
SecSDN: A Novel Architecture for a Secure SDN

Parjanya Vyas and R. K. Shyamasundar
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Keywords: Software Defined Networking, SDN Security, Network Security.

Abstract: Security of SDN has been an important focus of research. Attempts to uncover security vulnerabilities in
SDN points to two major causes: (i) Inherent assumption of switches being severely limited in intelligence,
(ii) Lack of authentication in the communication between controllers and switches. The assumption that
switches have limited intelligence, and can only do the task of packet forwarding, further leads to the inference
of switches never being actively corrupt or operated by malicious entities. While such an assumption is
reasonable for SDN data centers operated within the bounds of a single organization, it is incorrect for larger
scaled inter-networking. In this paper, we propose SecSDN, an architecture and a protocol using repetitive
hashing to authenticate the communicating parties, securely verify consistency of flow tables residing inside
the switches and detect their malicious behaviour within a predefined constant time frame. Using such a
technique, we arrive at an infrastructure that can securely perform functions as envisaged in SDN. We establish
the correctness of SecSDN and the simulations show that the overhead incurred is virtually non-existent.

1 INTRODUCTION

Software Defined Networking (SDN) offers a flexible,
programmable, and adaptable architectural frame-
work to a spectrum of innovations that can result in
widespread practical implementations. SDN has been
tested and deployed successfully in many of the ma-
jor and widespread data centers (Yap, ; Bidkar, 2014).
Kreutz et al. provide an excellent summary of SDN
and its related research efforts in (et al., 2015).

Controller is the most important component of
SDN providing a clear and strict separation of data
and control planes. Forwarding switches are deemed
to be devices that perform simple forwarding func-
tions as per the flow rules in the flow table. Flow
tables are populated by commands issued by the
controller and interpreted by the forwarding devices.
While such simplicity in functionality is sufficient in
a well orchestrated system, it becomes difficult to re-
alize trust among distributed components that are in-
variably distrusted. Lack of authentication mecha-
nism adds a significant complexity to this problem.
Feghali et al., (Feghali et al., 2015), study various se-
curity problems due to authentication and the assump-
tions discussed above. Official OpenFlow specifica-
tion describes TLS authentication to be an optional
feature leading to several manufacturers ignoring it.
Switches are usually treated as “dumb forwarding de-

vices” – thus refraining from implementing the cru-
cial security mechanism.

Identifying a malfunctioning or malicious switch
in a large scale SDN is an arduous task. Most com-
monly exercised approach to identify malfunctioning
switch is to dump flow tables of all the suspected
switches and manually check them for inconsisten-
cies. A compromised switch with adversarial inten-
tions would easily be able to deviate from the pro-
tocol. Serious SDN security issues have been nicely
summarized in (Scott-Hayward et al., 2013). Major
security problems like man-in-the-middle (MitM) at-
tack and forging identity arise due to lack of proper
authentication between the controller and switches.

In this paper, we propose an enhanced OpenFlow
protocol and a controller architecture keeping the ra-
tionale invariant. The proposed architecture ensures
a robust 2-way authentication in the communication
between the controller and the OpenFlow switch. It
further enables verification of the correct implemen-
tation of flow table commands by ensuring flow table
consistency. These are achieved without losing out on
performance that is key to SDN popularity and accep-
tance. In our architecture, we introduce the notion of
‘verification hash’ – that is computed using repetitive
hashing. Verification hash serves dual purpose - It (i)
ensures that a data plane switch follows the controller
commands correctly maintaining consistency of flow

Vyas, P. and Shyamasundar, R.
SecSDN: A Novel Architecture for a Secure SDN.
DOI: 10.5220/0010575505870594
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 587-594
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

587



tables and (ii) authenticates both the communicating
parties - controller and data plane switch. We also
provide security guarantees of the solution.

2 SDN SECURITY: THREATS
AND CAUSES

Current applications of SDN assume that the network
is inside the domain of a single secure organization.
The controller and the forwarding switches are trusted
and do not need authentication. The data plane de-
vices are assumed to be simple forwarding devices
with limited intelligence and computing capabilities.
Under these assumptions, SDN could work securely
as the possibility of identity forgery and device cor-
ruption is no longer extant. Therefore, authentication
for communications is kept optional even in the lat-
est version of OpenFlow specification (ONF, 2019) -
justified by the dire need of scalability and reduced
latency.

In real life, many of these assumptions do not
hold. SDNs are implemented in data-centers that de-
fine inter-network communication interfaces. In other
words, the assumption of the network operating in-
side the canopy of a single organization fails. Rich
feature sets provided by data plane devices contradict
the assumption of their limited intelligence. For such
inter-networking communications where the involved
parties are mutually untrusted, a robust 2-way authen-
tication and verification is necessary to ensure secu-
rity and integrity of the network.

Scott-Hayward S. et al.,(Scott-Hayward et al.,
2013) have explored various security threats possible
in current SDN architectures. Brooks et al.,(Brooks
and Yang, 2015), present a practical MiTM against
OpenDayLight (ODL) SDN controller. Antikainen
M. et al.,(Antikainen et al., 2014), show how a com-
promised OpenFlow switch can be used to attack an
SDN. Liyanage et al.,(Liyanage, 2015), review se-
curity challenges faced by future Software Defined
Mobile Networks (SDMN) and propose an architec-
ture to solve these problems. Khurshid et al., (Khur-
shid et al., 2013), propose a framework to verify and
maintain network-wide invariants in real time in a
SDN. A separate multi-layered security module along
with IPSec tunnelling has been proposed in (Liyan-
age, 2015). (Hussein et al., 2016) proposes an en-
tire separate plane dedicated for security. A database
defined network (DDN) called ‘Ravel’(Wang et al.,
2016) has been proposed to implement SDN using
databases. To secure the DDN, access controls have
been defined in (Glaeser and Wang, 2016) using row
level database security.

Figure 1: Verification hash using repetitive hashing.

Various solutions to overcome security vulnerabilities
of SDN have been realized through insertion of non-
trivial modules between control plane and data plane
or implementing a wrapper for OpenFlow switches.
While each solves a particular issue, it generally takes
a long time to detect inconsistency between flow ta-
ble of a switch and the view of its controller. There
is a non-negligible observable overhead resulting in
degradation of performance of the switch, controller,
and/or the network. Finally, interceptors introduced
generally contradict the SDN philosophy of clean sep-
aration between control and data plane operations. In
summary, the two main issues of security in SDN are:
(i) Lack of a robust 2-way authentication protocol.
(ii) Actual flow table residing inside the switches, and
its view represented in the controller can vary over
time. Such inconsistencies are logically incorrect and
can be leveraged by attackers to inject malicious flow
rules.

We overcome these issues using the concept of
verification hash calculated using repetitive hashing
depicted in Figure 1. Verification hash provides a ro-
bust authentication cum integrity mechanism when-
ever a data-plane switch and controller communicate.
The concept of repetitive hashing ensures consistency
of flow tables to prevent any unwanted injections
of malicious flow rules in the flow tables of honest
switches. Keeping in line with this spirit, we propose
“SecSDN”, as a novel architecture and a protocol that
uses repetitive hashing to ensure security of SDN.

3 SecSDN: A NOVEL
ARCHITECTURE

3.1 Realizing Flow Table Integrity

We impose a compulsory acknowledgement scheme
on forwarding switches by modifying the existing
OpenFlow protocol to verify the consistency of flow
tables used by forwarding switches. Controller al-
ways maintains a hash of the current flow table of the
switch. As and when the flow table changes are done,
the controller updates the hash. The controller also
keeps track of the changes done in the flow table by
the switch, through a trusted monitoring code. When-
ever a change in flow table is detected, the monitoring

SECRYPT 2021 - 18th International Conference on Security and Cryptography

588



(a) Switch archi-
tecture

(b) Protocol Inter-
actions

Figure 2: SecSDN Architecture and Protocol Interactions.

code simply calculates a hash of these latest changes
and sends it to the controller. The verification is done
by comparing the hash sent by the monitoring code
and the hash of the latest flow table present in the con-
troller. The actual expression used to calculate and
refresh the hashes is described in section 3.3.

As a byproduct, our hashing mechanism, achieves
a 2-way authentication mechanism to authenticate
communicating entities - the switch and the con-
troller. By using hashes stored in the controller and
switches as server and client nonce, and the identity
of the switch as a shared secret, a structure similar to
the standard authentication protocol is realized with-
out using any additional packet or a cryptographic
mechanism. We argue that the protocol provides a
foolproof authentication using which, the Authentica-
tion Property, is ensured (cf. Theorem 1 in Section
4).

3.2 SecSDN Architecture

To overcome the problem of authentication and con-
sistency verification, a concise way of acknowledge-
ment in terms of a simple proof of correct execution is
required. Consistency essentially means the view of
the flow table residing in the switch and the view of
the flow table present in the controller are the same.
For succinctly representing the state of a data object
such as the flow table, a fixed length hash can be used.
We use such a hash as an acknowledgement by the
switches to verify their correct execution of controller
commands.

We extend the existing OpenFlow south-bound in-
terface by adding a single field in the packet struc-
ture of all the message types used in south-bound

Figure 3: The SecSDN protocol diagram.

interface. We add an extra field called a ‘verifica-
tion hash’ in all the types of OpenFlow packets that
are from switch to controllerThese packets mainly in-
clude types, ‘packet-in’, ‘FlowRemoved’, ‘GetConfi-
gRes’, etc., that are all the message types for commu-
nication from switch to controller. Additionally, all
the switches in the network will have a small trusted
code that can access the flow table directly. The
trusted code can either be installed by a trusted man-
ufacturer, or as stated in the protocol later, can be in-
stalled by the controller as the result of first commu-
nication between the switch and the controller. The
broad proposed architecture called SecSDN is shown
in Figure 2a.

3.3 Protocol Description

Figure 3 depicts a schematic diagram of SecSDN pro-
tocol that improves upon the existing OpenFlow pro-
tocol shown in (et al., 2015). Figure 2b shows inter-
actions in the protocol used in SecSDN. SecSDN pro-
tocol in described detail along with interactions be-
tween the controller and a switch.

SecSDN utilizes the concept of repetitive hashing
to represent the flow table states. As shown in Fig-
ure 3, every data-plane switch maintains a monitoring
code, that contains a verification hash. The controller
maintains a hash table that stores all the verification
hashes corresponding to the data-plane devices exist-
ing in the network. The initial hash is calculated using
Formula 1.

initial hash = Hash(secret id) (1)

As and when the flow table changes in the switch, the
monitoring code updates the recent hash using expres-
sion 2.

new hash = Hash(sec id + chngd f low rule+old hash)
(2)

Whenever the controller needs to send a packet to a
switch, it places the old hash present in its flow table
with the packet intended for the switch. This hash
serves the purpose of a server nonce. The switch
places the newly calculated (using the expression 2)
verification hash in the response packet. This hash

SecSDN: A Novel Architecture for a Secure SDN

589



servers two purposes: (i) it is used for verification
of the flow table by the controller and (ii) it serves
as a client nonce in the authentication mechanism.
Whenever the controller receives a message from the
switch, it verifies that the hash present in the packet
matches with the hash from the hash table. In case
the hashes do not match, the switch is reported as a
malfunctioning switch to the networking application
(NetApp) and necessary steps are taken as defined by
the NetApp.

Interpretation of labelled messages in Figure 2b:
1. A switch is newly connected in the network and es-
tablishes a TCP channel with the controller normally.
2. Controller maintains a verification hash corre-
sponding to the latest flow table change for every
switch in the network. The initial value of the hash
would be the hash of the switch’s unique and secret
id, which is not known to anyone else apart from the
controller and the trusted code. 3. Inside the ‘Fea-
tureReq’ message that is the first message received
by the switch, the controller provides a signed trusted
code, that is to be installed on the switch. The trusted
code is obfuscated to hide all the secret information
and prevent tampering. It is implied that the switch
responds with the ‘FeatureRes’ message that would
additionally contain the secure acknowledgement that
the code is successfully installed and is not tampered
with.
4. Whenever the controller wants to send a packet to
the switch for changing its flow rule, the hash corre-
sponding to that switch is updated using Formula 2.
The controller also initiates a count-down for check-
ing how long has it been till the change in the hash is
acknowledged.
5. The controller sends command for modifying the
flow table and switch changes the same accordingly.
6. Trusted code residing in the switch keeps monitor-
ing the flow table and maintains the latest hash.
7. As soon as it detects any change in the flow table
made by the switch, it updates its hash in the same
way as above. The code also initiates a count-down
to measure how long has it been till it has acknowl-
edged the change in hash.
8. Whenever a switch wants to communicate with the
controller using one of the message types (‘packet-
in’, ‘FlowRemoved’, ‘GetConfigRes’, etc), after cre-
ating the packet, it queries the latest hash from the
trusted code and puts it in the additional field of ‘ver-
ification hash’ as shown in Figure 2a. Timeout for
the acknowledgement is reset when this message is
sent to the controller. If the count-down timer goes
off without any message being sent to the controller,
then a special acknowledgement message containing
the updated hash is sent to the controller for verifying

the correctness of the flow table by the trusted code.
9. Whenever the controller receives a packet from the
switch, before performing the intended task, it first
matches the hash residing in the packet with the hash
maintained by itself for the particular switch and re-
sets the acknowledgement timer.
10. If the hashes match, the normal operations pro-
ceed, else a malfunctioning or adversarial switch is
detected and appropriate steps are taken as defined by
the policy of the controller.
11. If the acknowledgment timer in the controller
goes of without receiving the acknowledgement for
the change, then appropriate steps as defined by the
management policy are taken to check what is wrong
with the switch.

The protocol ensures two important properties that
lay the foundation of the security guarantees provided
by the architecture. The first property is called Com-
pulsory Acknowledgement, which says “Whenever
the recent hash is recalculated by an honest Open-
Flow switch, an acknowledgement is always sent to
the controller within a constant timeframe”. This is
ensured by the timers presented in the protocol above.
The detailed description and proof of this theorem are
presented as Theorem 2 in Section 4.

Second, the most important property central to our
architecture is the property of Threat Detection - “An
OpenFlow switch that does not follow the controller
commands would always be caught within a constant
time frame”. This property ensures that a malicious,
malfunctioning or misconfigured switch is always de-
tected within a constant amount of time. This time is
dictated by the countdown values set in the controller
and switch timers. These values also serve as a secu-
rity parameter to tune in between the performance and
security provided by the protocol. Theorem 4 given in
Section 4, articulates threat detection and it’s proof.

4 SecSDN SECURITY
CHARACTERIZATION

Assumptions. SecSDN is secure under the assump-
tion that the SDN controller and the designed Trust-
Code is secure; this is a natural assumption (similar
to assuming the kernel of an OS is secure). We elab-
orate these assumptions to convince the reader of the
naturalness of the assumptions.
Assumption 1 Controller is Fully Trusted: Primary
objective of SecSDN is to secure the controller from
potentially malicious forwarding switches by secur-
ing the south-bound interface assuming the controller
is trusted. This is quite a natural assumption in the
context of SDN rationale.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

590



Assumption 2 Monitoring Code is Trusted and Can-
not be Tampered: The monitoring code is installed
by the controller in the forwarding switches as part of
their first interaction. The trusted controller installs
the trusted monitoring code.

In a sense, the switches present in the network
are potentially corruptible entities and include them
in our threat model. The monitoring code resides in-
side the switch, and for the trust of monitoring code
to hold, its’ integrity must be intact. Therefore, the
monitoring code needs to be tamper proof.
Threat Model. As described in Section 4, we com-
pletely trust the controller and the monitoring code
provided by the controller. The attacks (if any) in
SecSDN are thus possible through (i) a switch con-
nected to the SDN; the switch might try and deviate
from the protocol, or (ii) eavesdropping communica-
tions between the controller and the switch. Thus,
attackers are capable of sniffing, hijacking, tamper-
ing or replaying packets from/to the switch. Note
that the attackers are not capable of breaking crypto-
primitives.
Security Characterization.
Theorem 1. Authentication: A third party entity can-
not assume the identity of a genuine OpenFlow switch
or the SDN controller once the communication chan-
nel is established.

Proof. Proof depends on two assumptions (i) Secrecy
of the switch identity and (ii) Security of the hashing
algorithm. Assuming that the communication chan-
nel is set up and the hashes are correctly initialized
in the OpenFlow switch and the controller, the recent
hash itself works as a valid nonce. Properly authenti-
cated client-server communication protocol that prov-
ably prevents man-in-the-middle (MiTM) and other
such attacks uses client and server nonces.Here, the
nonce protect the client and the server from replay
attacks by making the message unique. Property of
hashing algorithm prevents the output of the freshly
calculated hash being repeated. In SecSDN, when-
ever controller issues a command to the switch (Step
5 in Section 3.3), the current hash of the switch is used
as the server nonce. During acknowledgement (Step
8 in Section 3.3) to the controller the newly refreshed
hash is used as the client nonce in the authentication
mechanism. Finally, the secret identity of the switch
is used as the secret input to the hash function.

From the above argument, it follows that the mes-
sage structure and protocol that SecSDN uses, com-
prise of all the necessary components and functions
for a two-way authenticated communication. The se-
curity of such mechanism can always be guaranteed
if (i) nonces are uniformly random and (ii) they have
negligible repeat probability. These follow from the

properties of the hash functions that the uniform ran-
domness is guaranteed by the security of the hash
function and every time the hash is recalculated, it
uses the old hash as an input, making the input, and
by definition the output, unique. Hence, the proba-
bility that a nonce is repeated is negligible. There-
fore, the communication is always authenticated, and
a third party cannot assume the identity of an Open-
Flow switch or the controller.

Authentication ensures that a third party cannot forge
identity of a genuine SDN controller or switch. It further
assures that during an ongoing communication between a
controller and a switch, it is not possible for an unautho-
rized malicious entity to launch MiTM.

Theorem 2. Compulsory Acknowledgement: Whenever
the recent hash is recalculated by an honest OpenFlow
switch, an acknowledgement is always sent to the controller
within a bounded time.

Proof. Here, we use the assumption of reliability of
the communication channel and the trusted nature of
the monitoring code. Whenever a hash is recalculated
in a switch (Step 7 in Section 3.3), a timer is started by
the monitoring code. There are two possible scenar-
ios: (i) If there is a message to be sent to the controller
by the switch before the timer goes off, then the recent
hash is piggybacked with this message and sent to the
controller as a piggybacked acknowledgement (Step
8 in Section 3.3). (ii) If the timer goes off, without
any message sent to the controller by the switch, then
monitoring code creates a special acknowledgement
packet along with the recent hash and sends it to the
controller (Step 8 in Sec. 3.3).

Hence, in both the cases above, an acknowledge-
ment is always sent to the controller within a constant
time frame dictated by the timer residing in the mon-
itoring code.

Compulsory acknowledgement property assures that
changes done in the flow table by an honest switch is al-
ways sent to the controller as an acknowledgement. The
acknowledgement might be delayed by a bounded time to
improve the overall network performance, but eventually it
will always be sent.

Theorem 3. Consistency: Recent hash maintained
inside the monitoring code of an honest OpenFlow
switch and the one maintained inside the controller
would eventually always match within a bounded
time.

Proof. The hashing function used in the controller
and the switches is the same. An initial value of the
recent hash is calculated by hashing the secret identity
(after Step 3 shown in Section 3.3), which is provided

SecSDN: A Novel Architecture for a Secure SDN

591



by the controller. Hence, the initial hash calculated
by the controller (during Step 2 in Section 3.3) and the
switch would be exactly the same. The recent hash re-
sides inside the monitoring code and is isolated from
the environment. It can be modified only by the mon-
itoring code. Hence, the only time the hash changes
is when it is changed by the monitoring code (Step 7
in Section 3.3). The trusted and verified nature of the
monitoring code along with the authentication prop-
erty proved in Theorem 1 forbids any entity other than
the authenticated controller to change the recent hash.
Hence, the hash only changes when the flow table is
required to be changed, which in turn is commanded
by the authenticated SDN controller.

Whenever the controller issues a command to
change the flow table, it recalculates it’s own recent
hash using the expression defined in step 4 of the pro-
tocol description. This is exactly the same expression
used by the monitoring code to recalculate the recent
hash in the switch when a change in the flow table is
detected. According to Theorem 2, the recalculated
recent hash will always be sent to the controller for
an acknowledgement; hence, both the versions of the
hash will match, as soon as the modification is com-
plete in both - the controller and the switch.

Steps above cover all possibilities when the most
recent hash is changed either in controller or switch.
Given the reliability of the communication channel,
hashes in the controller and switch will always match
and hence the theorem.

Consistency property ensures that the actual flow table
residing inside the switch and its view present in the con-
troller match. Recent hash is a unique representation of the
state of the flow table and assuring the matching of hashes,
automatically verifies that the actual flow table and its view
in the controller are same.

Theorem 4. Threat Detection: A switch that does not
follow the controller commands will always be caught
within a bounded time.

Proof. A dishonest switch can only evade the con-
troller commands in three possible ways: (1) It mod-
ifies the flow table wrongly (during Step 5 of Section
3.3), (2) It discards the controller command altogether
(The latter part of Step 5 in Section 3.3 is dropped),
and (3) It prevents the monitoring code from commu-
nicating with the controller (The latter part of Step 5
in Section 3.3 is dropped).

If the flow table is modified differently, then the
hash calculated by the monitoring code will not match
the hash calculated by the controller, due to the prop-
erty of the hashing function and the uniqueness guar-
anteed by the hashing formula. The switch, in this
case, is caught almost instantaneously.

Figure 4: A schematic diagram of secure SDN simulator.

If it discards the controller command without modi-
fying the flow table (scenario 2) or prevents outgoing
communication from the monitoring code (scenario
3), the timer started in the controller will eventually
go off without receiving an acknowledgement from
the switch. Hence, the switch will be caught in the
time frame defined by the controller timer, that is con-
stant.

A scenario where the outgoing communication
from the monitoring code is captured and corrupted
or modified is not possible because the authentication
mechanism requires a valid hash to be presented to
the controller along with the acknowledgement. This
valid hash can only be calculated if the switch iden-
tity is known, that is assumed to be a secret. Hence,
the integrity of messages between the controller and
the switch cannot be broken without immediate de-
tection.

Threat detection property states that a malicious or
malfunctioning switch that wrongly populates a flow
table is eventually always detected within a bounded
time.

5 PERFORMANCE EVALUATION

We have built a proof of concept of SecSDN as a se-
cure SDN simulator. SecSDN simulator works in two
different modes: (i) normal and (ii) secure. In nor-
mal mode, the authentication and verification mech-
anisms described in the earlier sections are disabled.
In secure mode, the protocol described in Section 3.3
is activated and the consistency of the flow table is
verified using SHA256 hash. A schematic diagram
depicting the architecture is shown in Figure 4.

We use appropriate metrics defined in (Isaia and
Guan, 2016) for benchmarking our simulator. We
evaluate our implementation using three different
topologies with variable number of nodes (N) or
switches with N = 10, 50 and 100 for both ‘normal’
and ‘secure’ cases. Topology 1 shown in Figure 5a
corresponds to measuring performance when there is
a bottleneck link. Variable number of messages that

SECRYPT 2021 - 18th International Conference on Security and Cryptography

592



Table 1: Performance measurements for Topology T1.
N=10 N=50 N=100

Normal Secure Normal Secure Normal Secure
Total flows 10 10 50 50 100 100
Total time to add all flows 434 655 2497 2824 4250 5392
Total network data sent to add all flows 272 912 1474 4674 3074 9474
Total packets sent to add all flows 20 20 100 100 200 200
Total messages sent 10 10 50 50 100 100
Total message propagation time 2599 2564 11852 11599 24972 23287
Average flow length 4 4 4 4 4 4
Average time to add one flow 43.4 65.5 49.94 56.48 42.5 53.92
Average network data sent to add one flow 27.2 91.2 29.48 93.48 30.74 94.74
Average packets sent to add one flow 2 2 2 2 2 2
Average message propagation time 259.9 256.4 237.04 231.98 249.72 232.87

Table 2: Performance measurements for Topology T2.
N=10 N=50 N=100

Normal Secure Normal Secure Normal Secure
Total flows 19 19 99 99 199 199
Total time to add all flows 1463 2319 27908 51183 113587 173597
Total network data sent to add all flows 1529 6233 39099 127003 165846 501750
Total packets sent to add all flows 109 109 2549 2549 10099 10099
Total messages sent 19 19 99 99 199 199
Total message propagation time 3096 3248 44476 40892 164229 154357
Average flow length 7 7 27 27 52 52
Average time to add one flow 77 122.05 281.9 517 570.79 872.347
Average network data sent to add one flow 80.47 328.05 394.94 1282.86 833.4 2521.36
Average packets sent to add one flow 5.74 5.74 25.75 25.75 50.75 50.75
Average message propagation time 162.95 170.95 449.25 413.05 825.27 775.66

Table 3: Performance measurements for Topology T3.
N=10 N=50 N=100

Normal Secure Normal Secure Normal Secure
Total flows 9 9 49 49 99 99
Total time to add all flows 345 537 1768 2491 3658 5173
Total network data sent to add all flows 118 406 717 2285 1468 4636
Total packets sent to add all flows 9 9 49 49 99 99
Total messages sent 9 9 49 49 99 99
Total message propagation time 1592 1529 8535 7482 17333 17260
Average flow length 3 3 3 3 3 3
Average time to add one flow 38.33 59.67 36.08 50.84 36.95 52.25
Average network data sent to add one flow 13.11 45.11 14.63 46.63 14.83 46.83
Average packets sent to add one flow 1 1 1 1 1 1
Average message propagation time 176.89 169.89 174.18 152.69 175.08 174.34

use the bottleneck link are sent simultaneously. The
performance of SecSDN is measured for 10, 50 and
100 messages for this scenario. Topology 2 shown
in Figure 5b corresponds to measuring performance
when the topology is ‘linear’ and there are flows of
varied lengths present in the network. In the experi-
ments with value of N = 10, 19 flows with minimum
length of 3 to maximum length of 12 are present. Sim-
ilarly for N = 50, 99 flows of length 3 to 52 and for N
= 100, 199 flows of length 3 to 102 are present in the
network. Topology 3 shown in Figure 5c corresponds
to measuring performance when the topology is ‘star’
and there is maximum load on a single switch. In this
case, all flows are of length 3 but all of them passes
through the same switch. In the experiments with N
= 10, 50 and 100 a single switch maintains connec-
tion with the controller and 10, 50 and 100 hosts and
manages 9, 49 and 99 flows respectively.

Topologies are shown in the figures 5a, 5b, 5c and
their experimental results are shown in tables 1, 2, 3.
Time is measured in microseconds (µs) unit and the
network data is measured in bytes (B).

5.1 Discussion

Figure 6 and Figure 7 show bar charts depicting com-
parison of average time to add one flow and compari-
son of average message propagation time for a single

Table 4: Overhead incurred in SecSDN vs SDN.
Topology Total switch count Overhead Factors

Flow setup time Flow setup data Flow setup packets Message propagation time

T1
20 0.51 2.35 0 -0.01

100 0.13 2.17 0 -0.02
200 0.27 2.08 0 -0.07

T2
147 0.59 3.08 0 0.05
2747 0.83 2.25 0 -0.08

10497 0.53 2.03 0 -0.06

T3
9 0.56 2.44 0 -0.04

49 0.41 2.19 0 -0.12
99 0.41 2.16 0 0

message of 512 bytes in the topologies described ear-
lier. As seen from the results in the Table 4 and chart
shown in Figure 7, the message propagation and mes-
sage forwarding are completely independent of the
secure nature of the topology. The protocol only af-
fects the setup phase of the network when flows are
being initialized. The piggybacking used in the pro-
tocol design is highly effective as clearly seen from
the fact that number of network packets required for
initializing flows remains exactly the same for SDN
and SecSDN setups.

As the number of flows and the average length
of the individual flows increase, the number of net-
work bytes sent to initialize these flows increase in
SecSDN. This is so since every flow table modifica-
tion in a switch requires an acknowledgement with
recalculated hash sent to the controller. SHA256 is
used to generate a 32 bytes hash per flow table mod-
ification. Hence, every time a flow is added, all the
switches present in the path of the flow needs to send
an extra 32 bytes to the controller as an ack. This
means, as and when the flow length and the number
of flows increase, the network bytes sent to add these
flows would also increase with a factor of 32 bytes per
switch in all the flows. But compared to the real time
data with size of thousands of megabytes that usually
flows in the networks, this amount is negligible in a
large scale SDN topology. As a result of increase in
data bytes while initializing flows, time to initialize
flows will also increase linearly as seen from Figure
6. Every time a flow is initialized, the controller as
well as the switch need to calculate a new SHA256
hash for every switch in the flow path. The additional
hash computations, and the time taken to transmit the
32 bytes hash would result in additional time for flow
initialization.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have envisaged SecSDN as an effi-
cient architecture using an enhanced OpenFlow pro-
tocol that authenticates and securely verifies consis-
tency of flow tables in switches across SDN using
repetitive hashing. It is shown that SecSDN realizes
security in SDN via a simple robust authentication,

SecSDN: A Novel Architecture for a Secure SDN

593



(a) Topology 1 (b) Topology 2 (c) Topology 3

Figure 5: Topologies chosen for experimental evaluation.

Figure 6: Average time to add one flow in SecSDN vs SDN.

Figure 7: Avg message propagation time: SecSDN vs SDN.

maintaining a clean separation between control and
data plane operations. It detects a malicious switch in
a constant time - bound by a timer value - that serves
as a security parameter to tune between desired se-
curity and performance. Our initial simulations show
that the overhead incurred is virtually non-existent –
thus showing the power of SecSDN both in theory and
practice. In short, SecSDN provides a good architec-
tural basis for building secure SDNs.

To sum up, SecSDN architecture provides a
promising proven concept towards building a secure
SDN as compared to other approaches.

ACKNOWLEDGMENTS

The work was done at the Information Security Re-
search and Development Centre (ISRDC) of Indian
Institute of Technology Bombay, sponsored by the
Ministry of Electronics and Information Technology,
GOI.

REFERENCES
Antikainen, M., Aura, T., and Särelä, M. (2014). Spook in

your network: Attacking an sdn with a compromised
openflow switch. In Secure IT Systems, pages 229–
244. Springer Int. Publisher.

Bidkar, S. e. a. (2014). Field trial of a software defined net-
work (sdn) using carrier ethernet and segment routing
in a tier-1 provider. In IEEE Global Communications
Conference, pages 2166–2172.

Brooks, M. and Yang, B. (2015). A man-in-the-middle at-
tack against opendaylight sdn controller. In 4th ACM
Conf. on Research in Information Technology, RIIT
’15, pages 45–49.

et al., D. K. (2015). Software-defined networking: A com-
prehensive survey. Proc. of the IEEE, 103(1):14–76.

Feghali, A., Kilany, R., and Chamoun, M. (2015). Sdn secu-
rity problems and solutions analysis. In Int. Conf. on
Protocol Engineering (ICPE) and Int. Conf. on New
Technologies of Distributed Systems (NTDS), pages 1–
5.

Glaeser, N. and Wang, A. (2016). Access control for a
database-defined network. In 2016 IEEE 37th Sarnoff
Symposium, pages 1–2.

Hussein, A., Elhajj, I. H., Chehab, A., and Kayssi, A.
(2016). Sdn security plane: An architecture for re-
silient security services. In 2016 IEEE Int. Conf. on
Cloud Engineering Workshop (IC2EW), pages 54–59.

Isaia, P. and Guan, L. (2016). Performance benchmarking
of sdn experimental platforms. In 2016 IEEE NetSoft,
pages 116–120.

Khurshid, A., Zou, X., Zhou, W., Caesar, M., and Godfrey,
P. B. (2013). Veriflow: Verifying network-wide in-
variants in real time. In 10th {USENIX} {NSDI} 13,
pages 15–27.

Liyanage, M. e. a. (2015). Security for future software de-
fined mobile networks. In 9th Int. Conf. on Next Gen-
eration Mobile Applications, Services and Technolo-
gies, pages 256–264.

ONF (2019). Sdn technical specifications.
Scott-Hayward, S., O’Callaghan, G., and Sezer, S. (2013).

Sdn security: A survey. In 2013 IEEE SDN For Future
Networks and Services (SDN4FNS), pages 1–7.

Wang, A., Mei, X., Croft, J., Caesar, M., and Godfrey, B.
(2016). Ravel: A database-defined network. In Proc.
of the Symposium on SDN Research, page 5. ACM.

Yap, K.-K. e. a. Taking the edge off with espresso: Scale, re-
liability and programmability for global internet peer-
ing. In Proc. ACM SIGCOMM 2017, pages 432–445.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

594


