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Abstract: Usually, components in a system degrade simultaneously and, for processes such as maintenance, predictions 
of common failures due to degradation are needed to achieve accurate assessments for decision making. Vine 
copula approach used in this paper is one way of approaching dependency modelling, offering in addition, 
thanks to its features, flexibility when lack of data is an issue. Knowing that a multivariate vine copula 
approach does not have a regular structure, in this paper, we propose an algorithm to simulate correlated 
random numbers of a multivariate vine copula combining bivariate copulas, and the subject of study is the 
evaluation of the impact of the vine copula dependency structure in a risk-oriented Monte Carlo simulation 
model implemented in an online digital platform to support the maintenance strategies of a set of overhead 
cranes. 

1 INTRODUCTION 

The amount of software and IT applications in the 
modern industry is growing exponentially. Usually, 
these IT applications or digital tools replace well-
established and well-known complex decision-
making processes with optimal and handy 
programmed codes based on mathematical models, 
ensuring with this level of integration, quick and 
optimal decisions. 

The industry with continuous processes is one of 
the sectors with more applications. The reason is 
linked with the high levels of interactions, 
interoperability, and complexity in processes such as 
maintenance and operation. For instance, introducing 
IT applications is a necessity today in this sector of 
industry. 

In this paper, we are presenting other IT solutions 
in an industry with continuous processes and the 
object of the application is the maintenance strategies 
of cooperative overhead cranes in a steel plant. 

The overhead crane system operates under hazard 
conditions, and these machines are critical devices in 
the production line. These overhead cranes ensure the 
movement of heavy loads within sectors of the 
production line. 
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Even in the presence of high redundancy, when 
one of the cranes fails for unexpected reasons, it can 
be a critical situation for the steel plant. 

The digital platform adopted in this work, is a 
unique engineering practical application created 
based on individual requirements to support the 
maintenance decision making for a set of overhead 
cranes, with the idea of minimizing the risk of 
interaction between scheduled maintenance and 
unexpected crane failures. 

The tool is fully implemented in MATLAB and is 
ready to be run on a personal computer. The main 
sources of information related to the digital platform 
are described in references Szpytko, J. and Salgado 
Duarte, Y. (2020a), Szpytko, J. and Salgado Duarte, 
Y. (2020b) and Szpytko, J. and Salgado Duarte, Y. 
(2021). While the first reference is dedicated to 
introducing the platform, the other two store the result 
of the parametrization and sensitivity to the major 
model variables achieved for a specific dataset. 

To contextualize the digital platform and its 
relationship to previous work, and to avoid gaps in the 
description, we present the Digital Twins framework 
to detail where the contribution is focused. 

As we know, according to Grieves postulates, the 
Digital Twins framework is composed of five 
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dimensions: physical object, virtual counterpart, 
connection, data, and services. 

In our case, the physical object is the coordination 
of the maintenance decision making process for a set 
of overhead cranes. The virtual counterpart is the Risk 
Model and the Optimization Routine implemented in 
the digital platform. The connection is made up by the 
layers related to data processing. The data are the 
historical degradation data, lifecycle maintenance, 
system structure information, etc., collected by the 
SCADA (Supervisory Control And Data Acquisition) 
and SAP (Systems, Applications & Products in Data 
Processing) systems. 

Among all the dimensions mentioned, the 
contribution of this paper impacts only the virtual 
counterpart and connection. While the impact on 
connection is addressed by the contribution Szpytko, 
J. and Salgado Duarte, Y. (2022) and somehow it is 
needed to refer to the impact in this paper, here we 
will be focusing on the virtual counterpart impacts, 
specially, the Risk Model. 

The digital platform is composed of three layers, 
the Data Processing, the Risk Model, and the 
Optimization Routine to ensure, given the input 
settings, the best scenario available for the system. 

The Data Processing layer has the duty to collect, 
filter and reshape the raw data on an online basis, 
allowing to run the model smoothly and without 
human intervention. Reference Szpytko, J. and 
Salgado Duarte, Y. (2020a) point out how the process 
works and at the same time alludes in some way to 
how the data are connected to the variables in the Risk 
Model. 

In the filter and reshape steps, a formal flow data 
processing diagram is applied to capture the 
dependencies between overhead cranes through the 
time-to-failure records of each crane analyzed, and 
copula approach is the method selected to address the 
measurement of dependencies. Reference Szpytko, J. 
and Salgado Duarte, Y. (2022) describes in detail how 
the dependency structure is built and validated for use 
by the Risk Model. 

The Risk Model uses the estimated dependency 
structure to simulate potential failures in the overhead 
cranes. The simulated stochastic vectors convolute 
the maintenance scheduling and then, using an 
Optimization Routine, the Risk Model is stressed by 
reducing the interaction between the scheduled 
maintenance and the failure predictions. As a result, 
the achieved maintenance scheduling, one of the main 
outputs of the digital platform, ensures that planned 
maintenance routines are well-coordinated under the 
minimum system failure criterion. 

In this Risk Model, failure simulation is a weighty 
variable and accurate predictions are needed to 
achieve the expected results. Therefore, the 
dependency structure estimation and consequently 
the simulations resulting from the estimated structure 
are crucial in this Risk Model. 

Usually, to capture the dependencies between 
components (cranes) within a system (set of cranes), 
a common frame window is needed for the 
measurement (time, in our case). This requirement is 
indispensable and sometimes ends up as a limitation 
in many applications in practice. Knowing the 
dependency measurement limitations, and knowing 
that, in our case, the time-to-failure marginals 
between overhead cranes are shifted because these 
machines have different life cycles, within the copula 
approach family, vine copula is chosen to measure the 
dependencies. 

The selected approach guarantees a wide family 
of options and flexibility when lack of data is an issue 
because dependencies are measured in pairs, as 
detailed in the reference Szpytko, J. and Salgado 
Duarte, Y. (2022). 

The vine copula approach does not have a 
standard multivariate structure because is composed 
by concatenations of pairwise bivariate copulas, 
therefore, is a challenge generate random numbers 
from a non-standard structure, and as we statement 
above, accurate simulations are required for the Risk 
Model. 

In this paper, we present an algorithm for 
simulating dependent random numbers given an 
estimated vine copula structure. Most of the 
contribution is aimed at discussing the algorithm 
before it is used in practice. That said, artificial data 
generated by a given vine copula structure will be 
used to test the impact of the algorithm on the Risk 
Model, then the link to previous contributions and the 
results of the algorithm will be described. 

The testing framework proposed and discussed in 
the paper with an artificial vine copula structure is not 
so far from the real case study. Usually, when real 
data are used, the impacts are reflected in the 
estimated parameters in each bivariate copula 
(pairwise marginals of time-to-failure records) and in 
the final concatenation between the pairwise bivariate 
copulas. The range of potential copulas to be selected 
during the estimation of the structure with real data in 
each concatenation is the same family used in the 
artificial structure. Therefore, whatever the final 
structure, the algorithm will be able to simulate 
dependent vectors of random values. 

The remaining sections are organized as follows: 
first, a broad description of the copula approach used 
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will be presented, followed by the description of the 
algorithm developed to simulate dependent random 
numbers. Then an artificial copula structure proposed 
to test the developed algorithm is described, showing 
its linkage with the Risk Model. Finally, the paper 
ends with the conclusions section. 

2 VINE COPULA APPROACH 

In 2002, Bedford, T., Cooke, R. M. (2002) introduced 
the vine copula approach as a generalization of the 
Markov trees used to model high-dimension 
distributions. The cited work is supported by solid 
previous research in uncertainty analysis for 
constructing high dimensions distributions by 
Markov trees, and the main contribution of the paper 
is the introduction of a vine copula as a graphical 
representation of conditional dependence. 

Most recently, Aas, K., Czado, C., Frigessi, A., 
Bakken, H. (2009) based on the work of Bedford, 
Cooke, and Joe, clearly describes, and applies how a 
multivariate distribution can be modelled by pairwise 
copulas concatenations. In addition, and more aligned 
with the discussion of the research presented, the 
cited paper formalized a definition of how to simulate 
a multivariate distribution from concatenated 
bivariate copulas but leaves open the discussion on 
the implementation in practice. 

The work of Aas, K., Czado, C., Frigessi, A., 
Bakken, H. (2009) and the results shared are in the 
field of economics, but it is not until the previous year 
that Sun, F., Fu, F., Liao, H., Xu, D. (2020) 
successfully applies the vine copula approach to 
degradation data, same field of application as us. 

The above references archive the theoretical 
foundations used in the research presented, and the 
goal of the paper is to contribute further on the same 
by presenting an application of the vine copula 
approach in a risk-oriented model. 

As we stated before, in the vine copula case, it can 
be difficult to generate random numbers with 
dependence when they have distributions structures 
that are not from a standard multivariate distribution. 

In this paper we propose an algorithm to simulate 
a vine copula once all the components (pairwise 
bivariate copulas) and connections of the structure 
have been estimated. The algorithm is fully described 
in the Appendix: Generating random numbers with 
vine copula, and the definition at the most granular 
level of the bivariate copulas used is taken from 

MATLAB. (2019) help, software used in the 
implemented tool. 

Knowing that five bivariate copulas can be fitted 
(see Appendix: Bivariate copula densities), in the 
next section, a discussion is presented to describe the 
features of each copula, as well as the commonalities 
between them. 

3 COPULA FEATURES 

Bivariate copula functions try to capture the 
dependence between marginals through the copula 
parameter. The reason why we have several densities 
is related to the operating space of each copula 
distribution. 

In the case of the Archimedean copulas, the 
parameter manages the dispersion of the random 
numbers. For instance, higher parameter values result 
in less dispersion of the random values. When the 
parameter is close to one, the random values are 
somehow independent. 

On the other hand, Gaussian and t-copula are 
elliptical copulas. In these cases, the correlation 
parameter ρ controls the dispersion of the random 
values. Values of ρ close to one, more correlated 
marginals. 

Within the elliptical copulas, t-copula has two 
parameters, therefore t-copula offers another feature 
more, the tail dependency. Figure 1 shows the scatter 
plot of random values generated with a Gaussian 
copula, setting the correlation parameter ρ = 0.8, and 
with the same correlation parameter and the degrees 
of freedom parameter υ = 3, Figure 2 shows the scatter 
plot of random values generated with a t-copula. 

Visible between these two figures is how the t-
copula can simulate values at the corners of the 
distribution space. This flexibility is given by the 
parameter degrees of freedom υ. For instance, fixing 
the correlation parameter and changing the degrees of 
freedom to higher values, in a t-copula density, results 
in a Gaussian copula. That said, t-copula is more 
flexible than Gaussian and can better fit the data, but 
this flexibility results in a costly computation. 

Bivariate Gaussian and t-copula are symmetric 
copula distributions, but in the Archimedean cases, 
only Frank, as shown Figure 3, remain with same 
property, Gumbel, and Clayton, shown in Figure 4 
and Figure 5, respectively, are not symmetric copulas. 

The combination of these five copulas to be used 
in the model ensures a wide range of possibilities and 
maps the entire distribution space that the data may 
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have, as we can see in the scatter plot in the Appendix: 
Figures. 

Once an overview of copula features has been 
described, in the next section we set a copula structure 
for assessing the impacts on the Risk Model. Leaving 
ready after the discussion, the implementation in 
practice with real data. 

4 IMPACTS IN THE MODEL 

The parameterized scenario as well as the Risk Model 
used as the base case for comparison in this 
contribution is described in references Szpytko, J. and 
Salgado Duarte, Y. (2020b) and Szpytko, J. and 
Salgado Duarte, Y. (2021). 

In papers cited above, the generation of random 
numbers to simulate potential failures in the overhead 
cranes were considered independent. Now the 
random numbers will be generated using a given 
dependency structure. 

Figure 5 shows the Risk Model overview and the 
convolution product definition to obtain the Loss 
Capacity indicator (see references cited for more 
details), and in the same diagram, we also point out 
the impacted variable by the dependency structure 
and its connection with the Risk Model. 

The proposed algorithm for generating random 
dependent numbers is an independent layer that 
transfers the dependencies information to the 
simulated vector of potential overhead crane failures. 
As a result, the simulation has built-in dependency 
information and considers common failure states 
between overhead cranes. 

In the system analyzed, 33 overhead cranes make 
up the system, but only 26 cranes report historical 
failures. 

Therefore, the vine copula dependency structure 
is composed of 25 bivariate copulas concatenated. 

For testing purposes, and considering the whole 
range of copulas available in our case, we propose to 
repeat five times the following five copulas to build 
the entire vine copula structure, also following the 
order listed below: 

- Gaussian copula with parameter ρ = 0.8. 

- t-copula with parameter ρ = 0.8 and degrees 
of freedom υ = 3. 

- Frank, Gumbel, and Clayton copulas, all of 
them with parameter θ = 10. 

Taking the parametrization of the above described 
vine copula and merging the dependency structure 

information into the Risk Model adopted, we obtain 
the results in Table 1 and Table 2. 

Table 1: Risk value of each scenario evaluated. 

Scenario η (%) 
Independent Vine copula 

Capacity Loss 
(tons/year) 

Capacity Loss 
(tons/year)

1 95 19830.88 28191.50 
2 94 15809.63 22643.14 
3 93 12926.06 18656.09 
4 92 10161.75 14868.16 
5 91 7730.12 11490.93 
6 90 5499.55 8433.81 
7 89 3827.58 6146.27 
8 88 2717.24 4601.36 
9 87 1648.54 3165.55 
10 86 1161.59 2297.41 
11 85 782.20 1615.97 
12 80 111.91 290.17 

Base 75 14.61 47.78 

Table 1 shows the exponential increasing impact 
on the risk indicator assessment when the Risk Model 
variables are changed sensitively. The risk indicator 
Capacity Loss is the conditional expected value of the 
convolution between the available capacity of the 
overhead crane system and the number of overhead 
cranes required to support the production line. 

Table 2: Variance of each scenario evaluated. 

Scenario η (%) 
Independent Vine copula 

Sample 
Size 

Sample 
Size

1 95 202 436 
2 94 205 459 
3 93 211 470 
4 92 224 482 
5 91 232 478 
6 90 294 569 
7 89 384 747 
8 88 645 912 
9 87 1111 1359 
10 86 1214 1424 
11 85 1462 1732 
12 80 5907 3946 

Base 75 28108 14339 
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Figure 7 shows the visual view of the impact. 
When more cranes are required to support the 
production line, the risk of Loss Capacity due to 
possible unexpected failures increases. 

As expected also, when we now consider the 
common failures among the overhead cranes, the risk 
values per scenario is higher. The reason relates to the 
incorporation of the common failure probability 
states in the assessment. 

In addition, Figure 7 also shows that the impact is 
even more severe, in states with a larger convolution 
area (see Figure 7 in Appendix, blue line: simulated 
independent failures and red line: simulated failures 
considering the proposed dependency structure). The 
assessment shows a clear impact when considering 
common events. 

On the other hand, Table 2 shows how the 
variance of the estimator behaves. For example, since 
the copula approach with the parameters set has a 
smaller individual scatter of the random numbers than 
the previously generated independent values, as a 
result, the system estimator Loss Capacity has less 
variance as well. 

The results presented in this paper show in some 
way the potential impact of considering dependencies 
in the adopted model and illustrate the range of 
copulas that will be used in future states of research 
and applied in practice. 

It is important to clarify that in this work, the 
figures related to the scatter plots were created using 
the same parameterization described at the beginning 
of this section. 

5 CONCLUSIONS 

The algorithm used to evaluate the impact of the 
dependency structure on the adopted Risk Model 
achieved the expected results. When common failures 
between overhead cranes are considered and exist, the 
scenario is more severe, and Table 1 and Figure 7 are 
the evidence of the conclusion. 

The research shows how the vine copula approach 
can be applied to historical degradation data, and how 
it can be used by the adopted digital platform under 
study. This paper leaves the field ready to merge the 
dependency measurement with real failure data (vine 
copula structure), the risk assessment routines (Model 
Risk and the algorithm proposed to simulate 
dependent random numbers), and the maintenance 
scheduling implemented in the digital platform. 
Moreover, it is a clear application of the vine copula 
approach. 

This methodology can be extrapolated to another 
dataset without much effort, following the same idea, 
trying to measure certain dependencies between data 
vectors corresponding to different components within 
the same system. 

In future steps of the research, as a continuation of 
the presented work, we will share the application of 
both stages (measurement and simulation) with real 
failure data. 
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APPENDIX 

Figures 

 
Figure 1: Scatter plot of a Gaussian copula. 

 
Figure 2: Scatter plot of a t copula. 
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Figure 3: Scatter plot of a Frank copula. 

 
Figure 4: Scatter plot of a Gumbel copula. 
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Figure 5: Scatter plot of a Clayton copula. 

 
Figure 6: Risk Model architecture. 

 
Figure 7: Dependency structure impact on the model. 
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Generating Random Numbers with Vine Copula: 

1.- For sampling ~u dependent uniform random 
numbers [0, 1] with a vine copula, defining ~ud,n as a 
d × n matrix, where d is the dimension and n is the 
length of the random sample, first we need an w 
independent uniform random sample [0, 1] as starting 
point, then with the vine copula concatenation 
estimated, we apply the following steps by ud 
component considered: 

( )
( )

( )

1
1

2 2 1

1
3 3 1 2

1
1 1

,

, ,d d d

u w

u F u u

u F u u u

u F u u u

−

−

−
−

=

=

=

=

=

 


 

where w is a settled random number sample with 
length n, and 1( )F − ⋅  is a cumulative bivariate copula 
density. 

In this research, we consider five copula densities 
(see Appendix: Bivariate copula densities), therefore, 

1( )F − ⋅  depends on the k-th bivariate copula density 
used. Below we describe the steps performed 
depending on the copula used, where v1 and v2 
variables represent the pair correlated vector in each 
step and w independent uniform random sample or a 
sample vector of the previous concatenation step: 

a.- If k-th copula density is Clayton: v1 = w, 

then 
1

1
2 1 11v v p v

θθ
θθ

−− 
 + 

 
= − +  

 
 where θ is the copula 

parameter defined 0 < θ < ∞ and p is an independent 
uniform random sample [0, 1]. 

b.- If k-th copula density is Frank: v1 = w, then 
1

1

2

1
1 ln

11

v

v

p e e
p

v
p e

p

θ θ

θθ

− −

−

  − +  
  = −

 −+  
 

 where θ is the copula 

parameter defined -∞ < θ < ∞ and p is an independent 
uniform random sample [0, 1]. 

c.- If k-th copula density is Gumbel: v1 = w – 
5π, then by successive transformation we obtain: 

v2 = v1 + π /2, 
,ln d ne p= −  where p is an independent 

uniform random sample, d = 1 and n = sample size, 
2

1cos vv
t

e
θ

 − 
 =  where θ is the copula 

parameter defined 1 ≤ θ < ∞ and, 

( )

1

2

1

sin

cos

v
tg

v t

θ

θ
  
  

  =
 
 
 

, 

,
1ln d ns p g
θ

= −  where p is an independent 

uniform random sample, d = 2 and n = sample size, 
sv e−= , 

v2 = vd = 2,n 
d.- If k-th copula density is t: first, given ρ 

parameter, a positive correlation matrix, apply the T 
Cholesky-like decomposition for covariance matrix, 
such as ρ = TT T, and set v1 = z (w), where z ( ) is a 
normalization function, which centers the data to 
have mean equal to 0 and scales it to have standard 
deviation equal to 1. Then by successive 
transformations: 

r = v1, n, p1, n where p is an independent random 
sample, 

r = r × T, 

,2 d nx

η

η

 Γ 
 

=


 where η is the degrees of 

freedom, Γ() is the gamma distribution, d = 2 and n 
sample size. 

r = r / x, 
v = t (r, η) where t ( ) is the cumulative t 

distribution, then v2 = vd = 1, n. 
e.- If k-th copula density is Gaussian: first, 

given ρ parameter, a positive correlation matrix, 
apply the T Cholesky-like decomposition for 
covariance matrix, such as ρ = TT T, and set v1 = z (w), 
where z ( ) is a normalization function, which centers 
the data to have mean equal to 0 and scales it to have 
standard deviation equal to 1. Then by successive 
transformations: 

r = v1, n, p1, n where p is an independent random 
sample, 

r = r × T, 
v = Normal (r) where Normal ( ) is the 

cumulative Gaussian distribution, then v2 = vd = 1, n. 
2.- End of sampling ~u dependent uniform random 
numbers [0, 1] with a vine copula. As a result, a 
matrix of uniform dependent random numbers is 
obtained. 

Bivariate Copula Densities: 

In this document we present five possible selections 
in the bivariate copula fitting process performed for 
continuous variables. Below we describe the list of 

Assessing Impacts of Vine-Copula Dependencies: Case Study of a Digital Platform for Overhead Cranes

195



probability copula density functions used in the 
selection. 

1.- Clayton: ( ) ( ) 1

1 2 1 2, ; 1c u u u u
θθ θθ

−− −= + −  where θ 
is the copula parameter defined 0 < θ < ∞. 

2.- Frank: ( )
( )( )1 2

1 2

1 ln 1 1
, ;

1

u ue e
c u u

e

θ θ

θ
θθ

− −

−

− − −
=

−
 

where θ is the copula parameter defined -∞ < θ < ∞. 

3.- Gumbel: ( ) ( ) ( )
1

1 2ln ln
1 2, ;

u u
c u u e

θθ θ

θ
 − − + −  =  where θ 

is the copula parameter defined 1 ≤ θ < ∞. 

4.- Gaussian: ( ) ( ) ( )1 1
1 2 1 2, ; ,c u u u uρρ − − = Φ Φ Φ   

where ρ is a pairwise correlation value defined -1 < ρ 
< 1. 

5.- t-copula: ( ) ( ) ( )1 1
1 2 , 1 2, ; , ,c u u t t u t uυ ρ υ υυ ρ − − =    

where ρ is a pairwise correlation value defined -1 < ρ 
< 1 and υ is the degrees of freedom parameter defined 
υ > 1. 
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