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Abstract: Federated Learning (FL) has originated out of a need to mitigate certain inherent limitations of ML, 
particularly the capability to train on larger datasets for improved performance, which is typically an unwieldy 
coordination for an inter-institutional collaboration due to existing patient protection laws and regulations. FL 
may also play a crucial role in bypassing ML’s innate algorithmic discrimination issues via the access of 
underrepresented groups’ data spanning across geographically distributed institutions and the diverse 
populations. FL inherits many of the difficulties of ML and as such we have discussed two pressing FL 
challenges, namely: privacy of the model exchange as well as equity and contribution considerations. 

1 INTRODUCTION 

Machine Learning (ML) is poised to provide an 
incomparable opportunity to overcome the traditional 
paradigms of the healthcare (Griffin et al., 2020; 
Topol, 2019). However, data availability and 
underrepresentation of minorities in healthcare 
datasets are traditionally accepted disadvantages to 
ML research(Obermeyer et al., 2019) and lead to 
relatively low performance for disproportionately 
represented ethnic and minority groups due to bias 
that the model might develop(Gao & Cui, 2020). 
Correspondingly, the training data from these 
populations result in distribution discrepancies that 
are highly susceptible to biases. Problems that arise 
from data heterogeneity, depth, and breadth are a 
hindrance to the generalization of ML approaches. 
Given the data intensive nature of model training, 
Federated Learning (FL) approaches may provide a 
novel opportunity for the future of ML 
applications(Rajendran et al., 2021; Sarma et al., 
2021). FL is a collaborative ML training approach 
illustrated in Figure 1. 

FL has recently received a greater emphasis in 
recent years due to its privacy preserving potential in 
healthcare despite certain structural issues which 
necessitate an address. Characteristic of many recent 
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advancements, the Friedman curve indicates that 
technological advancement has overtaken present 
human governing capacity, and the only way to 
bridge the gap in the case of FL is through the 
introduction of rapid problem identification and 
prudent regulation of FL and cooperation from the 
public and private sector respectively(Friedman, 
2016). 

 
Figure 1: Federated Learning Overview. 

Protected Health Information (PHI) is covered by the 
Health Insurance Portability and Accountability Act 
(HIPAA). Due to existing risk for FL models as 
shown by attacks, it would be appropriate to classify 
the model under the definition of PHI, as there is a 
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risk of the model itself containing the PHI of patients. 
This classification would be beneficial to the overall 
security of FL on account of the HIPAA Security 
Rule which outlines specific guidelines for the 
utilization, employment, and protection of PHI.  

2 CHALLENGES 

Among the issues, training data variations due to data 
types and their capture quality make data preparation 
salient to the success of the endeavor. Some of the 
most relevant clinical information may not be 
accessible or be recorded incorrectly in a way that is 
not representative of the studied population or 
missing. Moreover, data quality challenges in 
healthcare are an acknowledged barrier to research in 
general and ML in particular, however it is not within 
the scope of this work. Despite the perceived and 
studied benefits, there are some challenges for wider 
implementation and acceptance of FL that can be 
categorized in two: privacy and equity and 
contribution considerations.  

2.1 Privacy 

The purpose of Federated Learning is to train 
machine learning models while preserving the 
privacy of individual contributors. However, the 
models are capable of unintentionally revealing 
sensitive information, therefore the security and 
privacy of FL has become an area of extensive 
research (Beaulieu-Jones et al., 2018; Duan et al., 
2020; Hitaj et al., 2017; Li et al., 2019). The main 
methods of protecting training data in the FL process 
are differential privacy, model encryption, 
blockchain based computing, and homomorphic 
encryption. 

Differential privacy is performed by randomly 
perturbing the parameters of the local model with 
noise (e.g., Gaussian noise, Laplacian noise) before 
communicating with and incorporating into the global 
model (Li et al., 2020). Model encryption is 
accomplished by encrypting the parameters of the 
global model before they are sent to local data 
collection for training. Local models are 
communicated back to the global model with 
encrypted local gradients (Lu, 2021). Homomorphic 
encryption is implemented by computing on 
encrypted models (Kim et al., 2018).  

Despite the improvements in security, FL privacy 
methods continue to prove vulnerable to attacks. 
These breaches and data leaks fit into two main 
categories: inference during the learning process, and 

inference over the output(Truex et al., 2019). In 
general, the more overfitted the model is to its 
training data, the more vulnerable it is to an 
attack(Shokri et al., 2017). 

While troubleshooting these flaws in the FL 
process, new research shows that a variety of privacy 
features can prove a suitable defense (Beaulieu-Jones 
et al., 2018; Li et al., 2020; Li et al., 2019; Shokri & 
Shmatikov, 2015; Truex et al., 2019; Wei et al., 
2020). 

In some cases, research will stray from the 
centralized FL system and perform all model training 
decentralized as an additional security measure. For 
example, Swarm Learning (SL) builds ML models 
from local data. These models never leave the host 
site and instead the learning parameters are shared via 
blockchain with other local models. After the arrival 
of new parameters, the local models train with the 
new parameters until standards for synchronization 
are met. Each contributing site has locally installed 
nodes which are responsible for building and 
synchronizing models and implementing the 
blockchain (Warnat-Herresthal et al., 2021). 

Blockchain provides a secure distributed ledger-
based computing framework that has started to show 
promise in healthcare(Norgeot et al., 2019). Several 
studies proposed a Blockchain implementation for 
ML models to benefit security and privacy promised 
by the Blockchain(Hathaliya et al., 2019; Vyas et al., 
2019). Despite the consensus of Blockchain being 
very secure, its security level is directly correlated 
with the hashing power an implementation may have. 
Some of the known attacks on Blockchain include 
Finney attack, race attack, 51% attack (i.e., majority 
attack), eclipse attack, Sybil attack, routing attack, 
Decentralized Autonomous Organization (DAO) 
attack. Other than the 51% attack, the aforementioned 
attacks depend on the implementation and may not be 
very common. In spite of the numerous 
vulnerabilities blockchain implementations produce, 
methods to counter and mitigate the risks posed rely 
on computationally expensive measures, which 
entails an honest dialogue about the fruitfulness of 
these models (Aggarwal & Kumar, 2021).  

2.2 Equity and Contribution Valuation 

A tradeoff for collaborating institutions exists 
between the privacy of the data and the joint effort of 
model development(Rieke et al., 2020). For example, 
since the training data will be decentralized and if 
there are two institutions developing a model, it 
would be beneficial to have them coordinate on such 
tasks as taking measurements. Potential solutions 
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could include having a restricted access for limited 
amounts of coordinators in order to compromise, or 
to simply decline sharing any information not 
explicitly related to the model. Deciding between 
lacking the ability to investigate the data or possible 
privacy issues is a difficult dilemma. Due to the 
unique and distributed nature of FL, it would be 
advantageous to have a standard evaluation strategy 
for purposes such as determining remuneration. The 
Gini coefficient ("Gini Index," 2008), which 
determines income inequality could be employed to 
assess the contribution (figure 2). Even though the 
Information Gain Function could be considered as an 
alternative, Raileanu et al. have proved that the Gini 
coefficient only disagrees by 2% with Information 
Gain in all cases(Raileanu & Stoffel, 2004). In a 
similar vein, we utilize two factors to determine the 
level of participation: model development 
contribution, and data contribution; formula (1) is for 
the total contribution and (2) can be used to calculate 
an individual site’s contribution. 

Mi= Model development contribution level of ith site: 
Mi ɛ ℝ = [0,1] 

Di= Data contribution level of ith site: Di ɛ ℝ = [0,1] 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ൌ ∑ ሺ𝑀௜ ൅ 𝐷௜௡௜ୀ଴ ሻ2 ∗ 𝑁      (1)

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒 ൌ 𝑀௜ ൅ 𝐷௜∑ 𝑀 ൅ ∑ 𝐷 (2)

N= Number of participants in a FL framework 

 
Figure 2: Contribution Equity representation for data and 
model based on Gini Index. 

2.2.1 Model Development Expertise (Mi) 

Model development requires understanding the 
problem domain with adequate subject matter 
expertise and ability to translate that knowledge into 
ML models. In classical ML algorithms, this involved 
extracting features and designing a ML task (e.g., 
classifier). With Deep Learning, the initial feature 

engineering can be done by the algorithms. Model 
development can be broken into the three following 
subcategories: 

Model Development Cost: The Cost here refers to 
such efforts as the labor behind the creation of the 
algorithm until initial operating capacity and 
implementation occur. This is a multifaceted 
component, which will be able to leverage a certain 
institution's healthcare informatics and data science 
expertise if they lack significant Data Contribution. 

Model Validation and Benchmarking Cost: 
Without proper validation and benchmarking, the 
algorithms cannot be integrated into clinical care[49]. 
Over the years, the machine learning community has 
developed several statistical methods to properly 
evaluate AI algorithms. The “intrinsic uncertainty” in 
medicine introduces variations in result 
interpretation, which suggest that model performance 
criteria should be use case specific vs. using standard 
scoring metrics[50]. 

Continuous Model Improvement Cost: The Model 
itself will see countless iterations and frequent 
evolution to accommodate new aspects and features. 
The work put into the model after deployment will be 
factored in accordingly to reward constant 
improvements and reflect the reality of Model 
Development. 

3 CONCLUSION 

Data and model privacy is essential for any FL 
implementation in healthcare in order to realize its 
potential. We have discussed current privacy 
challenges and corresponding proposals to address 
those deficiencies. We believe that none of the 
proposed solutions have sufficient safeguards that is 
practical to implement. Therefore, further studies and 
solutions are needed for FL to strive.    

Another identified challenge is the contribution 
assessment and corresponding profit (or 
responsibility) sharing among the FL participating 
institutions. Unfortunately, there is no widely 
accepted models for such collaboration. We have 
proposed a conceptual model that relies on the Gini 
coefficient. The model considers the model 
development attributes that need to be taken into 
account along with the data that each institutions 
contributes. There are some proposed models for data 
contribution but not for the model and data, to our 
knowledge. 

Upon addressing these challenges, we strongly 
believe that FL will be widely accepted and 
contribute to the biomedical advancements.   
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