
Recent Advances in Land Surface Phenology Estimation with 
Multispectral Sensing 

Irini Soubry1 a, Ioannis Manakos2 b and Chariton Kalaitzidis3 c 
1Department of Geography and Planning, University of Saskatchewan, SK S7N 5C8, Canada 

2Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece  
3Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania,  

73100 Crete, Greece 

Keywords: Land Surface Phenology, Data Fusion, Satellite Synergies, Phenology Metrics, Global Phenology Networks, 
Global Phenology Products.  

Abstract: Vegetation phenology refers to changes in seasonal patterns of vegetation cycles, such as flowering and leaf 
fall, influenced by annual and seasonal fluctuations of biotic and abiotic drivers. Information about phenology 
is crucial for unravelling the underlying biological processes across vegetation communities in space and time. 
It is also important for ecosystem and resources management, conservation, restoration, policy and decision-
making on local, national, and global scales. Numerous approaches to register Land Surface Phenology (LSP) 
appeared since Earth Observation from space became possible a few decades ago. This paper attempts to 
capture current progress and new capacities that arose with the advent of the free data policy, the Sentinel-
era, new multispectral satellite sensors, cloud computing, and machine learning in LSP for natural and semi- 
natural environments. Spaceborne sensors’ capacity to capture LSP, data fusion, and synergies are discussed. 
Information about retrieval methods through open-source tools and global LSP products and phenology 
networks are presented. 

1 INTRODUCTION 

Vegetation phenology refers to the changes in 
seasonal patterns of natural phenomena on the land, 
e.g. leaf out, flowering, leaf browning and fall, 
influenced by annual and seasonal fluctuations of 
biotic and abiotic (e.g. temperature, day length, 
precipitation) drivers (Gerstmann et al., 2016; Lieth, 
1974; USA-NPN, 2020). On the other hand, Land 
Surface Phenology (LSP) is the study of the spatio-
temporal vegetation development of the land surface 
as measured by satellite sensors, and is different from 
species-specific phenology observed on the ground 
(de Beurs & Henebry, 2004, 2005). Vegetation 
phenology has a pivotal function in delineating the 
structure and function of ecosystems. The main 
drivers of vegetation phenology are related to climate 
and vary across ecoregions (Munson & Long, 2017; 
Zhang et al., 2007). 
                                                                                                 
a  https://orcid.org/0000-0001-7937-5726 
b  https://orcid.org/0000-0001-6833-294X 
c  https://orcid.org/0000-0001-5217-7164 

Phenology is studied in various frameworks, such 
as assessing urban heat islands effects on vegetation 
phenology (Ding et al., 2020; Zhang et al., 2004), 
vegetation phenology detection in urban areas 
(Granero-Belinchon et al., 2020), and crop growth 
stages detection (Gao et al., 2020). Nevertheless, this 
paper focuses on its applications in natural and semi-
natural vegetation. By semi-natural vegetation, one 
means vegetation that includes “extensively managed 
grasslands, agro-forestry areas and all vegetated 
features that are not used for crop production” 
(García-Feced et al., 2014). 

Knowledge of phenological cycles contributes to 
the development of protection measures and 
management practices to sustain ecosystems and their 
services (Buisson et al., 2017). The importance of 
phenology monitoring is acknowledged by the Group 
on Earth Observations (GEO) (GEO-BON, 2019), the 
UN (United Nations) Sustainable Development Goals 
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(SDGs) -towards goals 13 (climate action) and 15 
(life on land) (Trondheim Conference, 2019; UN, 
2019)-, and the Convention on Biological Diversity 
(CBD); which has set the Aichi Biodiversity Targets 
(ABTs) (target 15 – ecosystem resilience and 
biodiversity contribution to carbon stocks – needs 
phenological data to be resolved) (CBD, 2019). 

Phenology cycles can be approximated from 
spaceborne time series of vegetation indices (VIs) 
(Kuenzer et al., 2015). Towards this purpose, there 
exist global spaceborne phenology products 
(GLOBE, 2019; NEON, 2019; PEP725, 2019; USA-
NPN, 2019), which are based on LSP. Different 
remote sensors can approximate LSP, i.e. LiDAR (see 
the review of Salas (2020)), SAR (Synthetic Aperture 
Radar) mainly related to crop phenology (Cota et al., 
2015; Mascolo et al., 2016), and passive microwave 
remote sensing systems (Alemu & Henebry, 2013;. 
Alemu et al., 2019; Dannenberg et al., 2020; Tong et 
al., 2019). Optical remote sensing remains the 
common approach in LSP estimation, since 
vegetation pigments detected with multispectral 
sensors relate to different phenological stages. Lastly, 
a recent direction in LSP estimation is fluorescence 
remote sensing; in particular the use of satellite-
derived Solar-Induced Cholophyll Fluorescence 
(SIF) (Joiner et al., 2014). The coarse spatial (0.5-1°) 
and temporal resolution of such systems still pose a 
large barrier towards detailed monitoring of seasonal 
vegetation changes (Springer et al., 2017). Recently 
employed and future satellite SIF missions have 
higher spatial and temporal resolutions; and will be 
able to alleviate some of the current problems. One 
example includes the future Fluorescence Explorer 
(FLEX) (to be launched in 2022), which could 
provide more accurate estimations of phenology in 
heterogeneous landscapes (ESA, 2020). 

Advances in sensor technology, coupled with 
increasing demand for frequent, spectrally rich, and 
spatially detailed satellite data, have led to the 
launch of multiple satellite missions and new image 
processing technologies. These allow for increased 
spatial and temporal resolution of data individually, 
or through fusions and synergies (Claverie et al., 
2018; Li et al., 2017; Pouliot et al., 2018). As the 
science of LSP has grown dramatically over the past 
two decades, there is a pressing need to report the 
advances in this field. Several reviews have been 
made; tackling separately LSP methods and their 
limitations (de Beurs & Henebry, 2010; Zeng et al., 
2020), LSP products (Henebry & de Beurs, 2013; 
Reed et al., 2009), phenology networks (Morisette et 
al., 2009; Reed et al., 2009), and challenges that 
arise in LSP of optical remote sensing (Helman, 

2018; Henebry & de Beurs, 2013; Morisette et al., 
2009; Reed et al., 2009). This paper reviews recent 
and future trend developments for LSP retrieval of 
natural and semi-natural vegetation with 
multispectral sensors during the Sentinel-era; 
including sensors, data fusion, synergies, 
workflows, products, and networks. Towards this 
purpose, recent papers (up until December 2020) 
from the last 5 to10 years and heavily cited papers 
that fall within the aforementioned topic were 
selected. 

2 CURRENT AND FUTURE 
PROGRES IN LSP 
ESTIMATION THROUGH 
MULTISPECTRAL REMOTE 
SENSING 

Since earth observation from space became possible, 
several satellite sensors have been used for LSP 
estimation. An overview of sensors and LSP 
example applications is presented in Table 1. The 
VIIRS LSP product follows-up the mission of the 
MODIS product (Moon et al., 2019). The Project for 
On-Board Autonomy-Vegetation (PROBA-V) was 
developed as an improved smaller version of SPOT-
VGT to provide continuity of its 10-year archive and 
to fill the gap until the launch of Sentinel-3 (in 2016 
and 2018) (eoPortal Directory, 2020). As of July 
2020, it can be used for experimental monitoring 
over Europe and Africa up until its orbit will go into 
darkness in October 2021 (eoPortal Directory, 
2020). Since its data is freely available, its use in 
LSP studies becomes even easier. Upcoming plans 
for 2021 include the addition of a small satellite with 
the same type of sensor on PROBA-V, which will 
look at the same targets from a different viewing 
angle so as to generate fused images (VITO, 2020). 
LSP has also been estimated from geostationary 
satellites. More recently, the Advanced Himawari 
Imager (AHI) on the geostationary Himawari-8 
satellite was used to enhance LSP estimation over 
the Asian-Pacific region (Miura et al., 2019; Yan et 
al., 2019), and to study the sun-angle effects on LSP 
(Ma et al., 2020).  

When Landsat imagery became freely available 
in 2008, numerous land imaging applications and 
studies were conducted. Landsat’s spatial resolution 
enhances the way in which LSP variations set by 
micro-climatic and topographic effects are 
registered. Additionally, the heterogeneity in land 
cover classes within each pixel is reduced, and a 
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more detailed matching with field- Landsat’s long-
term continuity provides tremendous opportunities 
for LSP time series development, especially at 

present, when cloud-computing and machine learning 
have set the stage for current and future trends in 
image processing (see Section 2.2).  

Table 1: Multispectral satellite sensor characteristics for LSP studies and example applications (spat. res.= spatial resolution; 
temp. res.=temporal resolution; sun-synchr.=sun-synchronous; geostat.=geostationary). 

Satellite 
sensor 

Orbit-
type 

Operation 
timespan 

Spat. 
res. 

Temp. 
res. 

Example LSP 
applications Relevant studies Data 

Source 

AVHRR Sun-
synchr. 1978-Present 1.1 km 

at nadir Daily global LSP trends 
(Bradley et al., 
2007; Wang et al., 
2012) 

(Wunderle 
& Neuhaus, 
2020) 

MODIS Sun-
synchr. 1999-Present 

250 m,  
500 m,   
1 km 

Daily global LSP trends 

(Cai et al., 2017; 
Cui et al., 2019, 
2020; Henebry & 
de Beurs, 2013; 
Karkauskaite et al., 
2017; Misra et al., 
2016; Wu et al., 
2017) 

(ESA, 
2020) 

VIIRS Sun-
synchr. 2011-Present 

375 m, 
250m,   
750 m 

Daily 

global LSP trends; 
comparison of global 
products; comparison 
with ground phenology

(Moon et al., 2019; 
Zhang et al., 2017; 
Zhang, Jayavelu, et 
al., 2018; Zhang, 
Liu, et al., 2018) 

(NASA 
EARTHDA
TA, 2020) 

SPOT-VGT Sun-
synchr. 1988-2014 1.15 km 

at nadir Daily 

regional LSP trends; 
global baseline LSP 
product; comparison 
with ground phenology

(Meroni et al., 
2014; Verhegghen 
et al., 2014; Wu et 
al., 2017)  

(Wolters et 
al., 2016) 

PROBA-V Sun-
synchr. 2013-2020 

100 m,  
300 m,   
1 km 

Daily 
regional LSP trends; 
comparison with 
ground phenology 

(Bórnez, 
Richardson, et al., 
2020; Guzmán et 
al., 2019) 

(eoPortal 
Directory, 
2020)  

SEVIRI Geostat. 2002-Present 1 km, 3 
km 15 min. regional LSP trends 

(Sobrino et al., 
2013; Yan et al., 
2017)  

(Aminou, 
2002) 

AHI Geostat. 2014-Present 
500 m,   
1 km,     
2 km 

10 min. regional LSP trends 
(Ma et al., 2020; 
Miura et al., 2019; 
Yan et al., 2019)  

(eoPortal 
Directory, 
2020) 

Landsat Sun-
synchr. 1972-Present 30 m, 

80 m 

16-
days, 
18-days 

LSP trends; 
comparison with 
ground phenology; 
land cover 
characterization 

(Dethier et al., 
1973; Fisher et al., 
2006; Liu et al., 
2016; Melaas et al., 
2013) 

(eoPortal 
Directory, 
2020) 

Sentinel-2 Sun-
synchr. 2015-Present 

10 m,     
20 m, 
60 m  

5-days, 
10-days 

LSP trends; 
comparison with 
ground phenology 

(Cai, 2019; Löw & 
Koukal, 2020; 
Solano-Correa et 
al., 2018; Vrieling 
et al., 2018) 

(eoPortal 
Directory, 
2020) 

PlanetScope Sun-
synchr. 2009-Present 3.7 m at 

nadir Daily LSP trends in 
agriculture 

(Chen et al., 2019; 
Cheng et al., 2020; 
Myers et al., 2019; 
Sadeh et al., 2019) 

(eoPortal 
Directory, 
2020; ESA, 
2020) 

VENμS Sun-
synchr. 2017-Present 3 m, 5.3 

m 2-days LSP trends in 
agriculture 

(Gao et al., 2020; 
Herrmann et al., 
2020; 
Manivasagam et 
al., 2019) 

(eoPortal 
Directory, 
2020) 
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The Sentinel-2 MultiSpectral Instrument (MSI) 
improves the temporal and spatial coverage of 
existing satellite sensors and has recently been used 
for LSP extraction (Cai, 2019; Löw & Koukal, 2020; 
Vrieling et al., 2018). Sentinel-2 data have spatial and 
spectral complementarity with Landsat data, which 
could enable integration (Storey et al., 2016), 
allowing for an average temporal overpass of 2.9 days 
(Li & Roy, 2017), providing higher chances of cloud-
free surface data use for LSP studies. 

LSP can also been retrieved with the use of very 
high spatial (<10 m) and temporal resolution data. 
The potential use of PlanetScope for phenology 
estimation in semi-arid rangelands showed promising 
results (Cheng et al., 2020). Additionally, Vegetation 
and Environment monitoring on a New Micro-
Satellite (VENμS) has also been used for LSP studies 
(Gao et al., 2020; Herrmann et al., 2020), and 
transformation functions between Sentinel-2 and 
VENμS surface reflectance have been developed in 
order to combine these data into one dense time-series 
for vegetation monitoring (Manivasagam et al., 
2019). 

Upcoming satellite generations will be able to 
support data continuity for LSP monitoring through 
optical remote sensing and improve data quality. 
More specifically, the JPSS mission, carrying -among 
others- the VIIRS instrument, is scheduled to launch 
three spacecrafts between 2021 and 2031 (Trenkle & 
Driggers, 2019). Furthermore, commercial solutions, 
such as the Planetscope nanosatellite constellation, 
with continuous launches every three to six months, 
will eventually allow for daily imaging of the entire 
globe at very high spatial resolution (3m 
approximately) (eoPortal Directory, 2020; ESA, 
2020). Lastly, UrtheDaily will be launched by 
UrtheCast in 2022, providing daily medium 
resolution global images with 9 spectral bands that 
will be cross calibrated to Sentinel-2 and will be 
analysis ready through a constellation of six satellites 
(UrtheCast, 2020). 

2.1 Multi-Source Satellite Data 
Integration Methods for LSP 
Estimation 

The use of composite images has been frequently 
applied for AVHRR, MODIS, and SPOT data in 
order to account for cloud cover. However, this 
technique reduces the temporal frequency of the data, 
which is important for LSP. Data fusion or blending 
of satellite data from different sensors to create 
synthetic information of high spatio-temporal 
resolution has introduced a way that optimizes the 

capacity to monitor land surface changes (Zhu et al., 
2010). Similarly, synergies between satellite products 
(e.g. Sentinel-2 and Landsat-8) are used to densify 
time series; here the individual products that make up 
the synergy remain the same. These methods are 
particularly important for LSP estimations, since both 
high temporal and high spatial resolution are needed 
to derive detailed phenology cycles. Examples of 
recent types of data integration methods are provided 
in Table 2. 

Table 2: Examples of satellite data integration methods (i.e. 
data fusion & synergies) that are useful for LSP estimation. 

Method Sensor 
combination Details Source 

FORCE 
ImproPhe 

MODIS, 
Landsat, 
Sentinel 

Uses local pixel 
neighborhood, 
denoises LSP, 

preserves sharp 
edges 

(Frantz, 
2019) 

Automatic co-
registration 

Landsat, 
Sentinel 

Co-registration of 
Landsat-8 to 

Sentinel-2A & 
Sentinel-2A to 

Sentinel-2B 

(Skakun 
et al., 
2017) 

Assisted 
downscaling 

Landsat, 
Sentinel 

Downscales 
Landsat-8 to 
Sentinel-2 
resolution 

(Li & 
Roy, 
2017) 

Super-
resolution 

enhancement 

Landsat, 
Sentinel 

Uses convolution 
neural networks 

trained with 
Sentinel-2 data 

(Pouliot 
et al., 
2018) 

HLS Landsat, 
Sentinel 

A combined 
Landsat/Sentinel 

product 

(Claveri
e et al., 
2018) 

Scientists of the NASA Multi-source Land 
Imaging (MuSLI) program combined Sentinel-2 and 
Landsat-8 data (Li et al., 2017) towards the 
production of the Harmonized Landsat Sentinel-2 
(HLS) dataset. This currently covers the entire North 
America and other globally distributed test sites. 
Version 1.4 is available for 120 pilot regions, which 
correspond to 4090 MGRS (Military Grid Reference 
System) tiles (Masek, 2018; Skakun et al., 2018). 
This data is tested for several applications, including 
LSP (Claverie et al., 2018). A project targeting an 
enhanced LSP product was created (Melaas et al., 
2017), and further developed towards an operational 
LSP product (Bolton et al., 2020; Friedl et al., 2020). 
The integration and combined use of these satellite 
sensors provide a chance of developing time series 
with unprecedented frequency. Nevertheless, the 
combined use of different constellations introduces 
various theoretical and technical hurdles. 
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2.2 New Trends in LSP Retrieval and 
Recent Discoveries 

The twinned potential of cloud computing (CC) and 
machine learning provides new pathways for enhanced 
LSP retrieval. The current big volume of satellite data 
requires high-performance processing methods, which 
are hard to obtain through just a single computer. CC 
represents a paradigm shift to next-generation studies 
of plant phenology, since it allows for processing and 
analysis of previously unmanageable volumes of data, 
shifting the processing burden from a scientist’s 
personal computer to an external server that is accessed 
through the cloud. Since Landsat data have long-term 
data continuity, CC has made it possible to assemble 
time series from all available Landsat scenes. Cloud 
solutions for data storage and LSP processing include 
freely accessible platforms, such as Google Earth 
Engine, Amazon Web Services (AWS) Open Data, 
TerraScope Virtual Machine, and the ‘Phenology 
Metrics’ algorithm (see Section 3.1). For instance, 
Google Earth Engine (GEE) has allowed for online LSP 
calculation and analysis in recent studies (Bórnez et al., 
2020a; Li et al., 2019; Venkatappa et al., 2019; Workie 
& Debella, 2018), facilitating processing burden. 

Moreover, data cube technologies are gaining 
popularity in the earth observation society for remote 
sensing data processing. Image data cubes are defined 
as “large collections of temporal, multivariate datasets 
typically consisting of analysis ready multispectral 
Earth observation data” (Kopp et al., 2019). The 
Committee of Earth Observation Satellites (CEOS) 
created Open Data Cube to facilitate the creation of 
such cubes. LSP processing can hugely benefit from 
such technology. For instance, Li et al. (2020) used 
data cube processing to analyse changes in vegetation 
green-up dates over various dimensions to reveal 
greater spatiotemporal discrimination. Overall, 
researchers can incorporate all available imagery over 
much larger extents, leading to phenology results that 
are either temporally detailed, geographically 
expansive, or both. 

Similarly, machine-learning techniques deserve a 
mention, given that the large volume of available data 
has made it possible to apply increasing sophisticated 
analysis approaches that depend on massive data 
inputs. Machine learning could be applied to data 
cubes and multi-source earth observation data. For 
now, it has been used to predict ground-based 
phenophases or LSP from daily pheno-tower data. 
Examples include its use to learn phenological patterns 
and detect them in a large number of ground digital 
imagery (Almeida et al., 2014; Ryu et al., 2018), or in 
filling spatiotemporal ground-based LSP observations 

and forecasting phenophases with remote sensing and 
meteorological data (Czernecki et al., 2018). Recently, 
the DATimeS software was launched to specifically 
incorporate twelve different machine learning fitting 
algorithms for time series analysis of phenology data 
(see Section 3.1). Overall, the use of machine learning 
techniques to enhance phenological models has not 
been fully explored until now. 

Lastly, many studies note that LSP of end of season 
(EOS) is more difficult to estimate because canopy 
greenness of plants changes gradually during autumn. 
To avoid being based on just one method for EOS 
estimation, Yuan et al. (2020) recently calculated EOS 
by taking the average of two methods (i.e. the midpoint 
and double logistical fitting). Furthermore, recent 
studies revealed that the estimat-ion of autumn 
phenology is a gradual process that requires a 
combination of sensors and satellite data for accurate 
depiction. Lu et al. (2018) found that autumn 
phenology defined by fluorescence satellite data 
agreed better with gross primary production (GPP) 
autumn phenology than that derived from VIs. Their 
findings agree with those of Wang et al. (2020). They 
support that photosynthetic activity senesces before 
changes in leaf color, and that the decrease in 
vegetation water content occurs at the end. This was 
consistent globally, providing a better understanding of 
the underlying structural and functional processes 
behind autumn senescence, being a longer and more 
gradual process than start of season (SOS). 

3 LSP SOFTWARE TOOLS, 
GLOBAL PRODUCTS & 
NETWORKS 

3.1 Open-source LSP Software Tools 

There is an abundance of LSP data processing and 
extraction software from Earth observation time-series. 
All of these use a variety of fitting functions to extract 
a number of LSP metrics. Exemplary open-source 
tools are presented in Table 3. They all provide the 
advantage of being freely available, but might have 
limitations regarding the nature of the time series, 
algorithm verification, lack of a graphical user 
interface, or demand for advanced knowledge. The use 
of cloud processing with an online workflow for 
“Estimation of phenology metrics” by the Centre for 
Research and Technology - Hellas (CERTH), and the 
incorporation of next-generation machine learning 
regression algorithms for LSP time series by DATimeS 
are promising. 
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Table 3: Open-source software tools for LSP extraction. 

Software tool Source 
TIMESAT (Eklundh, 2017) 
PhenoSat (Rodrigues et al., 2013) 
BFAST (Verbesselt et al., 2010) 
SpliTS (Frantz et al., 2016; Mader, 

2012) 
SPIRITS (Eerens & Dominique, 2013; 

Rembold et al., 2013) 
‘greenbrown’ R 
package 

(Forkel et al., 2013, 2015; 
Forkel & Wutzler, 2015) 

‘phenex’ R package (Lange & Doktor, 2017) 
“Estimation of 
phenology metrics” 
by CERTH 

(Guigoz, 2017; Nativi et al., 
2016) 

DATimeS (Belda et al., 2020) 

3.2 Global LSP Products 

Some of the most important global LSP product are 
listed in Table 4. One of the benefits of the 
MCD12Q2 product is that it can be used for regions 
that have two growing seasons (Henebry & de Beurs, 
2013). Similarly, the VIIRS GLSP product can 
separate phenological phases in a wide variety of 
vegetation types and climate systems, with high 
quality (Zhang et al., 2018). The MEaSUREs VIP 
product has the advantage of combining AVHRR and 
MODIS data and provides 26-year LSP metrics. 
Lastly, the HLS surface reflectance dataset (Bolton et 
al., 2020), which currently covers several pilot sites  
 

Table 4: Global LSP products: MODIS Land Cover 
Dynamics product (MCD12Q2), VIIRS Global Land 
Surface Phenology product (GLSP), Making Earth System 
Data Records for Use in Research Environments 
(MEaSUREs) Vegetation Index and Phenology (VIP) 
global dataset. Information retrieved from Gray et al. 
(2019), USGS (2019), and Zhang et al. (2018). 

Global 
LSP 
products 

Duration Source Spatial 
Resolution

MCD12Q2 2001- 
2017 

EVI2 from MODIS 
BRDF Adjusted 
Reflectance 
(NBAR) 

500 m 

VIIRS 
GLSP 

2012- 
Present 

EVI2 from daily 
VIIRS BRDF 
NBAR 

500 m 

MEaSUREs 
VIP 

1981-
2014 

NDVI and EVI2 
from AVHRR 
1981-1999; 
MODIS MOD09 
2000-2014 

5600 m 

around the world, can be used to derive LSP time 
series, and should also be mentioned here, as future 
plans envision for it to have global cover. 

3.3 Ground Phenology Networks for 
LSP Validation 

To link LSP estimations with ground phenology 
observations, it is advised to gain complete 
understanding of the species composition in the study 
area (Misra et al., 2016). Therefore, simultaneous 
field-based and remote sensing data has to be 
obtained along various stages of multiple growing 
seasons. The downside of in situ phenological data 
collection is that it is labor-intensive, localized, and 
includes only a small sample of species (Misra et al., 
2016). Therefore, many countries operate ground 
phenology based on crowd-sourced information and 
transboundary networks. It has been suggested by the 
Society of Biometeorology Phenology Commission 
(ISB-PC) and the World Meteorological 
Organization Commission for Agricultural 
Meteorology (WMO-CAgM) to build a Global 
Alliance of Phenological Observation Networks 
(GAPON) (USA-NPN, 2020). The phenology 
networks that are included into this alliance are up to 
date 52 in number, and include –among others- 
nationwide approaches. Examples of some major 
phenological networks are provided in Table 5. 

4 CONCLUSIONS 

It has become obvious that a new era with time series 
at higher spatial and temporal resolution brings 
enormous opportunities and challenges to LSP 
research. The big volume of data requires high-
performance processing methods. To tackle this 
issue, cloud solutions for data storage and processing 
are freely accessible along with machine learning 
workflows; and data cube processing techniques are 
being developed. All of this will facilitate the role that 
phenology has to play in the UN SDGs and ABTs 
together with the development of EBVs (essential 
biodiversity variables) in line with the GEO 
initiatives. Through this review it is made clear that 
the use of satellite constellations might reduce the 
problems associated with the spatial and temporal 
resolution of LSP data (e.g. HLS product). Lastly, the 
variety of open-source tools, global products, and 
ground phenology networks gives opportunity for 
LSP estimation by diverse science teams and 
capacities. 
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Table 5: Major existing phenology networks. Information retrieved from GLOBE (2019), Nasahara & Nagai (2015), NEON 
(2019), PEN (2020), PEP725 (2019), Templ et al. (2018), USA-NPN (2019), PHENOCAM (2020). 

Phenology 
Networks 

Purpose Users Collaborations Extra information 

USA-NPN Collect, store, distribute 
phenology data 

Researchers, natural 
resource managers, 
policy-makers, 
educators, citizen 
scientists, NGO’s 

-NEON; 
-Nature’s Notebook 

Standardized plant & animal 
observation protocols 

NEON Collect ecological data: 
in situ measurements/ 
observations & airborne 
remote sensing surveys 

Researchers -81 field sites in US 175 open access products 

PEP725 Open access database to 
facilitate phenological 
research, education, 
environmental 
monitoring 

Researchers, educators -7 phenology network 
partners; 
-32 European 
meteorological 
services 

-Volunteer data collected 
from 1868 to present;  
-12 million records 

GLOBE International science and 
education program to 
promote teaching and 
learning of science 

Students, educators -NASA, NSF, 
NOAA; 
-121 countries 

Over 150 million ground 
biophysical measurements 

PEN Validate terrestrial RS 
products of ecology, 
phenology changes 

Ecologists, remote 
sensing specialists, 
scientists, citizens 

 
-FluxNet, ILTER, 
AsiaFlux 
-38 sites worldwide, 
most in Japan 

Some sites measure 
environmental 
ecophysiological properties 

PhenoCam For phenological model 
validation, evaluation of 
satellite RS products, 
studies of climate change 
impacts on terrestial 
ecosystems 

Researchers, remote 
sensing specialists 

-750 sites across 
North America 

Data derived from visible-
wavelength digital camera 
imagery 
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