identify groups of  individuals and operator profiles. 
The hypothesis is that the inter-individual difference 
is too important for the realization of a general model 
for all operators.  
A  sub-model  of  fatigue  will  be  developed  to 
enable the concomitance of several cognitive states to 
be addressed.  
8  CONCLUSION  
Our research aims  at defining a  method to design  a 
predictor of the cognitive state of operators based on 
their visual behavior. The interest is to facilitate the 
design of the tool as well as its future implementation 
in  real  time.  In  this  paper,  we  present  the 
methodology for the conception of the predictor and 
illustrate  with  an  example  the  results  obtained.  Our 
objective is twofold. The first one is the development 
of  a  performant  predictor;  the  second  one  is  the 
application  of  this  method  on  future  eye-tracking 
data.  In  the  second  case,  it  will  allow  the 
improvement  of  the  predictor  by  the  integration  of 
new data  for the detection of other cognitive  states: 
physical fatigue, mental load, attention. 
 
REFERENCES 
Bodala, I. P., Li, J., Thakor, N. V., & Al-Nashash, H. 
(2016).  EEG  and  eye  tracking  demonstrate  vigilance 
enhancement  with  challenge  integration.  Frontiers in 
human neuroscience, 10, 273. 
Borragán,  G.,  Slama,  H.,  Destrebecqz,  A.,  &  Peigneux,  P. 
(2016). Cognitive fatigue facilitates procedural sequence 
learning. Frontiers in human neuroscience, 10, 86. 
Breiman,  L.,  &  Ihaka,  R.  (1984).  Nonlinear discriminant 
analysis via scaling and ACE. Department of Statistics, 
University of California. 
De Gennaro, L., Ferrara, M., Urbani, L., & Bertini, M. 
(2000).  Oculomotor  impairment  after  1  night  of  total 
sleep deprivation : A dissociation between measures of 
speed  and  accuracy.  Clinical Neurophysiology, 
111(10), 1771-1778. 
Faber,  L.  G.,  Maurits,  N.  M.,  &  Lorist,  M.  M.  (2012). 
Mental  Fatigue  Affects  Visual  Selective  Attention. 
PLOS ONE,  7(10),  e48073.  https://doi.org/10.1371/ 
journal.pone.0048073 
Freydier,  C.,  Berthelon,  C.,  Bastien-Toniazzo,  M.,  & 
Gineyt, G. (2014). Divided attention in young drivers 
under  the  influence  of  alcohol.  Journal of safety 
research, 49, 13. e1-18. 
Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, 
M.  G.  (1993).  Simulator  sickness  questionnaire :  An 
enhanced  method  for  quantifying  simulator  sickness. 
The international journal of aviation psychology, 3(3), 
203-220. 
Larue,  G.  S.,  Rakotonirainy,  A.,  &  Pettitt,  A.  N.  (2011). 
Driving performance impairments due to hypovigilance 
on monotonous roads. Accident Analysis & Prevention, 
43(6),  2037-2046.  https://doi.org/10.1016/j.aap.20 
11.05.023 
Lemercier,  A.,  Guillot,  G.,  Courcoux,  P.,  Garrel,  C., 
Baccino,  T.,  &  Schlich,  P.  (2014).  Pupillometry  of 
taste :  Methodological  guide–from  acquisition  to  data 
processing-and  toolbox  for  MATLAB.  Quantitative 
Methods for Psychology, 10(2), 179-195. 
Marcora, S. M., Staiano, W., & Manning, V. (2009). Mental 
fatigue  impairs  physical  performance  in  humans.  J. 
Appl. Physiol. 
McBain, W. N. (1970). Arousal, monotony, and accidents 
in line driving. Journal of Applied Psychology, 54(6), 
509. 
Mosteller,  F.,  &  Tukey,  J.  W.  (1968).  Data  analysis, 
including statistics. Handbook of social psychology, 2, 
80-203. 
Neboit, M. (1982). L’exploration visuelle  du conducteur : 
Rôle de l’apprentissage et de l’expérience. CAH ETUD 
ONSER, 56. 
Picot,  A.  (2009).  Détection d’hypovigilance chez le 
conducteur par fusion d’informations physiologiques et 
vidéo.  Institut  National  Polytechnique  de  Grenoble-
INPG. 
Thiffault,  P.,  &  Bergeron,  J.  (2003).  Monotony  of  road 
environment  and  driver  fatigue :  A  simulator  study. 
Accident Analysis & Prevention,  35(3),  381-391. 
https://doi.org/10.1016/S0001-4575(02)00014-3 
Wertheim, A. H. (1991). Highway hypnosis : A theoretical 
analysis. Vision In Vehicles--Iii/Edited By Ag Gale; Co-
Edited By Id Brown... Et Al..--. 
Winn, M. B., Wendt, D., Koelewijn, T., & Kuchinsky, S. E. 
(2018).  Best  practices  and  advice  for  using 
pupillometry  to  measure  listening  effort :  An 
introduction for those who want to get started. Trends 
in hearing, 22, 2331216518800869. 
Witmer, B. G., & Singer, M. J. (1998). Measuring presence 
in  virtual  environments :  A  presence  questionnaire. 
Presence, 7(3), 225-240. 
APPENDIX 
A.1  The Inclusion Criteria Were: 
-  Possession of a driver's license for at least 2 years 
and 2500 km driven. 
-  Regular driving preferred 
-  Native French speaker 
-  Normal vision, or corrected by lenses (not corrected 
by glasses) 
A.2  The Exclusion Criteria Were: 
-  Heart  problems,  people  with  epilepsy/ 
photosensitivity/ claustrophobia/ balance problems, 
history of neurological or psychological problems 
-  Taking  medication  or  drugs  that  affect  the  sleep-
wake cycle.