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Abstract: Robot manipulators are often deployed in tool-symmetric tasks, which only requires defining end effector po-
sition and pointing direction. In this case six-axis serial industrial robots and full-mobility (spatial) parallel
robots have one degree of task redundancy. Using Cardan angles as orientation coordinates, a unified formu-
lation of the position-level and second-order inverse kinematics problem is set up for both robot types. An
efficient scheme for difference-quotient approximation of gradients of performance criteria for projection into
the task redundancy’s nullspace is presented. The simulation example of a hexapod robot shows that avoiding
and exiting parallel robot singularities of type II is possible with the nullspace of all joints. The nullspace
controller scheme can be used in offline trajectory optimization and in online motion generation.

1 INTRODUCTION AND STATE
OF THE ART

Robot manipulators have been a subject of research
for decades. Still more complex parallel kinematic
machines (parallel robots), and more complex prob-
lems arise, such as mastering singularities and motion
in high-dimensional spaces. Due to their complexity,
these problems can only be solved with profound al-
gorithms and by the help of information technology.

The optimization of robots performing tasks with
axis-symmetric tools like arc welding (Huo and
Baron, 2008), drilling (Guo et al., 2015) or milling
(Mousavi et al., 2018) has gained increasing atten-
tion in research and industry over the last years. Due
to their workspace, serial robots are predestinated for
welding tasks but also for drilling tasks e.g. in the air-
craft industry. For machining tasks parallel robots are
favorable due to their higher stiffness than serial kine-
matic machine tools or serial robot arm manipulators.

Serial industrial robots as well as the hexapod par-
allel robot often used for machining tasks have six de-
grees of freedom (DoF) in the operational space and
in the (actuation) joint space. They do not have in-
trinsic redundancy (for serial robots) or kinematic or
actuation redundancy (in the case of parallel robots).
A task (or functional) redundancy of degree one ex-
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ists, if the six-DoF robot is used in an axis-symmetric
task (requiring only five DoF). For a definition of the
redundancy see (Huo and Baron, 2008) or (Léger and
Angeles, 2016) for serial robots and (Gosselin and
Schreiber, 2018) for parallel robots.

The redundancy allows defining a nullspace and
performing a pose optimization using gradient pro-
jection into that nullspace. This method is very ef-
ficient and already well-established for kinematic re-
dundancy (Nakamura et al., 1987; Chiaverini et al.,
2008; Lillo et al., 2019). The redundancy of a rota-
tional end effector DoF requires the adaption of the
inverse kinematics problem (IKP) to account for the
nonlinearity of rotation. Further, the IKP can be dis-
tinguished between position level and velocity level
or higher differential order. Several geometric ap-
proaches for the IKP of task-redundant robots have
been investigated, such as
• twist decomposition (Huo and Baron, 2008),
• orthogonal decomposition of the task space

(Léger and Angeles, 2016; Corinaldi et al., 2016),
• reciprocal Euler angles (Schappler et al., 2019),
• separation of joint coordinates in redundant and

non-redundant on position level (Ozgoren, 2013)
or on velocity level (Reiter et al., 2018),

• expressing the end effector angular velocity in
the local frame and removing the last component
(Žlajpah, 2017; Reiter et al., 2018) corresponding
to the redundant coordinate.
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The alternative to the modified inverse kinematics
(IK) formulations above is a full formulation of the
IK (ignoring task redundancy). Then, a subsequent
optimization of the redundant task space coordinate
is necessary, as performed by (Zhu et al., 2013), (Guo
et al., 2015) and (Mousavi et al., 2018) for serial
robots. Especially for parallel robots this approach
was previously pursued combined with
• interval analysis (Merlet et al., 2000),
• an iterative solution using linear or quadratic pro-

gramming (Oen and Wang, 2007),
• discrete switching patterns of the redundant coor-

dinate in rest positions (Kotlarski et al., 2010),
• iterations of small-angle perturbations of the re-

dundant coordinate (Gao et al., 2019).
In special variations of the milling task using par-

allel kinematic machines (PKM), more than one rota-
tional coordinate can be treated as redundant. Exam-
ples are end milling (Shaw and Chen, 2001) or milling
with a spherical cutter (Smirnov et al., 2013).

The overview already shows that gradient-based
local optimization approaches are more widely used
in serial robotics than in parallel robotics, where
global optimizations dominate. A promising strategy
is the combination of local and global approaches, e.g.
by using differential dynamic programming (Santos
and da Silva, 2017).

Only in recent publications, gradient-based opti-
mization with nullspace projection is performed for
parallel robots, with focus on kinematic redundancy
by (Gosselin and Schreiber, 2016) and (Santos and
da Silva, 2017) and on task redundancy by (Agarwal
et al., 2016). The main effort is put on the kinematic
and actuation redundancy, as can be seen in the ex-
tensive reviews on parallel robot redundancy (Luces
et al., 2017) and (Gosselin and Schreiber, 2018),
where task redundancy is not even mentioned.

Redundancy is exploited to improve performance
criteria of the robot manipulators, such as joint limits
(Huo and Baron, 2008; Zhu et al., 2013) or milling
process stability (Mousavi et al., 2018). Singularity
avoidance is implemented by criteria such as
• the distance in the joint space to the configuration

that first exceeded a parameter of singularity (Huo
and Baron, 2008),

• the squared condition number (Zhu et al., 2013;
Léger and Angeles, 2016; Corinaldi et al., 2016)
via the Frobenius norm relation (Merlet, 2006),

• the condition number of the PKM forward kine-
matics Jacobian (Gosselin and Schreiber, 2016),

• the consideration of all singular values of the Ja-
cobian (Santos and da Silva, 2017),

• the homogenized pose error as a measure for ac-
curacy and singularities (Kotlarski et al., 2010),

• the Jacobian’s determinant (Agarwal et al., 2016).
Although the physical meaning of the manipula-

tor Jacobian’s condition number is questionable, cf.
(Kotlarski et al., 2010), using it as a measure for sin-
gularity avoidance is well established and can be justi-
fied, even without homogenization of units, cf. (Mer-
let, 2006). Especially for parallel robots singulari-
ties can be located anywhere in the workspace and
avoiding them in offline trajectory planning and on-
line trajectory execution is paramount, cf. (Luces
et al., 2017; Gosselin and Schreiber, 2018).

The work from (Agarwal et al., 2016) presents
a promising approach to tackle the problem of sin-
gularity avoidance for parallel robots using gradient
projection in the nullspace of task redundancy. How-
ever, open points remain, regarding the feedback loop
design of the nullspace motion and an extension to
spatial robots regarding the nonlinearity of rotation.
These points will be encountered in this paper by a
consideration of Cardan angles as end effector coor-
dinates, as in (Schappler et al., 2019), by considering
a second-order nullspace motion, cf. (Reiter et al.,
2018) and by incorporating aspects of control design
from (De Luca et al., 1992), where this problem was
already approached for serial robots. To summarize,
the contributions of this paper are
• a formulation of the differential inverse kinemat-

ics problem for one-DoF task redundancy using
Cardan angles for end effector orientation,

• a numeric scheme for simplification of the com-
putation of gradients of performance criteria in the
nullspace projection using difference quotients,

• unifying the scheme for serial and parallel robots,
• and exemplary simulative studies on offline tra-

jectory planning with singularity avoidance.
The remainder of the paper is structured as fol-

lows. After a remark on task coordinates in section 2,
the kinematics model and nullspace motion is laid out
in section 3 for serial robots and in section 4 for paral-
lel robots. Considerations on the control loop design
and remarks on convergence are given in section 5
and the scheme is validated in section 6 at the exam-
ple of pose optimization and trajectory tracking of a
six-DoF parallel robot. Section 7 concludes the paper.

2 ON TASK COORDINATES

In the following, the six operational space coordi-
nates, i.e. the position and orientation of a robot’s end
effector in the Cartesian space, are expressed with the
vector xxx = (rx,ry,rz,ϕx,ϕy,ϕz)

T. Unlike for the un-
ambiguous position part rrr, a suitable representation
of rotation has to be chosen for the orientation part ϕϕϕ.
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For tasks with rotational symmetry given in sec-
tion 1, a selection of the Euler angle convention is
suitable, where the last of the three (intrinsic) elemen-
tary rotations is defined around the tool axis. The
Cardan angles (or X-Y ’-Z” Euler angles) are espe-
cially practical and intuitive, since the tool axis in
robotics is by convention the zzzE -axis. The end ef-
fector’s rotation matrix w.r.t. the base frame is de-
fined by 0RRRE(xxx) = RRRx(ϕx)RRRy(ϕy)RRRz(ϕz) using the ba-
sic rotation matrices. The angle convention estab-
lished in tool machines on the contrary follows the
extrinsic X-Y -Z Euler angles convention for express-
ing orientation, which corresponds to the intrinsic
Z-Y ’-X” convention. The rotation axes are termed
“A, B and C” (corresponding to “X, Y and Z” transla-
tion), (Smirnov et al., 2013). The term “Euler angles”
is used for generalization, also including Tait-Bryan
(and Cardan) angles and is not limited to proper Eu-
ler angles. Representing orientation with Euler angles
can introduce mathematical singularities correspond-
ing to a gimbal lock. For Cardan angles this only
occurs for ϕy=±90◦, which is not relevant for most
tasks and e.g. technically not possible for most paral-
lel robots and therefore out of this paper’s scope.

The task space coordinates of pointing tasks are
defined as yyy = (rx,ry,rz,ϕx,ϕy)

T. Due to the rota-
tional symmetry of the robot tool and the chosen rep-
resentation of rotation, the last operational space co-
ordinate ϕz corresponds to a rotation of the robot end
effector around the tool axis and can be selected arbi-
trarily in the regarded case of task redundancy.

3 SERIAL-LINK ROBOTS

Redundancy resolution for serial robots has been
widely researched, cf. (Chiaverini et al., 2008), but
the case of task redundancy is only implicitly in-
cluded in the fundamental works. In the following,
section 3.1 clarifies some foundations e.g. from (Chi-
averini et al., 2008) regarding task redundancy and
section 3.2 introduces new aspects on the computa-
tion of the nullspace in task redundancy.

3.1 Inverse Kinematics Model

The forward kinematics problem relates the nqqq joint
space coordinates qqq with the operational space by

xxx =
[
xxxT

t , xxxT
r
]T

=
[
rrrT

E(qqq), ϕϕϕ
T
XY Z(

0RRRE(qqq))
]T

. (1)
The non-redundant inverse kinematics problem (IKP)
can be expressed by an implicit residual in R6

ΦΦΦ(qqq,xxx) =
[

ΦΦΦt
ΦΦΦr

]
=

[
−xxxt + rrrE(qqq)

θθθ

(
0RRRT

E(xxxr)
0RRRE(qqq)

)]
= 000 (2)

with arbitrary convention θθθ, which can be solved nu-
merically using the Newton-Raphson algorithm. In
the case of task redundancy, a reduced residual

ΨΨΨ(qqq,yyy) = 000 ∈ R5 with rotational part (3)

ΨΨΨr =

[
0 1 0
0 0 1

]
θθθZY X

(
0RRR

T
E(xxxr)

0RRRE(qqq)
)
∈ R2 (4)

is needed, which can be set up by using the Euler an-
gles θθθ of the rotation matrix between desired pose xxx
and actual pose xxx(qqq). The angle convention in ΨΨΨ has
to be reciprocal (i.e. Z-Y ’-X”) to the one used for the
end effector pose xxx, as derived in (Schappler et al.,
2019). The redundant coordinate ϕz has no effect.

Using a task-redundant robot with nqqq ≥ 6 allows
to optimize additional objective functions h(qqq) using
nullspace projection in the iterative solution by

qqqopt = argmin
qqq

(h(qqq)) s.t. ΨΨΨ(qqq,yyy) = 000. (5)

The iterative solution in the step k is obtained with
the Moore-Penrose pseudo-inverse by

qqqk+1 = qqqk−ΨΨΨ
#
∂qqqΨΨΨ+(IIInqqq −ΨΨΨ

#
∂qqqΨΨΨ∂qqq)(−hT

∂qqq), (6)

where the index ∂qqq denotes the derivative of the sym-
bol w.r.t. qqq, # the pseudo-inverse, IIInqqq the identity ma-
trix of appropriate dimension nqqq and the dependency
on qqqk and yyy is omitted for the sake of brevity. The
notation will be kept throughout the paper.

Using this allows to optimize the robot for one
specific pose, e.g. for drilling tasks, where the feed
motion is negligible regarding the robot’s dimension.
To obtain a continuous trajectory, e.g. for milling
tasks, the forward differential kinematics

ẋxx = JJJxxxq̇qq and ẍxx = J̇JJxxxq̇qq+ JJJxxxq̈qq (7)
are used. The matrix JJJxxx is known as the analytic Jaco-
bian. The geometric Jacobian on the contrary relates
angular velocities in the base frame instead of time
derivatives of the Euler angles to the joint velocities.

The transfer from operational space to task space
is performed by removing the last row of (7) with
yyy = PPPyyyxxx and JJJyyy = PPPyyyJJJxxx. The matrices JJJyyy and ΨΨΨ∂qqq
are not identical due to the nonlinearity of rotation in
SE(3). The task space inverse differential kinematics
are obtained by the pseudo-inverse solution

q̈qq = q̈qqT + q̈qqN = JJJ#
yyy(ÿyy− J̇JJyyyq̇qq)+(IIInqqq − JJJ#

yyyJJJyyy)vvv. (8)
Again as in (6), nullspace projection of arbitrary vec-
tors vvv can be performed. The vector may be chosen as
vvv =−hT

∂qqq or as discussed in section 5.

3.2 Task Redundancy and Nullspace

Objective functions h(qqq) can be defined analytically
or numerically. The former is not possible or feasible
for all functions. For the latter a method for the effi-
cient derivation of the gradient h∂qqq will be presented
and discussed for several cases.
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3.2.1 General Case

The general case is not limited to task redundancy and
can be used in the position-level inverse kinematics
problem (6) for ‖ΨΨΨ‖ 6≈ 0. A difference quotient is
calculated for a small increment ∆qi of all joints by

h∂qi ≈ (h(qqq+∆qqq)−h(qqq))/∆qi, (9)

where ∆q j = 0 with j 6= i in ∆qqq. This requires nqqq+1
evaluations of the objective function h(qqq) in each iter-
ation of (6) or each discrete trajectory sample of (8).
This is e.g. mentioned in (Lillo et al., 2019), but is
probably used in many implementations.

3.2.2 Task Redundancy of Degree One

In the case of task redundancy with nqqq−dim(yyy) = 1,
the nullspace projection can be exploited to simplify
the computation. The assumption is that ‖ΨΨΨ‖ ≈ 0,
which is always the case in the differential inverse
kinematics (8). In the position-level IKP (6) conver-
gence of the task or an already valid initial value qqq0 is
required. Writing qqq := qqq(xxx) leads to

∂h
∂xxx

=
∂h
∂qqq

∂qqq
∂xxx

or
∂h
∂qqq

=
∂h
∂xxx

∂xxx
∂qqq

. (10)

The latter expression can be divided into the single
operational space coordinates via

∂h
∂qqq

=
∂h
∂rx

∂rx

∂qqq
+

∂h
∂ry

∂ry

∂qqq
+ . . .+

∂h
∂ϕz

∂ϕz

∂qqq
. (11)

The nullspace projector included in (6) or (8) is

NNN = IIInqqq−JJJ#
yyyJJJyyy = IIInqqq−ΨΨΨ

#
∂qqqΨΨΨ∂qqq for ‖ΨΨΨ‖= 0. (12)

Since the nullspace is defined as a rotation within the
ϕz coordinate, the projector eliminates the other terms

NNN
(

∂h
∂rx

∂rx

∂qqq

)T

= 000, . . . , NNN
(

∂h
∂ϕy

∂ϕy

∂qqq

)T

= 000. (13)

Therefore the gradient in the case of one-DoF task
redundancy can be simplified to

h∗
∂qqq =

∂h
∂ϕz

∂ϕz

∂qqq
, (14)

where the last term is the last row of the Jacobian JJJxxx.
The asterisk denotes the simplified calculation of the
gradient which follows the relations

NNN(h∗
∂qqq)

T = NNN(h∂qqq)
T and h∗

∂qqq 6= h∂qqq. (15)

Using a small increment of the redundant coordinate
∆xxx = (000T,∆ϕz)

T, the first term can be determined nu-
merically via the difference quotient

(∂h/∂ϕz)≈ (h(qqq+ JJJ−1
xxx ∆xxx)−h(qqq))/∆ϕz. (16)

This only requires two numeric evaluations of h(qqq)
which can be highly beneficial for computationally
expensive objectives such as collision avoidance or
singularity avoidance. The approach of simulating
a ∆ϕz can be regarded similar to the principle of
small-angle perturbation of (Gao et al., 2019), where
a global instead of local optimization is performed.

4 PARALLEL ROBOTS

The inverse kinematics of task redundant parallel
robots can be approached similarly as serial robots.
A a parallel robot consists of m kinematic chains con-
necting a base link with a moving platform. Follow-
ing e.g. (Merlet, 2006), the joint space qqq now also
contains passive joints (here also including the plat-
form coupling joints). Active joint coordinates are in-
cluded in this formulation and are also denoted by θθθ.
Further, the platform pose can be expressed by the op-
erational space coordinate xxx which can also be used as
a minimal coordinate of the robot.

In the following, section 4.1 again applies ap-
proaches from literature, e.g. (Merlet, 2006; Chi-
averini et al., 2008) to task redundancy and section 4.2
discusses projection in the nullspace.

4.1 Inverse Kinematics Model

To solve the IKP for parallel robots, similar to (2)
and (3) for serial robots, the full and reduced kine-
matic constraints ΦΦΦ(qqq,xxx)∈R6m and ΨΨΨ(qqq,yyy)∈R6m−1

are defined. The latter can be obtained in the mini-
mal form only dependent on the task space coordinate
yyy by using reciprocal Euler angles for the orientation
constraints of the first leg chain like in (4). The con-
straints of other (following) legs are defined relative
to the first (leading) leg, e.g. as vector loop via the
end effector, see (Schappler et al., 2019). While the
IKP can be solved with the same Newton-Raphson
approach (6) as serial robots, the differential relation

ΦΦΦ∂qqqq̇qq+ΦΦΦ∂xxxẋxx = 000 and ΨΨΨ∂qqqq̇qq+ΨΨΨ∂yyyẏyy = 000 (17)

also has to take the platform coordinates xxx and accord-
ingly yyy into account. The inverse differential kine-
matics is split up into the particular solution and the
nullspace solution by q̈qq = q̈qqT + q̈qqN. The task-related
differential inverse kinematics on velocity level is

q̇qqT =−ΦΦΦ
−1
∂qqq ΦΦΦ∂xxxẋxx = J̃JJ−1

xxx ẋxx. (18)

The matrix J̃JJ−1
xxx is the Jacobian relating all joint veloc-

ities and the platform velocity (in operational space
coordinates xxx). The acceleration can be obtained by

q̈qqT = J̃JJ−1
xxx ẍxx+ ˙̃JJJ−1

xxx ẋxx. (19)
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In the case of task redundancy, either the solution of
(19) with ϕ̇z=ϕ̈z=0 can be selected or the minimum-
norm solution by using the ΨΨΨ-related constraints with

q̈qqT =−ΨΨΨ
#
∂qqq
(
Ψ̇ΨΨ∂qqqq̇qq+ Ψ̇ΨΨ∂yyyẏyy+ΨΨΨ∂yyyÿyy

)
. (20)

Another approach is obtaining q̈qqT from time differ-
entiation of q̇qqT = −ΨΨΨ

#
∂qqqΨΨΨ∂yyyẏyy, which was shown for

serial robots by (Reiter et al., 2018). Similar to (8),
the nullspace motion in the full joint space on accel-
eration level is obtained as

q̈qqN = (IIInqqq −ΨΨΨ
#
∂qqqΨΨΨ∂qqq)vvvqqq. (21)

It has to be noted that for the full joint space of par-
allel robots a relation of the nullspace projector and
the Jacobian like (12) for serial robots does not exist
directly. Only the inverse matrix J̃JJ−1

xxx can be defined,
but not the non-inverse J̃JJxxx, since nqqq > dim(xxx).

To be able to use the manipulator Jacobian JJJxxx for
the nullspace projection, the nullspace motion has to
be computed in the actuation space with nθθθ coordi-
nates θθθ. This can be obtained by selection of compo-
nents of the full joint space expressions with

θθθ = PPPθθθqqq and JJJ−1
xxx = PPPθθθJ̃JJ−1

xxx . (22)

The manipulator Jacobian can be computed by (nu-
meric) matrix inversion with

JJJxxx =
(
JJJ−1

xxx
)−1

=
(

PPPθθθJ̃JJ−1
xxx

)−1
. (23)

Only after this step, the reduced Jacobian JJJyyy without
the row for the redundant task space coordinate ϕz can
be obtained analogously to the serial robot case with
JJJyyy = PPPyyyJJJxxx. This approach does not require a minimal
kinematics set, where passive joints are eliminated in
the constraints resulting to ΦΦΦ(θθθ,xxx) instead of ΦΦΦ(qqq,xxx),
like e.g. used by (Agarwal et al., 2016).

Actuator speeds θ̇θθ can be projected in the full joint
space by

q̇qq = J̃JJ−1
xxx JJJxxxθ̇θθ. (24)

The nullspace motion can then be computed like
in the serial robot case (8) with

θ̈θθT = JJJ#
yyy(ÿyy− J̇JJyyyθ̇θθ) and θ̈θθN =(IIInθθθ

−JJJ#
yyyJJJyyy)vvvθθθ. (25)

The two nullspace formulations lead to the same
motion and combining (24) with (25) and (21) lead to
the relation

NNNqqq = kJ̃JJ−1
xxx JJJxxxNNNθθθJJJT

xxx J̃JJ−T
xxx (26)

with NNNqqq = IIInqqq −ΨΨΨ
#
∂qqqΨΨΨ∂qqq and NNNθθθ = IIInθθθ

− JJJ#
yyyJJJyyy. The

relation of the scalar factor k = k(qqq) is yet to be found.
The structure of the nullspace of task redundancy is
visible in the term JJJxxxNNNθθθJJJT

xxx , where only the last scalar

entry is non-zero, corresponding to a motion in the co-
ordinate ϕz. The serial robot case of (12) is included
in (26) by the relation J̃JJ−1

xxx JJJxxx = III due to nθθθ = nqqq.
Obtaining the matrix JJJxxx requires the inversion of

ΦΦΦ∂qqq in (18). If the matrix is rank deficient, a singular-
ity of type I is present. More critical are singularities
of type II, where ΦΦΦ∂qqq has full rank but JJJ−1

xxx has not.
This is caused by the structure of ΦΦΦ∂xxx and the choice
of actuated joints by PPPθθθ, cf. (Merlet, 2006).

4.2 Task Redundancy and Nullspace

The main difference between nullspace motion for
serial and parallel robots is the existence of the full
joint space different from the actuation joint space,
i.e. PPPθθθ 6= III. As discussed above, the nullspace projec-
tor for the full joint space only relies on the geometric
matrix of the inverse kinematics ΨΨΨ∂qqq and not on the
Jacobian JJJxxx. Therefore this coordinate space is es-
pecially suitable to generate desired motion although
being in or near a singularity of type II. Further, it can
be used to incorporate objective functions h(qqq) e.g.
for the joint limits of passive joints. Several cases can
be distinguished:

4.2.1 General Case (Position-level IKP)

The general case is similar to section 3.2.1 for serial
robots. This case is useful especially if ‖ΨΨΨ‖ 6≈ 0, like
in the position-level IKP. For parallel robots with ob-
jectives h(qqq) only dependent on the joint coordinates
it is identical to serial robots. For criteria h(qqq,xxx),

h∂qi ≈ (h(qqq+∆qqq,xxx)−h(qqq,xxx))/∆qi (27)

is used, with ∆q j = 0 for j 6= i. This corresponds to the
quotient from (9). No change of xxx is considered, since
by ‖ΨΨΨ‖ 6≈ 0 the kinematic loops of the robot are not
closed with the platform. In the case of a full-mobility
parallel robot, nqqq = 36 and therefore the nqqq+1 evalu-
ations become computationally expensive.

4.2.2 Task Redundancy and Full Joint Space

In the case that the kinematic constraints are met,
‖ΨΨΨ‖ ≈ 0 holds and the preceding approach is not ef-
ficient. Nullspace motion and objective function are
defined in the full joint space like vvvqqq = −(∂h/∂qqq)T.
The one-DoF task redundancy can be exploited by
consideration of the elimination of components with
the nullspace projector as in (13). The nullspace mo-
tion in operational space ∆xxx=(000T,∆ϕz)

T results in the
full joint space to ∆qqq= J̃JJ−1

xxx ∆xxx. With this, the numeric
approximation of the gradient for task redundancy is

h∗
∂qi
≈ (h(qqq+∆qqq,xxx+∆xxx)−h(qqq,xxx))/∆qi. (28)
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The nullspace motion is obtained by the projector
NNNqqq = IIInqqq −ΨΨΨ

#
∂qqqΨΨΨ∂qqq ∈ Rnqqq×nqqq from (21). The formu-

lation requires only two evaluations of h(qqq,xxx).

4.2.3 Task Redundancy and Actuation Space

Computing the nullspace motion in the actuation joint
space with vvvθθθ =−(∂h/∂θθθ)T has the advantage of only
using the projector NNNθθθ = IIInθθθ

− JJJ#
yyyJJJyyy ∈ Rnθθθ×nθθθ from

(25) of much lower dimension than in the previous
scheme, since e.g. nθθθ=6 and nqqq=36 for fully parallel
robots. The assumption ‖ΨΨΨ‖ ≈ 0 still has to hold.

The approach (14) from the serial robot case can
be adapted to the parallel robot objective function
h(qqq,xxx), similar to the procedure leading to (28). An-
ticipating the nullspace projection, as a first step, the
gradient is projected from the redundant coordinate
ϕz into the actuated joint space with

h∗
∂θθθ

=
∂h
∂ϕz

∂ϕz

∂θθθ
. (29)

Numeric approximation of the first gradient yields

(∂h/∂ϕz)≈ (h(qqq+∆qqq,xxx+∆xxx)−h(qqq,xxx))/∆ϕz. (30)

The second term of (29) again is the last row of JJJxxx
which requires the inversion (23) and therefore a non-
singular configuration of the robot. If the trajectory
is generated for the full joint space, then the actuator
nullspace motion θ̈θθN = NNNθθθvvvθθθ can be projected in that
space by the time derivative of q̇qqN = J̃JJ−1

xxx JJJxxxθ̇θθN.
If the gradient ∂h/∂qqq is available in analytic form,

the projection can be performed by

∂h
∂θθθ

=
∂h
∂qqq

∂qqq
∂θθθ

=
∂h
∂qqq

J̃JJ−1
xxx JJJxxx. (31)

This is helpful if e.g. the function for hyperbolic dis-
tance to the joint limits from (Zhu et al., 2013) is used.

5 NULLSPACE MOTION

The previous two sections review different modalities
for nullspace motion of serial and parallel robots. The
focus is on the necessary gradients of objective func-
tions h in the case of task redundancy. The schemes
(8), (21) and (25) are defined on acceleration level.
This allows to generate a consistent and continuously
differentiable trajectory of qqq(t), q̇qq(t) and q̈qq(t), which
is beneficial for the implementation for tracking con-
trollers with feed-forward control with inverse dy-
namics, cf. (De Luca et al., 1992) and (Reiter et al.,
2018). A general nullspace vector vvv is used in the
equations of this paper, which allows incorporating
different control architectures. A general architecture

∫∫∫ ∫∫∫q̈qqT q̇qq qqq
h(qqq)

NNN(qqq)vvv

q̈qqN

KP

KD

−hT
∂qqq(qqq)

Kv

d/dt
vvv

q̈qq

Figure 1: Nullspace motion controller scheme.

from (De Luca et al., 1992) is depicted in Figure 1. It
uses a nullspace feedback loop with a PD controller
(KP and KD) and an additional damping term (Kv).
The architecture can be applied in all cases presented.

As stated in (Reiter et al., 2018), using the
nullspace component in the differential kinematics on
acceleration level is not equivalent to the derivative of
the velocity-level solution. One approach is to per-
form analytic differentiation of the nullspace scheme,
which works for serial robots up to higher orders (Rei-
ter et al., 2018). Since this may be computational ex-
pensive for parallel robots, a discrete time implemen-
tation for the differentiation is used here, as suggested
by (De Luca et al., 1992). Therefore the projection
schemes on acceleration level of (8) and (21) do not
fall into the non-equivalence category explained by
(Reiter et al., 2018), if used as depicted in Figure 1.

Resolution of task redundancy on acceleration
level with nullspace projection was introduced for
parallel robots by (Agarwal et al., 2016), There only
vvv=−KPhT

∂θθθ
is used, which corresponds to Kv=KD=0

in Figure 1. In that reference, a proof of stability of
this control strategy was performed stating that the
potential h is never increasing (in the minimization
case). Due to the assumption q̇qq=000 which was ex-
tended from the initial value to generality, the proof
is only valid for h(t=0), not for h(t>0) and the state-
ment can not be supported by the proof as shown next.

The nonlinear control system of Figure 1 can be
described as a multi-input, multi-output system with
nonlinear input gain NNN(qqq) and output function hT

∂qqq(qqq)
and a double integrator as internal dynamics, neglect-
ing the task tracking input q̈qqT and the limitation of q̈qqN.
Already in the linear case, controlling a double inte-
grator system only with proportional feedback leads
to undamped oscillations. A stabilizing control is pos-
sible using a PD controller structure. This consider-
ation leads to a use of all gains, Kv,KD,KP > 0, as
suggested in (De Luca et al., 1992).

The derivative gain KD leads to high values for
the nullspace acceleration when not already starting
in an optimum of h – exactly like the velocity-based
schemes this corresponds to. Therefore, an additional
limit is added into the control scheme of Figure 1,
with q̈qqN,max = q̈qqmax− q̈qqT. This presents an alternative
to the successive consideration of maximum acceler-
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(a) initial pose case 1

prismatic joint

universal joint

moving platform

base platform (symmetric)

(lift cylinder)
leg chain

spherical joint end effector frame (CS)E

base frame (CS)0
(b) initial pose case 2 (singular) (c) final pose (both cases)

ϕz=0◦, cond(JJJ−1
xxx )=107.5 ϕz=33.8◦, cond(JJJ−1

xxx )=1.8 ·105 ϕz=−25.0◦, cond(JJJ−1
xxx )=56.1

dJdP

dB

extensible
cylinder

outer
cyl.

Figure 2: Task-redundant poses of the parallel robot of Sec. 6.1: (a) non-singular pose, (b) singular pose, (c) final value.

ations in the velocity-based schemes like (Santos and
da Silva, 2017). Additional nullspace motion is gen-
erated to counteract when approaching limits qqqmax of
joint positions and q̇qqmax of joint velocities. Lower
limits qqqmin are handled in the same manner.

The amount and extent of objectives that can be
included in the task redundancy resolution scheme is
limited if only one degree of redundancy exists. In-
stead of a nested nullspace projection like in (Naka-
mura et al., 1987), only weighted sums of objectives
can be used, which can be sufficient for properly de-
signed objective functions as in (Zhu et al., 2013) or
when prioritizing objectives, cf. (Lillo et al., 2019).

6 CASE STUDY

The validation of the nullspace projection of section 4
and the controller scheme of section 5 is performed
in the following via simulation. The assumption of a
five-DoF task and a six-DoF robot still holds. A paral-
lel robot is used since the benefits and applicability of
the proposed methods are better than for serial robots.

6.1 Singularity Avoidance in Nullspace

The nullspace motion is first examined without an ad-
ditional robot task motion, i.e. q̇qqT = q̈qqT = 000. The pre-
sented method can be applied to optimize any scalar
performance criterion h in the nullspace of the task
redundancy. In this example, the condition number
of the robot Jacobian matrix of (23) is selected as
h(qqq,xxx)= cond(JJJxxx)= cond(JJJ−1

xxx ). Minimizing this cri-
terion moves the manipulator towards low condition
numbers and therefore away from singularities.

A hexapod parallel (Stewart-Gough type) robot is
considered in a pose yyy with a high tilting angle of the
platform. Technical details of the robot are given in

Table 1. The high tilting angle (expressed by ϕx and
ϕy) presents the general spatial case, where the repre-
sentation of orientation by Cardan angles (X-Y ’-Z”)
is beneficial. The torsion angle ϕz of the platform is
set to two different values, depicted in Fig 2 a and 2 b,
representing the two cases to be investigated.

6.1.1 Case 1: Non-singular Initial Pose

In the first case the robot starts in the non-singular
pose of Fig 2 a with ϕz,start,1=0◦. The values of the
optimization objective h over the redundant coordi-
nate ϕz are depicted in Figure 3 c over a full rota-
tion of the platform (red dashed line). The over-
all performance of the robot is highly influenced by
singularities, which are located at ϕz,sing,1≈−65◦,
ϕz,sing,2≈34◦, ϕz,sing,3≈64◦ and ϕz,sing,4≈136◦. The
locations of these singularities ϕz,sing were obtained
from global evaluation of the redundant coordinate.

The nullspace motion is first generated by the
position-level IK scheme of (6). The convergence to-
wards the next local minimum of h(ϕz,final)=56.1 at
ϕz,final=−25◦ can be comprehended from Fig 3 a for
h(t), from Fig 3 b for ϕz(t) and from Fig 3 c for the
characteristic diagram h(ϕz) (blue lines). Compared
to the initial value of h(ϕz,start,1)=107.5 it can be as-
sumed that the overall performance of the robot is im-
proved by the nullspace motion. This could be quanti-
fied by other, more physically motivated performance
criteria such as accuracy, stiffness or actuator forces,
but is out of scope of this publication. The position-
level scheme only serves as a reference, since no time
relation is included originally and the steps k of (6)
are transferred to a time basis t using the joint velocity
limits. A C2-continuous trajectory (with continuously
differentiable position and velocity) regarding limits
for q̇qq and q̈qq can not be assured by this.

Therefore, the nullspace motion is obtained using
the trajectory IK scheme from (25) and section 4.2.3
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Figure 3: Simulation results of the parallel robot starting in the non-singular pose from Fig 2 a.
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Figure 4: Simulation results of the parallel robot starting in the singular pose from Fig 2 b.

in the actuator space. To emphasize the argumenta-
tion of section 5, first the feedback gains KD = 0 and
Kv = 0 are used with KP = 1. A discrete-time imple-
mentation with sample time 1 ms was used. The time
evolution in Fig 3 a and 3 b shows undamped oscilla-
tions (orange lines). Therefore this parameterization
does not allow to reach the purpose of moving to the
next local optimum of h with little overshoot and fast
convergence. To accomplish this control objective,
the parameterization Kv=0.5, KP=1 and KD=0.5 is
selected, which was obtained by manual tuning. The
motion controller now reaches the optimal value of
ϕz,final=−25◦ within about two seconds (black lines).

6.1.2 Case 2: Singular Initial Pose

The proposed new nullspace projection approach
of the full joint coordinate space of (21) and sec-
tion 4.2.2 has to be used if the initial pose or an
intermediate pose represents a singular configura-
tion. This is the case for the second starting pose
ϕz,start,2=33.8◦, where a numeric value for the con-
dition number of cond(JJJ−1

xxx ) = 1.8 ·105 is reached. In

this case, the inversion of JJJ−1
xxx is not possible (or at

least does not produce feasible results). Controller
schemes relying on JJJxxx, e.g. formulated in the op-
erational space, would produce high accelerations or
high actuator forces. Therefore a controller scheme
avoiding this drawback has to be used as a fallback
to physically operate the robot, e.g. a scheme defined
only in the actuator space.

The motion controller of section 5 is again used to
generate the nullspace motion with singularity avoid-
ance, as in the previous case. This time, the motion
is generated in the full joint space from (21) and sec-
tion 4.2.2 with the trajectory IK scheme.

The simulation results are given in Fig 4. Again,
the position-level IK and two parameterizations of the
trajectory IK are shown, while the position-level IK
only serves as comparison. The gains for the tra-
jectory IK were tuned manually and using a parti-
cle swarm optimization and were set to Kv=0.03,
KD=0.01, and KP=0.05 in the first set and Kv=0.2,
KD=0.03 and KP=0.5 in the second set. With both
sets again a fast convergence within two seconds can
be achieved while maintaining the limits for qqq, q̇qq and
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Figure 5: (a) Performance map of the condition number over the trajectory progress and all possibilities for the redundant
coordinate. (b) Distribution of the condition number over the trajectory for different settings.

q̈qq. The extent of oscillation and the settling time is
influenced by the selected rather low joint velocity
limits (see Table 1). This shows the feasibility of the
proposed nullspace scheme in full joint coordinates to
be able to leave a type-II singularity. The gain values
above are not directly comparable to the ones of sec-
tion 6.1.1, since there the compensation of the term
k(qqq) of (26) is attempted. The values in section 6.1.1
are divided by k′(qqq,xxx) = ||J̃JJ−1

xxx JJJxxx||, which presents a
rough estimate. The determination of the exact rela-
tion is subject of ongoing work. Also, a general rule
to determine the controller gains has to be found.

6.2 Trajectory with Singularity
Avoidance

The previous evaluation of section 6.1 shows the gen-
eral property of the task coordinate’s nullspace to al-

s=0, s=7
1≤s≤2

3≤s≤4
5≤s≤6

4≤s≤5
2≤s≤3

robot base

trajectory

moving
platform

Figure 6: Starting pose of the robot trajectory for ϕz=0.

low moving the manipulator away from singularities
without an additional task motion. In a practical ap-
plication like milling a pointing task trajectory yyy(t)
with C2 differentiability (or higher) is given. There-
fore a task trajectory q̈qqT(t) according to (20) is active
in the motion generation scheme summarized in Fig-
ure 1. Since milling presents one of the major use
cases of hexapod parallel robots, an exemplary trajec-
tory of milling a 45◦ bezel to a rectangular pocket is
used for evaluation, as visualized in Figure 6. The red,
green and blue axes around the rectangle represent the
x-, y- and z-axis of the end effector frame for ϕz=0.
Due to the task symmetry, only the pointing direction
of the blue z-axes has to be aligned. The tilting angle
of 45◦ poses high requirements on the robot and em-
phasizes the necessity of an appropriate spatial orien-
tation representation. The trajectory is put together by
rest-to-rest motions between eight poses yyyi as points
of support, summarized in Table 2 and correspond-
ing to s=0 to s=7 in Figure 6. At each corner of the
250 mm×200 mm-rectangle a change of orientation is
necessary to adjust the 45◦ angle for the next edge,
corresponding to 1≤s≤2, 3≤s≤4 and 5≤s≤6 in Fig-
ure 6. A normalized trajectory coordinate s instead of
the time t is used to represent progress along the path
in the figures of this section for the sake of simplic-
ity. Each rest-to-rest motion is assigned a range of one
in s. However, the trajectory is generated by a trape-
zoidal acceleration profile (C2 time-differentiable S-
curve) with ṙmax=50 mms−1, ϕ̇max=10◦/s, a discrete
sample time of 1 ms and acceleration and jerk times
of 10 ms. The duration of the trajectory is 63.1 s.

The global distribution of the condition number
h(qqq,xxx) = cond(JJJxxx) is shown as a performance map in
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Figure 5 for the complete trajectory, represented by
1062 samples of the path coordinate s on the horizon-
tal axis. The vertical axis is chosen as the redundant
coordinate ϕz which was discretized in 361 samples in
the range of ±180◦. The condition number is coded
by the color of the map. High condition numbers
h > 400 are saturated in the color code to dark red.
Singularities, which are defined as condition numbers
h > 104, and areas of joint limit violation are marked
with magenta. Creating the colored performance map
in this resolution requires 383 thousand evaluations
of the inverse kinematics and the performance crite-
rion. With this map a global optimization of the coor-
dinate ϕz(s) can be performed, which corresponds to
the methods of the state of the art.

Using a local optimization on the contrary does
not require the expensive computation of the perfor-
mance map. The nullspace motion of the redundant
coordinate ϕz is performed again by the nullspace
controller scheme of section 5. Different settings for
the nullspace controller are chosen for illustration and
the resulting nullspace motion is shown as different
lines in the performance map in Figure 5 a and as the
evolution of the condition number over the progress
of the trajectory in Figure 5 b. The settings are listed
in Table 3. Using different starting values and settings
emphasizes the robustness of the approach.

It has to be mentioned that the effects of the
nullspace gains are limited by the velocity and accel-
eration limits of the joints (see Table 1). Therefore
mainly in the last part of the trajectory a difference
between the settings becomes visible. The overall
behavior of avoiding areas of singularity is achieved
with all settings. The reference is a constant rotation
of the platform with ϕz=30◦ (cyan line in Figure 5).
This presents a good solution at the beginning, but
leads to a singularity during change of orientation at
the second corner for 1≤s≤2.

The first nullspace setting (set 1) in Figure 5 cor-
responds to the first setting in section 6.1.2. The other
settings each have different gains. All nullspace set-
tings produce a motion that avoids the first area of
singularity at s≈1.5. Also a second area of high, but
non-singular condition numbers at s≈3.7 is avoided.
A third area of high condition numbers at s≈5.4 can
not be avoided, since the shape of the performance
map leads to a dead end at the previous section of low
condition numbers at s>5. Here the disadvantage of
the local optimization becomes apparent and a global
optimization or a component of looking ahead (for
higher s) would outperform the proposed approach.
The qualitative effect of the decreasing gains and in-
creasing damping over the settings numbers can be
seen at parts of the trajectory where a reconfigura-

tion of the platform orientation is performed, e.g. at
s≈2.1 and s≈5.9. For lower gains the optimal plat-
form rotation is achieved later (in the sense of time t
and therefore also of trajectory progress s).

6.3 Evaluation of Computation Time

The number of function evaluations required for the
determination of the gradients of performance objec-
tives obviously influences the computation time. The
inverse kinematics algorithms on position and trajec-
tory level were implemented in MATLAB as compiled
stand-alone functions (using the MATLAB code gen-
erator and mex files). This combines fast iterations
and efficient debugging with the MATLAB graphical
user interface on the one hand and fast runtime of
C++ code on the other hand. The computation time
was evaluated on a standard desktop computer (Intel
Core i5-7500 CPU, 3.40 GHz, Linux operating sys-
tem, generic kernel, no real-time). The hardware per-
formance corresponds to typical PC-based robot con-
trollers. Measured computation times should be re-
garded relative to each other and in their order of mag-
nitude and may differ on other computing hardware.

Executing the position-level IK in the evaluation
of section 6.1 requires 394 steps with the Newton-
Raphson algorithm to compute an optimal pose which
takes a mean computation time of 226 ms (n=50,
σ=3.96 ms). The mean time per iteration is 0.57 ms
(σ=0.01 ms). This corresponds to the blue lines in
Figure 3. 555 iterations are necessary in section 6.1.2
with a similar mean time per iteration of 0.56 ms
(n=50, σ=0.01 ms, blue lines in Figure 4).

If a variation in all joint coordinates is com-
puted separately according to section 4.2.1, one it-
eration takes 1.78 ms (n=50, σ=0.04 ms). Despite
this method being not applicable to the case of sec-
tion 6.1, this shows the significance of using the gra-
dient computation by the redundant coordinate’s dif-
ference quotient from section 4.2.2.

The computation of the null space motion in the
actuation space according to section 4.2.3 (and 6.1.1)
instead of the full joint space of section 4.2.2 (and
6.1.2) does not improve the computation time of the
trajectory IK as expected in the current implementa-
tion. A simulated time of 10 s and therefore 10,000
samples were computed to obtain the black and or-
ange lines in Figures 3 and 4. Timing evaluation
was performed with n=50 repetitions. In the actuated
joint space (Figure 3) the computation time was 9.3 s
(σ=52 ms, orange line, 0.93 ms per sample) and 9.7 s
(σ=243 ms, black line). In the full joint space (Fig-
ure 4) the computation times were 9.1 s (σ=147 ms,
orange line) and 9.2 s (σ=15 ms, black line). Using
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the MATLAB profiler on the non-compiled function
reveals that computing NNNqqq of section 4.2.2 only takes
about 3.5 % of the total time and NNNθθθ of section 4.2.3
only takes about 0.6 % of the total time. Performing
the 6×6 inverse necessary for the latter approach only
takes 0.15 %. The term NNNqqq is also used for a nullspace
motion upon joint position limit violation and is com-
puted in all cases. This explains the higher compu-
tation times in the latter cases. Due to the small dif-
ferences between the computation times the full co-
ordinate space (section 4.2.2) should always be used
within the current implementation of the algorithm.

The effort for computing the nullspace motion in
general becomes visible when comparing the non-
redundant case in section 6.2 (cyan line in Figure 5) to
the redundant cases (other lines). The non-redundant
trajectory takes 12.7 s (n=10, σ=23 ms, 0.20 ms per
sample) while the redundant case takes 54.7 s (n=10,
σ=139 ms, 0.87 ms per sample).

In summary it can be stated that despite the higher
computational effort for the nullspace motion algo-
rithms already the current implementation can be used
as an online controller, since the runtime stays be-
low 1 ms, which is the typical control loop sample
time for such robots. The MATLAB functions can
be directly used as blocks in SIMULINK which can
be deployed with the EtherLab toolchain (using stan-
dard Ethernet hardware of a desktop computer with
Linux realtime kernel as target and the EtherCAT bus
as sensor/actuator interface). Runtime may further be
improved by disabling computations with little effect
and by using functions specific to the robot instead of
the currently used general approach without limiting
assumptions.

7 CONCLUSIONS AND
OUTLOOK

A simplified computation of the gradients of perfor-
mance criteria of robot manipulators is presented,
which exploits the properties of task redundancy of
degree one. This presents an extension to the appli-
cation of redundancy resolution frameworks for serial
and parallel robot manipulators. The performance cri-
teria have to be evaluated under real-time conditions
to allow their online optimization. Therefore, deploy-
ment of more sophisticated performance criteria will
be possible by reducing the number of function eval-
uations necessary for gradient calculation.

With the presented nullspace formulation avoid-
ing singularities for parallel robots is possible by per-
forming the calculations in the full joint space. Using
this more complex model allows to define a fallback

controller for exiting a singularity of type II. This can
be used if tracking a trajectory fails due to external
disturbance or in case of manually guiding a parallel
robot platform in teaching mode. In offline trajectory
planning such as for machining tasks the method can
be used to locally optimize path segments combined
with global optimization of the whole path similar to
Figure 5 of the paper.

Compared to the authors’ earlier work, the redun-
dancy resolution schemes of (Kotlarski et al., 2010)
are extended for an efficient continuous adaption of a
redundant degree of freedom instead of the previously
favored discrete optimization. The need for computa-
tionally expensive global optimization decreases. The
theoretical contribution (Schappler et al., 2019) re-
garding kinematic modeling is brought one step closer
towards an application.

Future work comprises finding rules for setting
gain parameters of the nullspace scheme, finding the
analytic relation (26) between nullspace projectors of
parallel robot actuator space and full joint space, and
performing a stability analysis using control theory.

Table 1: Characteristic values of the parallel robot of Sec. 6.

Name Symbol Value Unit
base diameter dB 1200 mm
platform diam. dP 400 mm

(in Sec. 6.2) dP 300 mm
joint pair distance dJ 100 mm
platform position rx, ry, rz 50, 30, 600 mm
platf. orientation ϕx,ϕy 30◦,−30◦ deg

act. j. stroke limits θi,min/max 600, 1200 mm
pass j. angle lim. — not set deg
act. j. velo. limits θ̇i,max 2 ms−1

pass j. velo. lim. — 45 deg/s
act. j. acc. limits θ̈i,max 20 ms−2

pass j. acc. lim. — 1146 deg/s2

Table 2: Rest poses yyyi of the trajectory in Figures 5 and 6.

s rx ry rz ϕx ϕy
mm mm mm deg deg

0 -50 40 700 45 0
1 200 40 700 45 0
2 200 40 700 0 -45
3 200 -160 700 0 -45
4 200 -160 700 -45 0
5 -50 -160 700 -45 0
6 -50 -160 700 0 45
7 -50 40 700 0 45

Table 3: Settings for the nullspace motion of the trajectory
in Figure 5 and Figure 6.

Param. ref. set 1 set 2 set 3 set 4
ϕz,0 30◦ −30◦ 45◦ 90◦ 45◦
Kv — 0.03 0.1 0.25 0.5
KP — 0.05 0.01 0.005 0.0025
KD — 0.01 0.002 0.001 0.0005
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