΦ(z|x)||pθ) =

1
2

J

∑
j=1

(1+ log((σ j)
2)− (µ j)

2− (σ j)
2).

(5)

2.2.1 Re-parametrization Trick

As the decoder samples randomly from z ∼ qΦ(z|x),
we need to backpropagate through this random sam-
pling operation in order to train the network. How-
ever, backpropagation can not flow through a random
node. The re-parametrization trick was proposed by
Kingma and Welling (2014) and is commonly used
(Rocca, 2019; Pereira and Silveira, 2018) to bypass
this problem by describing the random variable z as a
differentiable transformation of another random vari-
able ε.

The distribution of ε is independent of z, and
Φ and z are given. If one assumes qΦ(z|x) =
N (z;µ,diag(σ2)), then, after parametrization with
ε ∼ N (0,I), the latent representation can be com-
puted as in eq. 6. µ and log(σ) are outputs of the
encoder network.

z = µ+σ� ε (6)

2.3 Adversarial Autoencoder

Similarly to the VAE, the adversarial autoencoder
(AAE) proposed by Makhzani et al. (2016) imposes

a prior distribution on the latent vector z. Both prob-
abilistic autoencoders match the aggregated posterior
of the hidden code vector with a prior distribution.
While the VAE does this by applying the Kullback-
Leibler divergence, the AAE uses Generative Adver-
sarial Networks (GAN) (Goodfellow et al., 2014).
The AAE is a composite of a “standard” convolu-
tional autoencoder and an adversarial network which
regularizes the encoded vector. The autoencoder at-
tempts to minimize the reconstruction error. Addi-
tionally, the encoder EAAE of the autoencoder is the
generator of the adversarial network and ensures that
the discriminative adversarial network CAAE can be
“fooled into thinking” that the hidden code comes
from the true prior distribution.
Both the autoencoder and the adversarial network are
trained jointly in two phases - a reconstruction phase
and a regularization phase.
During the reconstruction phase, EAAE and DAAE are
optimised in the exact same way as ECAE and DCAE
- the parameters are updated to minimize the recon-
struction error as given in Eq. 3.

In the regularization phase, the adversarial net-
work is trained. The discriminative model CAAE of
this network does not directly discriminate between
“real” and “fake” data but acts as a critic. It esti-
mates the distance between training data distribution
and the distribution generated by EAAE by comput-
ing the Wasserstein distance as described in Arjovsky
et al. (2017). To enforce the Lipschitz constraint,
the weights are clipped to a fixed box after each gra-
dient update. The discriminative network is trained
to distinguish between “true samples” z, generated
based on the prior, and the hidden representation of
input data z̃ computed by EAAE . Then the adversar-
ial network updates its generator EAAE to confuse the
discriminator CAAE (Makhzani et al., 2016; Arjovsky
et al., 2017).

3 COMPARISON OF DIFFERENT
AUTOENCODER TYPES FOR
ANOMALY DETECTION

In order to compare the CAE with the VAE as well
as the AAE, their architectures are chosen to be in an
identical manner. Detailed information about the net-
works’ architectures are given in the appendix. The
encoders of CAE, VAE and AAE are implemented
in an identical manner. Their computed latent rep-
resentations are mapped back to the image domain
by identical decoders for CAE, VAE and AAE (Tab.
2). The bottleneck architecture of the VAE is imple-
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mented based on the exact same architecture as for the
CAE and AAE, except that there are not just one but
two innermost linear layers for σ and µ, respectively
(Tab. 3). These values are then reparametrized for the
VAE. The architecture of the CAAE is given in Tab. 4.
The size of the convolutional kernels was chosen to
be 3 × 3.

All networks were trained on the same images for
the same number of epochs, with the same architec-
ture parameters and with the same learning rate and
minibatch size. The Adam algorithm as proposed in
Kingma and Ba (2014) was used to optimize the pa-
rameters of the models.

3.1 Experiments on Synthetic Datasets

Both synthetic datasets include four non-anomalous
images with a ground structure considered as nor-
mal and four images where the ground structure was
changed in order to create anomalies (Fig. 2). The
anomalous regions of the first dataset, which we
will refer to as the chess-dataset, are composed of
repetitive sequences of black and white squares of
the same size. The anomalous regions were gener-
ated by applying elastic deformations as described by
Simard et al. (2003): displacement vector fields were
computed by randomly selecting values from a uni-
form distribution and a subsequent convolution with
a Gaussian kernel.

The non-anomalous images of the second dataset
will be referred to as noise-dataset. It consists of four
images with intensity values drawn from a Gaussian
distribution. The anomalous regions were induced by
plotting a noisy linear function on top of it (Fig. 2).

All three autoencoder types were trained on the
non-anomalous images. The trained model was then
applied to the anomalous examples, R(x, x̃) was used
to locate the anomalies. In order to compute a binary
detection mask Rt(x, x̃), R(x, x̃) was thresholded by a
constant t, which was chosen s.t. the IoU (see para-
graph 3.1.1) was maximized.

(a) (b) (c) (d)
Figure 2: Examples of non-anomalous images (Fig. 2a and
Fig. 2c) and their corresponding anomalous images (Fig. 2b
and Fig. 2d) of our synthetic datasets.

3.1.1 Evaluation Metrics

As the anomalies were induced by ourselves, we had
an accurate two-dimensional ground truth available.
We consider how accurately the residual maps capture
the anomalous regions by means of accuracy A and
intersection over union IoU . A is the average number
of correctly classified pixels. If we denote the binary
segmentation result as Rt(x, x̃) ∈ RH×W and the cor-
responding ground truth as y ∈ RH×W , we can com-
pute A as follows (Ulku and Akagunduz, 2019):

A(Rt(x, x̃),y) =
1
k ∑

m,n
δ(Rt(m,n), y(m,n)),

with δ(i, j) =

{
1 if i = j = 1
0 else

,

(7)

where (m,n) denote the pixel positions with m ∈
[1,H] and n ∈ [1,W ]. The variable k represents the
total amount of pixels with an intensity value equal to
1 in the ground truth image y. The IoU is the “over-
lapping” area of Rt(x, x̃) and ground truth y divided
by the area of union between Rt(x, x̃) and y and can
be written as follows (Rezatofighi et al., 2019):

IoU(Rt(x, x̃),y) =
|Rt ∩y|
|Rt ∪y|

. (8)

Both A and IoU scale between 0 and 1. For a
perfect result, A = 1 and IoU = 1.

3.2 Experiments on Industrial Datasets

Images of two different industrial materials, namely
material 1 and material 2, were used to investigate
our three convolutional autoencoders with respect to
their quality inspection capability. The autoencoders
were trained on defect-free images of the materials,
the trained autoencoders were then applied to im-
ages showing erroneous regions. The pixelwise re-
construction error was used to locate defects in the
images.

Material 1. is an aluminium plate with a translu-
cent riblet foil attached. A riblet foil is a functional
three dimensional surface (“shark skin”), which can
be attached to different materials in order to reduce
drag on surfaces such as wind turbines or airplane
wings. They are frequently used in bionics (Bechert
and Hage, 2006) and hence a highly relevant indus-
trial application. We acquired ten albedo images of
rather defect free regions of the riblet material and
four albedo images of defective riblet material. Addi-
tionally, three surface normal images of non-damaged
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material and two images of defective material were
generated. The albedo images A ∈R1×H×W have one
intensity value per channel. The surface normal im-
ages are three-channel images, N ∈ R3×H×W . The
surface normal components along x- and y-direction
are stored in the first and second colour channel, re-
spectively. The z-component is stored in the third
channel. Patches of size 128 × 128 pixel were sam-
pled randomly from the images of size 5496 × 3672
pixel during training (Fig. 3).

Material 2. is a steel plate with a surface of a
specific granularity texture. Steel products are em-
ployed in various manufacturing sectors (Hidalgo and
Kamiński, 2011) and a detection of defective material
is highly applicable. For this material, one pair of gra-
dient and corresponding curvature image of defect-
free and an image pair with gradient and curvature
image of defective material were acquired with a pho-
tometric stereo set-up. The images have dimensions
2336 × 4000 pixel. We used 128 × 128 pixel patches
as input images (Fig. 3).

Material 1 Material 2

A N Gradient Curvature

Fu
ll

vi
ew

Pa
tc

h

Figure 3: Examples of an albedo image A and a surface
normal image N of material 1 and a gradient and curva-
ture image of material 2 are shown. We sampled patches as
shown in the second row for model training.

4 RESULTS

In this section, we demonstrate the quantitative and
qualitative performance of our three autoencoder
types as introduced in Sec. 2 on the datasets we in-
troduced in Sec. 3.

4.1 Synthetic Datasets

First, we present the quantitative and qualitative au-
toencoder performance on our synthetic ground truth
datasets. We evaluate how accurate our models de-
tects anomalous regions and how long the training
takes.

4.1.1 Qualitative Results

All of our three autoencoder types detected the
anomalous regions for both datasets well, but espe-
cially for our noise dataset, there were several non-
anomalous pixels insufficiently well reconstructed,
see Fig. 4.

CAE VAE AAE

x y Rt (x, x̃) Rt (x, x̃) Rt (x, x̃)

C
he

ss
N

oi
se

Figure 4: Illustration of Rt(x, x̃) of all our autoencoder
types on both synthetic datasets. The anomalous regions
of images are highlighted in their corresponding ground
truth images. Rt(x, x̃) of the different networks capture the
anomalous regions.

4.1.2 Quantitative Results

By computing A(Rt ,y) and IoU(Rt ,y), we can eval-
uate the anomaly detection performance in a quanti-
tative manner. Both scale between 0 and 1, a higher
value represents superior results.
The values given in Tab. 1 show that, while all mod-
els perform quite well, the AAE performs best for
both datasets. The performance differences are only
marginal for the chess dataset. For the more complex
noise dataset, both CAE and VAE are outperformed
significantly by the AAE. The anomalous region in
the chess dataset is detected more accurately than the
anomalous region in the noise dataset.

We measured the training times timetr for all
three autoencoder types and for both datasets. The
last column in Tab. 1 shows that the training of the
CAE is faster than training the VAE and the AAE.
This is of course reasonable, the training procedure
of the CAE is the simplest and the least computation
steps are necessary. The VAE needs more compu-
tations due to the re-parametrization of the latent
variables. Training the AAE is the most expensive
procedure since we do not only train an encoder and a
decoder, but also the adversarial network component.

4.2 Industrial Datasets

In this subsection, we evaluate our three autoencoder
types on our self-acquired industrial datasets. For this
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Table 1: Evaluation of the anomaly detection on our syn-
thetic datasets using A and IoU . The last column shows the
time needed for training the models (in seconds).

Type
Metric A(Rt(x, x̃),y) IoU(Rt(x, x̃),y) Timetr

ch
es

s CAE 0.9487 0.7975 212
VAE 0.9492 0.7995 213
AAE 0.9499 0.7998 1223

no
is

e CAE 0.9093 0.7594 216
VAE 0.8797 0.7698 220
AAE 0.9218 0.7743 1227

purpose, we generated image samples of two different
materials, namely material 1 and material 2.

Material 1. is a riblet foil mounted on a metal plate,
see section 3.2 for more detailed information. Fig. 5
show that the convolutional autoencoder is able to
learn that albedo images (see Sec. 3.2) consist of al-
ternating dark and bright horizontal tracks. When the
trained model is applied to images with defects, the
model fails to reconstruct the defective regions. The
autoencoder reconstructs these anomalous regions as
if they were normal.

Unfortunately, there is no ground truth available
which clearly states where defective regions are. As
we wanted to get an idea of how well we are able
to distinguish defective patches from non-defective
patches, bounding boxes were drawn around defec-
tive regions. Fig. 6 shows histograms computed by
averaging the reconstruction error of defective and
non-defective patches. The histogram correspond-
ing to the albedo images suggests that significantly
higher reconstruction errors are computed for anoma-
lous patches and that our model could potentially
distinguish between defective and non-defective im-
age regions rather well. A distinction between nor-
mal and defective patches is more difficult for surface
normal images. Although some anomalous patches
were reconstructed significantly worse than most non-
anomalous patches, there are several non-anomalous
patches which were reconstructed nearly as poorly as
the “most anomalous” (highest reconstruction error)
patches.

Fig. 7 shows qualitative results of an albedo image
with defective regions. Both vertical defects lead to
high reconstruction errors. There are several notably
darker areas in the albedo image, one is highlighted in
Fig. 7. These regions were not considered as anoma-
lous and similar structures were present in the images
the autoencoder was trained on. One can observe,
that although the reconstruction loss is slightly higher
at these image regions, because the regions were not
present on all images, the reconstruction loss is sig-
nificantly higher at the pixel positions of the vertical
defects the model has never seen during training.

Non-defective Defective

In
pu

t
R

ec
on

st
ru

ct
io

n

Figure 5: Illustration of normal and anomalous patches of
an albedo image and their reconstructions computed by our
trained CAE. The model reconstructs non-anomalous and
anomalous patches in the exact same way.

Albedo Surface Normals

Figure 6: The histograms show the averaged reconstruction
loss per patch for patches sampled of non-anomalous and
anomalous regions of albedo and surface normal image.

Albedo Residual Map

Figure 7: Illustration of an albedo image with a defective
region and the corresponding residual map. The defective
regions are highlighted with red boxes in the input image.
The region highlighted with a green box was not catego-
rized as anomalous, similar structures were present during
training.

Material 2. is a steel plate with a specific granular-
ity texture we describe in more detail in paragraph
3.2. We utilize it to investigate the training process
on one of our autoencoder types. For this demonstra-
tion we chose the CAE. Both other types computed
comparable outcomes. Fig. 8 shows how the output
of our CAE model develops during training. One can
see that the model is not able to capture any regular-
ity in the images and starts to just put the averaged
intensity value on all pixel positions for both gradi-
ent and curvature image. As the model did not learn
to reconstruct the normal structure properly, it also
fails to detect the anomalous image regions since both
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non-defective and defective regions are reconstructed
poorly, see Fig. 9.

Input Epoch 0 Epoch 2 Epoch 15

Figure 8: Illustration of the reconstruction of an input patch
of the gradient image computed by the CAE at different
epochs. The training of the CAE on the curvature image
showed the same “averaging” behaviour.

Input Reconstruction Residual map

Figure 9: Illustration of a gradient input patch with a defec-
tive region marked in red, its reconstructions and residual
map.

5 CONCLUSIONS

In this paper we investigated the autoencoder in dif-
ferent anomaly detection scenarios. To this end, we
compared convolutional versions of the CAE, the
VAE and the AAE.
On our synthetic and industrial datasets, we demon-
strated that the autoencoders can be used effectively
to locate defects by computing the two-dimensional
residual map, but only if there is enough regular geo-
metric structure. All of our autoencoders were capa-
ble to compute an accurate detection of the anoma-
lous image regions. For the anomaly detection in
the albedo and surface normal images of the first in-
dustrial dataset material 1, the autoencoders achieved
good results as well. However, the autoencoder mod-
els did not compute any reasonable reconstructions
for material 2. The autoencoders can not identify a
regular pattern in the data and the least costly result
they can reconstruct is an image with intensity val-
ues equal to the averaged value of the input image
(see Fig. 8). If there is no accurate reconstruction
of the normal image structure computed, the residual
map does not include any reasonable anomaly detec-
tion information, see Fig. 9. Interestingly, the model
seems to find a pattern in the synthetically generated
noise pattern. We argue that the reason for this lies
in its partial regularity in structure due to its com-
putational generation process. The CAE is the sim-
plest model demanding the simplest training proce-

dure. This is reflected in the measured training times,
which are the shortest compared to VAE and AAE.
The training of the VAE model takes longer due to
the re-parametrisation step. Training the AAE takes
the longest, because the adversarial component needs
to be trained additionally. For the synthetic datasets,
the AAE detects the anomalous regions best for both
noise and chess dataset. However, one could argue
that the increase in performance is too subtle to jus-
tify the use of a more complex model.
Although we find the autoencoders versatility partic-
ularly convincing, we could also get an insight on ap-
plications where it is not suitable as a tool for anomaly
detection. Namely, if the data lacks any kind of reg-
ularity, the model can not identify a meaningful com-
pression of the data. Additionally we want to men-
tion that although the autoencoder is trained in an un-
supervised manner, compiling a training set with im-
ages of purely non-defective material can be demand-
ing. Even for experts it is challenging to tell if certain
structures should be considered as normal for indus-
trial datasets.

Remarks. In order to examine and compare the de-
fect detection capabilities of autoencoders further, we
strongly depend on the annotation of our industrial
datasets. Such industrial annotation comparison will
be a part of the scope of our future work. Also we are
aware that model architecture parameters, such as the
size of the latent layer, may have a significant impact
on results. However, the same parameters were used
for each “session of experiments” and their compari-
son can still be considered to be fair.
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APPENDIX
Table 2: Encoder and decoder architecture used for our syn-
thetic datasets (d = 16) and the industrial datasets. nc = 3
for the surface normal images of material 1 and nc = 1 for
the albedo images of material 1 and gradient and curvature
images of material 2.

Layer Resolution Channels Input Activ. func.
Sy

nt
he

tic
da

ta
se

t

E
nc

od
er

conv1 W ×H/W ×H 1/16 Image Leaky ReLU
conv2 W

2 ×
H
2 / W

2 ×
H
2 16/32 conv1 Leaky ReLU

conv3 W
4 ×

H
4 / W

4 ×
H
4 32/64 conv2 Leaky ReLU

conv4 W
4 ×

H
4 / W

d ×
H
d 64/64 conv3 Leaky ReLU

conv5 W
d ×

H
d / W

16 ×
H
d 64/16 conv4 Leaky ReLU
Bottleneck

D
ec

od
er

deconv1 W
d ×

H
d /W

d ×
H
d 16/64 lin4 Leaky ReLU

deconv2 W
d ×

H
d /W

4 ×
H
4 64/64 deconv1 Leaky ReLU

deconv3 W
4 ×

H
4 /W

2 ×
H
2 64/32 deconv2 Leaky ReLU

deconv4 W
2 ×

H
2 /W ×H 32/16 deconv3 Leaky ReLU

deconv5 W ×H /W ×H 16/1 deconv4 Sigmoid

In
du

st
ri

al
da

ta
se

t

E
nc

od
er

conv1 W ×H/W ×H nc/16 Image Leaky ReLU
conv2 W ×H/W ×H / W

2 ×
H
2 16/32 conv1 Leaky ReLU

conv3 W
2 ×

H
2 / W

4 ×
H
4 32/64 conv2 Leaky ReLU

conv4 W
4 ×

H
4 / W

8 ×
H
8 64/64 conv3 Leaky ReLU

conv5 W
8 ×

H
8 / W

16 ×
H
16 64/64 conv4 Leaky ReLU

conv6 W
16 ×

H
16 / W

16 ×
H
16 64/16 conv5 Leaky ReLU
Bottleneck

D
ec

od
er

deconv1 W
16 ×

H
16 / W

16 ×
H
16 16/64 lin4 Leaky ReLU

deconv2 W
16 ×

H
16 /W

8 ×
H
8 64/64 deconv1 Leaky ReLU

deconv3 W
8 ×

H
8 /W

4 ×
H
4 64/64 deconv2 Leaky ReLU

deconv4 W
4 ×

H
4 /W

2 ×
H
2 64/32 deconv3 Leaky ReLU

deconv5 W
2 ×

H
2 /W ×H 32/16 deconv4 Leaky ReLU

deconv6 W ×H /W ×H 16/nc deconv5 Sigmoid

Table 3: Bottleneck architectures used for our synthetic
datasets (convb = conv5, r = 1024, nz = 100) and the in-
dustrial datasets (convb = conv6, r = 1024, nz = 100).

AE type Layer Resolution Input Activ. func.

C
A

E
/A

A
E lin1 1× W

16 ∗
H
16 ∗16 / 1×1024 convb (flattened) Leaky ReLU

lin2 1× r / 1×nz lin1 -
lin3 1×nz / 1× r lin2 Leaky ReLU
lin4 1× r / 1× W

16 ∗
H
16 ∗16 lin3 Leaky ReLU

VA
E

lin1 1× W
16 ∗

H
16 ∗16 / 1×1024 convb (flattened) Leaky ReLU

lin21 1× r / 1×nz lin1 -
lin22 1× r / 1×nz lin1 -
lin3 1×nz / 1× r lin21, lin22 (reparam.) Leaky ReLU
lin4 1× r / 1× W

16 ∗
H
16 ∗16 lin3 Leaky ReLU

Table 4: Architecture of the CAAE used for all our datasets.
Layer Resolution Channels Input Activ. func.
lind1 1×nz / 1×10 - lin2 Leaky ReLU
lind2 1×10 / 1×1 - lind1 Leaky ReLU
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